Preferred embodiments of the invention will now be described in detail with reference to the accompanying drawings. Reference is now made to
The frequency band of GSM transmission signals is 880 to 915 MHz. The frequency band of GSM reception signals is 925 to 960 MHz. The frequency band of DCS transmission signals is 1710 to 1785 MHz. The frequency band of DCS reception signals is 1805 to 1880 MHz. The frequency band of PCS transmission signals is 1850 to 1910 MHz. The frequency band of PCS reception signals is 1930 to 1990 MHz. The frequency band of WCDMA transmission signals is 1920 to 1980 MHz. The frequency band of WCDMA reception signals is 2110 to 2170 MHz.
The high frequency circuit of
The reception signal terminal Rx1 outputs GSM reception signals GSM/Rx. The reception signal terminal Rx2 outputs DCS reception signals DCS/Rx. The reception signal terminal Rx3 outputs PCS reception signals PCS/Rx. The reception signal terminal Rx4 outputs WCDMA reception signals WCDMA/Rx. The transmission signal terminal Tx1 receives GSM transmission signals GSM/Tx. The transmission signal terminal Tx2 receives DCS transmission signals DCS/Tx and PCS transmission signals PCS/Tx. The transmission signal terminal Tx3 receives WCDMA transmission signals WCDMA/Tx.
The high frequency circuit further incorporates: an antenna 2 connected to the antenna terminal ANT; an amplifier section 3 connected to all the reception signal terminals and all the transmission signal terminals of the high frequency module 1; and an integrated circuit 4 connected to the amplifier section 3. The integrated circuit 4 is a circuit for mainly performing modulation and demodulation of signals. The amplifier section 3 includes components such as a low-noise amplifier for amplifying reception signals outputted from the high frequency module 1 and sending the signals to the integrated circuit 4, and a power amplifier for amplifying transmission signals outputted from the integrated circuit 4 and sending the signals to the high frequency module 1.
The high frequency module 1 further incorporates a high frequency switch 10, three low-pass filters (LPFs) 11, 13 and 15, two high-pass filters (HPFs). 12 and 14, and five BPFs 24, 25, 26, 27 and 28.
The high frequency switch 10 has four ports P1 to P4. The high frequency switch 10 selectively connects the port P1 to one of the ports P2 to P4 depending on the state of a control signal received at a plurality of control terminals (not shown) provided in the high frequency module 1.
The high frequency module 1 further incorporates: a phase line 16 having an end connected to the antenna terminal ANT; and a capacitor 33 provided between the other end of the phase line 16 and the port P1 of the high frequency switch 10.
The high frequency module 1 further incorporates: a phase line 17 having an end connected to the antenna terminal ANT and the other end connected to the input of the BPF 24; and an inductor 32 having an end connected to the other end of the phase line 17 and having the other end grounded. The output of the BPF 24 is connected to the reception signal terminal Rx4.
The high frequency module 1 further incorporates: a capacitor 36 having an end connected to the port P2 of the high frequency switch 10; and a phase line 18 having an end connected to the other end of the capacitor 36. The other end of the phase line 18 is connected to the output of the LPF 11 and the input of the HPF 12. The input of the LPF 11 is connected to the transmission signal terminal Tx1.
The high frequency module 1 further incorporates a phase line 20 having an end connected to the output of the HPF 12. The other end of the phase line 20 is connected to the input of each of the BPFs 25 and 26. The output of the BPF 25 is connected to the reception signal terminal Rx2. The output of the BPF 26 is connected to the reception signal terminal Rx3.
The high frequency module 1 further incorporates: a capacitor 35 having an end connected to the port P3 of the high frequency switch 10; and a phase line 21 having an end connected to the other end of the capacitor 35. The other end of the phase line 21 is connected to the output of the LPF 15. The input of the LPF 15 is connected to the transmission signal terminal Tx2.
The high frequency module 1 further incorporates: a capacitor 34 having an end connected to the port P4 of the high frequency switch 10; and a phase line 19 having an end connected to the other end of the capacitor 34. The other end of the phase line 19 is connected to the input of the LPF 13 and the output of the HPF 14.
The high frequency module 1 further incorporates: a phase line 22 having an end connected to the output of the LPF 13; and a phase line 23 having an end connected to the input of the HPF 14. The other end of the phase line 22 is connected to the input of the BPF 27. The output of the BPF 27 is connected to the reception signal terminal Rx1. The other end of the phase line 23 is connected to the output of the BPF 28. The input of the BPF 28 is connected to the transmission signal terminal Tx3.
The BPF 24 is formed using a band-pass filter element 40 of the embodiment. Each of the BPFs 25 to 28 is formed using a surface acoustic wave element, for example. The high frequency switch 10 is formed using a field-effect transistor made of a GaAs compound semiconductor, for example.
The operation of the high frequency module 1 and the high frequency circuit of
With regard to signals other than WCDMA reception signals, transmission or reception is allowed in response to the state of the high frequency switch 10, as described below. The state of the high frequency switch 10 is switched in response to the state of a control signal received at the plurality of control terminals not shown. The capacitors 33 to 36 are provided to block the passage of direct current components generated by control signals.
In the state in which the port P1 is connected to the port P2, transmission of GSM transmission signals, reception of DCS reception signals, or reception of PCS reception signals is allowed. In this state, a GSM transmission signal received at the transmission signal terminal Tx1 passes through the LPF 11, the phase line 18, the capacitor 36, the high frequency switch 10, the capacitor 33, the phase line 16, and the antenna terminal ANT in this order, and is supplied to the antenna 2. Furthermore, in this state, a DCS reception signal received at the antenna 2 passes through the antenna terminal ANT, the phase line 16, the capacitor 33, the high frequency switch 10, the capacitor 36, the phase line 18, the HPF 12, the phase line 20, and the BPF 25 in this order, and is outputted from the reception signal terminal Rx2. Furthermore, in this state, a PCS reception signal received at the antenna 2 passes through the antenna terminal ANT, the phase line 16, the capacitor 33, the high frequency switch 10, the capacitor 36, the phase line 18, the HPF 12, the phase line 20, and the BPF 26 in this order, and is outputted from the reception signal terminal Rx3.
In the state in which the port P1 is connected to the port P3, a DCS transmission signal or a PCS transmission signal received at the transmission signal terminal Tx2 passes through the LPF 15, the phase line 21, the capacitor 35, the high frequency switch 10, the capacitor 33, the phase line 16, and the antenna terminal ANT in this order, and is supplied to the antenna 2. The LPF 15 rejects harmonic components contained in DCS and PCS transmission signals.
In the state in which the port P1 is connected to the port P4, reception of GSM reception signals or transmission of WCDMA transmission signals is allowed. In this state, a GSM reception signal received at the antenna 2 passes through the antenna terminal ANT, the phase line 16, the capacitor 33, the high frequency switch 10, the capacitor 34, the phase line 19, the LPF 13, the phase line 22, and the BPF 27 in this order, and is outputted from the reception signal terminal Rx1. In this state, a WCDMA transmission signal received at the transmission signal terminal Tx3 passes through the BPF 28, the phase line 23, the HPF 14, the phase line 19, the capacitor 34, the high frequency switch 10, the capacitor 33, the phase line 16, and the antenna terminal ANT in this order, and is supplied to the antenna 2.
The phase lines 18 to 23 are provided for adjusting the impedances of the respective signal paths on which the phase lines 18 to 23 are located.
Reference is now made to
The circuits of the high frequency module 1 are formed using the intra-substrate dielectric layers 101 and the intra-substrate conductor layers 102, and elements mounted on the top surface 100a of the layered substrate 100. At least the band-pass filter element 40 constituting the BPF 24 is mounted on the top surface 100a. The top surface 100a corresponds to the mounting surface of the invention. Here is given an example in which the high frequency switch 10, the BPFs 25 to 28, the inductor 32, and the capacitors 33 to 36 are mounted on the top surface 100a, in addition to the band-pass filter element 40. The layered substrate 100 is a multilayer substrate of low-temperature co-fired ceramic, for example.
Although not shown, the terminals ANT, Rx1 to Rx4, Tx1 to Tx3, and a plurality of control terminals and a plurality of ground terminals are disposed on the bottom surface 100b of the layered substrate 100.
As shown in
The high frequency module 1 incorporates a metallic casing 110 that is to be connected to the ground and that is disposed to cover the elements mounted on the top surface 100a of the layered substrate 100. In
Reference is now made to
Reference is now made to
As shown in
As shown in
As shown in
As shown in
The conductor layers 431, 432 and 433 for resonator constitute the resonators 61, 62 and 63 of
As shown in
The conductor layers 434 and 435, the conductor layer 441, and the dielectric layer 43 disposed in between constitute the capacitor 67 of
As shown in
Although not shown, conductor layers are respectively formed on the side surfaces 41a, 42a, 43a and 44a, and the conductor layers 411, 434 and 441 are electrically connected to one another through those conductor layers. Similarly, conductor layers are respectively formed on the side surfaces 41b, 42b, 43b and 44b, and the conductor layers 412, 436 and 442 are electrically connected to one another through those conductor layers. Conductor layers are respectively formed on the side surfaces 41c, 42c, 43c and 44c, and the conductor layers 413, 421 to 423, and 443 are electrically connected to one another through those conductor layers. Conductor layers are respectively formed on the side surfaces 41d, 42d, 43d and 44d, and the conductor layers 414, 431 to 433, and 444 are electrically connected to one another through those conductor layers.
The permittivity of each of the dielectric layers 41 to 44 for band-pass filter is higher than that of the intra-substrate dielectric layers 101. To be specific, for example, the relative permittivity of the intra-substrate dielectric layers 101 is 5 to 10 while the relative permittivity of the dielectric layers 41 to 44 is equal to or higher than 20, and preferably 30 to 80.
Each of the conductor layers shown in
The resonators 61, 62 and 63 formed using the conductor layers 431, 432 and 433 each have a Q that varies in response to the configuration of conductor layers that are respectively disposed on the top and bottom of the conductor layers 431, 432 and 433 and that are to be connected to the ground. In the embodiment the conductor layer 102G and the casing 110 are the conductor layers that are respectively disposed on the top and bottom of the conductor layers 431, 432 and 433 and that are to be connected to the ground. In the embodiment the band-pass filter element 40 is designed such that a desired characteristic of the BPF 24 is obtained when the band-pass filter element 40 is disposed between the conductor layer 102G and the casing 110. That is, a desired characteristic of the BPF 24 is implemented by the band-pass filter element 40, the conductor layer 102G and the casing 110 in the embodiment.
The conductor layer 102G for grounding may be one that functions only as an electromagnetic shield for the band-pass filter element 40, or may be one that also functions as the ground of the circuit formed using the intra-substrate conductor layers and the intra-substrate dielectric layers in the layered substrate 100. The conductor layer 102G may be the lowest one of the plurality of conductor layers that the layered substrate 100 includes or may be any other one of the conductor layers. If the conductor layer 102G is the lowest one, there is a benefit that it is possible that the distance between the band-pass filter element 40 and the conductor layer 102G is the greatest. If the conductor layer 102G is not the lowest one, there is a benefit that it is possible to dispose another conductor layer for forming the circuit components below the conductor layer 102G in the layered substrate 100.
For example, there is a case in which the high frequency circuit of
Effects of the band-pass filter element 40 and the high frequency module 1 of the embodiment will now be described, referring to first and second reference examples.
The thickness of each of the dielectric layers 151 and 152 is greater than the thickness of each of the dielectric layers 141 to 144, and is greater than the total thickness of the dielectric layers 141 to 144, for example. The permittivity of each of the dielectric layers 141 to 144 is higher than that of each of the dielectric layers 151 and 152. To be specific, for example, the relative permittivity of each of the dielectric layers 151 and 152 is 5 to 10, and the relative permittivity of each of the dielectric layers 141 to 144 is equal to or higher than 20, and preferably 30 to 80. The band-pass filter element of the first reference example is assumed to implement a characteristic equivalent to that of the BPF 24 implemented by the band-pass filter element 40, the conductor layer 102G for grounding and the casing 110 of the embodiment. Here, a high frequency module implemented by mounting the band-pass filter element of the first reference example on the layered substrate 100 in place of the band-pass filter element 40 of the embodiment is called a high frequency module of the first reference example.
The thickness of the band-pass filter element of the first reference example is much greater than the thickness of the band-pass filter element 40 of the embodiment. Consequently, the thickness of the entire layered structure including the layered substrate 100 and the band-pass filter element of the high frequency module of the first reference example is greater than the thickness of the entire layered structure including the layered substrate 100 and the band-pass filter element 40 of the high frequency module 1 of the embodiment. In the band-pass filter element of the first reference example, if the distance from the conductor layers formed on the dielectric layers 141 to 144 to the conductor layers 153 and 154 for shield is reduced, the Q of the resonators that the band-pass filter element includes is reduced. It is therefore required that each of the dielectric layers 151 and 152 be thick to some extent. According to the first reference example as thus described, the thickness of the high frequency module is great and it is therefore difficult to downsize the high frequency circuit including the high frequency module.
In contrast, since the band-pass filter element 40 of the embodiment includes no conductor layer that functions as an electromagnetic shield, it is possible to make the thickness thereof smaller than that of the band-pass filter element of the first reference example. In addition, in the embodiment, the conductor layer 102G for grounding that the layered substrate 100 includes and the metallic casing 110 function as an electromagnetic shield for the band-pass filter element 40. It is thereby possible to increase the distance between the band-pass filter element 40 and the shield, and thereby increase the Q of the resonators 61 to 63. Because of these features, according to the embodiment, it is possible to reduce the thickness of the high frequency module 1, that is, the thickness of the entire layered structure including the layered substrate 100 and the band-pass filter element 40 while increasing the Q of the resonators 61 to 63. As a result, the embodiment achieves an improvement in Q of the resonators 61 to 63 and a reduction in profile of the high frequency module 1 at the same time, and also allows a reduction in size of the high frequency circuit including the high frequency module 1.
Reference is now made to
According to the embodiment, since the band-pass filter element 40 is mounted on the layered substrate 100, it is possible to provide the phase line 31 in the layered substrate 100, the phase line 31 adjusting the impedance of each of the path from the antenna 2 to the BPF 24 and the path from the antenna 2 to the high frequency switch 10 and thereby separating WCDMA reception signals from other signals. As a result, it is possible to adjust the characteristic of the high frequency module 1.
The layered substrate 200 includes: a high permittivity portion 202 for implementing the BPF 24; a low permittivity portion 201 disposed below the high permittivity portion 202; and a low permittivity portion 203 disposed on top of the high permittivity portion 202. Each of the portions 201 to 203 includes a plurality of dielectric layers and a plurality of conductor layers alternately stacked. The high permittivity portion 202 includes a plurality of conductor layers for implementing the BPF 24. The permittivity of the dielectric layers that the high permittivity portion 202 includes is higher than that of the dielectric layers that the low permittivity portions 201 and 203 include. To be specific, for example, the relative permittivity of the dielectric layers that the low permittivity portions 201 and 203 include is 5 to 10, and the relative permittivity of the dielectric layers that the high permittivity portion 202 includes is equal to or higher than 20, and preferably 30 to 80.
In the second reference example, as described above, the layered substrate 200 includes the high permittivity portion 202 and the low permittivity portions 201 and 203. As a result, the characteristic of the circuit component implemented by the low permittivity portions 201 and 203 is influenced by the dielectric layers included in the high permittivity portion 202 that have a high permittivity. According to the second reference example, it is therefore difficult to design the layered substrate 200 for implementing a circuit having a desired characteristic. Furthermore, in a case in which the layered substrate 200 is to be formed of a multilayer substrate of low-temperature co-fired ceramic, it is required to stack layers of a plurality of types of dielectric materials having different permittivities and to bake them so as to manufacture the layered substrate 200. In this case, it is difficult to manufacture the layered substrate 200 with precision.
According to the embodiment, in contrast, it is possible to design and manufacture the layered substrate 100 and the band-pass filter element 40 individually, so that it is easy to design and manufacture the layered substrate 100 and the band-pass filter element 40.
Reference is now made to
According to the second embodiment, it is possible to make the distance between the band-pass filter element 40 and the casing 110 greater than that of the first embodiment. When the layered substrate 100 has a flat top surface 100a and the band-pass filter element 40 is mounted on such a top surface 100a as in the first embodiment, there may be cases in which a sufficient distance cannot be secured between the band-pass filter element 40 and the casing 110 and consequently the Q of the resonators 61 to 63 is decreased. In contrast, the second embodiment makes it possible to make the distance between the band-pass filter element 40 and the casing 110 sufficiently great and to thereby improve the Q of the resonators 61 to 63. In the second embodiment, it suffices that the conductor layer 102G in the layered substrate 100 is disposed at such a position that the distance between the band-pass filter element 40 and the casing 110 can be sufficiently great.
According to the second embodiment, it is possible to design the depth of the recessed portion 100c and the position of the conductor layer 102G as desired, so that it is easy to adjust the characteristic of the BPF 24. The remainder of configuration, function and effects of the second embodiment are similar to those of the first embodiment.
The present invention is not limited to the foregoing embodiments but may be practiced in still other ways. For example, in the invention, the permittivity of the dielectric layers 41 to 44 for band-pass filter may be equal to that of the intra-substrate dielectric layers 101. It is possible to obtain the foregoing effects of each of the embodiments in this case, too.
The invention is applicable not only to high frequency modules included in high frequency circuits incorporated in cellular phones but also to high frequency modules in general incorporating band-pass filters.
Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
Number | Date | Country | Kind |
---|---|---|---|
2006-130984 | May 2006 | JP | national |