A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The computer program listing identified herein is subject to copyright protection.
Two compact discs, each containing a computer program listing, are submitted herewith as a Computer Program Listing Appendix. The compact discs are identified as “Copy 1” and “Copy 2” and they are identical. The program listing is stored on each compact disc as one ASCII text file entitled “sawbrk”. The date of creation of the file is Jun. 29, 2000, and the size of the file is 50 kilobytes. The material on the compact discs is hereby incorporated by reference.
The present invention relates to band saws, and more particularly to a band saw with a high-speed safety system.
Band saws are a type of woodworking machinery used to cut workpieces of wood, plastic, and other materials. Band saws include two, spaced-apart wheels, and a blade tightly looped around the wheels. The blade is made from a band of metal with teeth on one edge of the band. The blade moves around the wheels when the wheels spin. Band saws also include a table or work surface adjacent the blade and upon which workpieces are placed. A person uses the band saw by placing a workpiece on the table and then sliding the workpiece into the moving blade. Band saws present a risk of injury to users because the blade is exposed when in use. Furthermore, users often must place their hands very close to the blade to position and move workpieces, which increases the chance that an injury will occur.
The present invention provides a band saw with an improved safety system that is adapted to detect the occurrence of one or more dangerous, or triggering, conditions during use of the band saw, such as when a user's body contacts the moving blade. When such a condition occurs, the safety system is actuated to limit or even prevent injury to the user.
A band saw according to the present invention is shown schematically in
Band saw 10 includes a suitable power source 20 to provide power to operative structure 12 and safety system 18. Power source 20 may be an external power source such as line current, or an internal power source such as a battery. Alternatively, power source 20 may include a combination of both external and internal power sources. Furthermore, power source 20 may include two or more separate power sources, each adapted to power different portions of band saw 10.
It will be appreciated that operative structure 12 may take any one of many different forms, depending on the type of band saw 10. As will be described in more detail below, operative structure 12 typically includes two, spaced-apart wheels and a table adjacent the wheels. A blade 14, made from a band of metal with teeth along one edge of the band, is positioned around the wheels adjacent the table. Motor assembly 16 includes one or more motors adapted to drive blade 14 by spinning at least one of the wheels around which the blade is positioned.
Safety system 18 includes a detection subsystem 22, a reaction subsystem 24 and a control subsystem 26. Control subsystem 26 may be adapted to receive inputs from a variety of sources including detection subsystem 22, reaction subsystem 24, operative structure 12 and motor assembly 16. The control subsystem may also include one or more sensors adapted to monitor selected parameters of band saw 10. In addition, control subsystem 26 typically includes one or more instruments operable by a user to control the band saw. The control subsystem is configured to control band saw 10 in response to the inputs it receives.
Detection subsystem 22 is configured to detect one or more dangerous, or triggering, conditions during use of band saw 10. For example, the detection subsystem may be configured to detect that a portion of the user's body is in contact with a portion of blade 14. In some embodiments, detection subsystem 22 may inform control subsystem 26 of the dangerous condition, which then activates reaction subsystem 24. In other embodiments, the detection subsystem may be adapted to activate the reaction subsystem directly. Various exemplary embodiments and implementations of detection subsystem 22 are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,200, entitled “Contact Detection System for Power Equipment,” filed Aug. 14, 2000, by SD3, LLC, the disclosure of which is incorporated herein by reference.
Once activated in response to a dangerous condition, reaction subsystem 24 is configured to quickly engage operative structure 12 to prevent serious injury to the user. It will be appreciated that the particular action to be taken by reaction subsystem 24 will vary depending on the type of band saw 10 and/or the dangerous condition that is detected. For example, reaction subsystem 24 may be configured to do one or more of the following: stop the movement of blade 14 by cutting the blade and/or by gripping the blade, or by retracting the blade from its operating position.
The configuration of reaction subsystem 24 typically will vary depending on which action(s) are taken. In the exemplary embodiment depicted in
Control subsystem 26 includes one or more instruments that are operable by a user to control the motion of blade 14. Those instruments may include start/stop switches, speed controls, etc. Control subsystem 26 typically includes a logic controller connected to receive the user's inputs via the instruments. The logic controller is also connected to receive a contact detection signal from detection subsystem 22. Further, the logic controller may be configured to receive inputs from other sources, such as blade motion sensors, workpiece sensors, etc. In any event, the logic controller is configured to control operative structure 12 in response to the user's inputs. However, upon receipt of a contact detection signal from detection subsystem 22, the logic controller overrides the control inputs from the user and activates reaction subsystem 24 to stop the motion of the blade. Various exemplary embodiments and implementations of control subsystem 26, including the logic controller, are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,059, entitled “Logic Control For Fast Acting Safety System,” filed Aug. 14, 2000 by SD3, LLC, and in U.S. Provisional Patent Application Ser. No. 60/225,094, entitled “Motion Detecting System For Use In Safety System For Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.
A computer program listing for a controller as shown in
One embodiment of band saw 10 is shown specifically in
Band saw 10 includes a detection subsystem 22 to detect when a person's body comes into contact with blade 14. Detection subsystem 22 is based on the capacitance of a human body. It is believed that the capacitance of a user's body, as measured through dry contact with a portion of the user's body, is approximately 25-200 picofarads. That capacitance tends to increase with increasing body size and with increased coupling between the user's body and an electrical ground. As a result of the inherent capacitance of a user's body, when the user touches blade 14, the capacitance of the user's body is electrically coupled to the inherent capacitance of the blade, thereby creating an effective capacitance that is larger than the inherent capacitance of the blade alone. Detection subsystem 22 is configured to measure or monitor the capacitance of the blade, so that any substantial change in the measured capacitance would indicate contact between the user's body and the blade.
Arbor 72 is supported for rotational movement by bearings 80 and 82, which are mounted in a portion of housing 50, and which are spaced along the length of the arbor. Bearings 80 and 82 do not directly contact arbor 72 or wheel 54. Rather, arbor 72 and wheel 54 are electrically isolated from bearings 80 and 82 by insulating bushings 90, 92, and 94, 96, respectively. Those bushings are configured to extend around the arbor, to receive the bearings, and to hold the arbor and wheel away from the bearings and housing so there is no metal-to-metal contact between the bearings/housing and the wheel/arbor. The bushings may be made from many different insulating materials, such as PET-P or some other hard plastic. Bushings 90 and 92 are held in place between wheel hub 70 and an enlarged portion 100 on the arbor that has a greater diameter than the rest of the arbor. Bushings 94 and 96, in turn, are positioned between enlarged portion 100 and a snap ring 102 on the arbor. In this manner, wheel 54 is supported by housing 50 for rotational movement, but is also electrically isolated from the housing. Bushing 90 includes a flange 91 sandwiched between hub 70 and bearing 80 to prevent the hub from touching the bearing. Similarly, bushing 92 includes a flange 93, and bushing 94 includes a flange 95, preventing enlarged portion 100 from touching either of bearings 80 or 82, and bushing 96 includes a flange 97 preventing snap ring 102 from touching bearing 82. A pulley 84 is mounted on the end of arbor 72 opposite wheel 54, and a belt (not shown) driven by motor assembly 16 may be used to drive pulley 84 and thereby spin arbor 72 and wheel 54 in bearings 80 and 82 to move blade 14. The belt is typically non-conducting and thus does not electrically couple the arbor to the housing.
A cylindrical, insulating sleeve 110 is positioned and securely held around enlarged portion 100 by housing 50. Sleeve 110 may be press-fit into an appropriate receptacle on the housing. Two electrically conductive plates or tubes 112 and 114, having an outer diameter that fits snugly within sleeve 110, are, in turn, press-fit into sleeve 110. Alternatively or additionally, plates 112 and 114 may be glued or otherwise mounted in sleeve 110. Sleeve 110 and plates 112 and 114 are coaxial and concentric to enlarged portion 100 of arbor 72. Plates 112 and 114 also have an inner diameter slightly larger than the diameter of enlarged portion 100 so that they do not contact any part of arbor 72. Plates 112 and 114 are spaced apart in sleeve 110 by a gap 120. Plates 112 and 114 may be made from any conductive material, such as brass tubing. Sleeve 110 protects plates 112 and 114 from damage and debris, and also electrically isolates the plates from housing 50.
Plates 112 and 114 may be thought of as contact detection plates that are used to create capacitive couplings with the arbor and blade. Detection subsystem 22 includes suitable electrical circuitry (e.g., such as described in U.S. Provisional Patent Application Ser. No. 60/225,200, entitled “Contact Detection System for Power Equipment,” filed Aug. 14, 2000, by SD3, LLC, which is herein incorporated by reference) to transmit an input signal to plate 112, and to detect the input signal through plate 114 via wires (not shown) attached to the plates, which wires may extend from the plates through a hole or holes in sleeve 110 to detection subsystem 22. In other words, detection subsystem 22 imparts a signal on plate 112. That signal then drives a signal onto arbor 72 by virtue of the capacitive coupling between the plate and the arbor. The arbor is conductively coupled to wheel 54, so the signal induced on the arbor is also induced on the wheel. Blade 14 loops around a significant portion of the perimeter of wheel 54, so the signal on the wheel induces a signal on the blade. If wheel 54 includes a non-conductive, high-friction material such as rubber around its periphery to prevent the blade from slipping on the wheel when the wheel is rotated, then a signal is induced on the blade by a capacitive coupling between the blade and the wheel. If blade 14 directly contacts wheel 54, then the signal on the blade is the same as the signal on the wheel because of the conductive contact between the wheel and the blade. The signal on the arbor also induces a signal on plate 114 because of the proximity of the plate to the arbor. Thus, plate 114 monitors the signal on the blade/arbor. When a person touches the blade, the effective capacitance of the blade/arbor combination changes, causing the signal on plate 114 to change, thereby signaling contact between the blade and a person.
Plates 112 and 114 are mounted close to, but spaced-apart from, arbor 72. Those plates are capacitively coupled to the arbor by virtue of their size and placement parallel to and spaced-apart from the arbor. It is within the scope of the present invention that the number, size and placement of charge plates or tubes may vary.
The effect of this arrangement is to form two capacitors in series through the arbor, creating a capacitive shunt at the junction between the capacitors. Plates or tubes 112 and 114 function as charge plates of the capacitors. The input signal is capacitively coupled from plate 112 onto arbor 72, and then capacitively coupled from the arbor to plate 114. Any change in the capacitance of the blade/arbor changes the signal coupled to plate 114.
When a user touches blade 14, the capacitance of the user's body creates a capacitive load on the blade. As a result, the size of the capacitive shunt between plates 112 and 114 and the blade is increased, thereby reducing the charge that reaches plate 114. Thus, the magnitude of the input signal passed through the blade to plate 114 decreases when a user touches the blade. Detection subsystem 22 is configured to detect this change in the input signal and transmit a contact detection signal to control subsystem 26.
In some cases, there may be a significant amount of resistance at the contact point of the user's dry skin and the blade. This resistance may reduce the capacitive coupling of the user's body to the blade. However, when the teeth on the blade penetrate the outer layer of the user's skin, the moisture inherent in the internal tissue of skin will tend to decrease the resistance of the skin/blade contact, thereby establishing a solid electrical connection. The sensitivity of detection subsystem 22 can be adjusted as desired to recognize even slight changes in the input signal.
Generally speaking, the spacing of the charge plates or tubes from the arbor is not critical, and may vary depending on the charge plate area and the desired capacitive coupling.
Blade 14 must be electrically isolated from ground for the signal to be induced on the blade. Additionally, capacitive couplings between the blade and other parts of the saw must be minimized so that the relative increased capacitance caused from a person touching the blade is reliably measurable. In other words, if the blade is capacitively coupled to other items, such as to a blade guard or to the housing, then the increased capacitance from a person touching the blade will be insignificant compared to the combined capacitance of the blade and other items, meaning that the contact by the person will be harder to detect and the detection will be less reliable. Specifically, in a band saw, the blade will present a large surface area to wheel 52 and therefore will capacitively couple to that wheel.
Band saw 10 addresses this issue by electrically isolating wheel 52 from housing 50, as shown in
Thus, in band saw 10, a charge or signal on plate 112 induces a charge on arbor 72 and wheel 54, which in turn induces a charge on blade 14 and wheel 52. That charge then induces a signal on plate 114, which is monitored by detection subsystem 22. When a person touches the blade, the effective capacitance of the blade/arbor/wheels combination changes, and that change is immediately detected by the detection subsystem. No special or unique blade is required.
It will be appreciated that the size of charge plates 112 and 114 may be selected to provide a desired capacitance with the arbor. Indeed, the size of the charge tubes may be different to provide different capacitances. For example, in the embodiment depicted in
It will be appreciated that while the charge plates or tubes and insulating sleeve in the exemplary embodiment are cylindrical, other shapes may also be used. For example, insulating sleeve 110 may have a rectangular outer cross-section while maintaining its circular inner cross-section. Likewise, charge plates 112 and 114 may have any suitable outer cross-sectional shape to match the inner shape of the insulating tube.
Since charge plates 112 and 114 should not come into contact with each other, the fit between the charge plates and insulating sleeve 110 is typically tight enough to frictionally prevent movement of the charge plates along the axis of the insulating sleeve. Alternatively, a bump or ring may be formed or positioned on the inner diameter of the insulating sleeve between the charge plates to prevent the charge plates from coming into contact. As a further alternative, caulk, glue, epoxy, or similar material may be applied between the charge plates and insulating sleeve to prevent the charge plates from moving. As another alternative, one or more set-screws may be threaded through the insulating sleeve to bear against the charge tubes, making sure that the set screws do not contact the housing or some other metal that would ground the charge plates.
As explained above, blade 14 should be electrically isolated from housing 50, which is usually grounded. Thus, blade guide assemblies 60 and 62, which may include ball-bearing guides and/or friction pads, etc., are constructed to electrically insulate the blade from the main housing.
Insulating sleeve 110 may also be constructed to receive a Hall Effect or similar sensor to detect blade/arbor rotation, as described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,094, entitled “Motion Detection System for Use in Safety System for Power Equipment,” filed Aug. 14, 2000, by SD3, LLC, which is hereby incorporated by reference.
Electrically isolating the blade as described above has the advantage that the blade need not be capacitively isolated from wheels 52 and 54, which is difficult to do effectively. Nevertheless, and alternatively, capacitive couplings to the blade may be created in other ways, such as disclosed in U.S. Provisional Patent Application Ser. No. 60/225,211, entitled “Apparatus and Method for Detecting Dangerous Conditions in Power Equipment,” filed Aug. 14, 2000, by SD3, LLC, and incorporated herein by reference.
As explained above, when detection subsystem 22 detects contact between blade 14 and a person, reaction subsystem 24 reacts to prevent or limit injury to the person.
A cutting pawl 152 is mounted adjacent backing plate 150 on the opposite side of blade 14. Cutting pawl 152 is made from hardened steel. Cutting pawl 152 is mounted to pivot in the direction of arrow 154 around pivot pin 156 mounted to the housing of the saw. Cutting pawl 152 includes a cutting edge 158 on the end of the pawl opposite pivot pin 156. Pawl 152 is configured to pivot down so that cutting edge 158 contacts blade 14 and cuts the blade against backing plate 150. Cutting pawl 152 and backing plate 150 may be thought of as brake mechanism 28 shown in
The force to pivot pawl 152 into the blade to cut the blade is, in part, provided by spring 160, which typically is a spring providing approximately 10 to 500 pounds of force. The spring is configured to force pawl 152 in the direction of arrow 154. When spring 160 pushes cutting edge 158 into blade 14, the downward motion of the blade also pushes pawl 152 downward, so that pawl 152 effectively locks on the blade and uses the motion of the blade to help cut the blade. Spring 160 may be thought of as biasing mechanism 30 discussed above.
Cutting pawl 152 also includes a gripping surface 162 to grip the blade and hold it against backing plate 150 both while the blade is cut and thereafter until the pawl is moved back away from the blade. Gripping surface 162 may be simply a surface on the pawl, or it may be a layer of high-friction material such as rubber or plastic, as shown in
A fuse wire 164 is used to hold cutting pawl 152 away from blade 14 until the detection subsystem detects that a person has contacted the blade. At that time, a firing subsystem 166 sends a surge of electrical current through fuse wire 164, burning the wire and releasing the cutting pawl. Possible fuse wires and firing subsystems are disclosed in more detail in U.S. Provisional Patent Application Ser. No. 60/225,056, entitled “Firing Subsystem for Use in a Fast-Acting Safety System,” filed Aug. 14, 2000, by SD3, LLC, and incorporated herein by reference. A mechanism providing mechanical advantage to hold the cutting pawl away from the blade may be used, as described in U.S. Provisional Patent Application Ser. No. 60/225,056, entitled “Spring-Biased Brake Mechanism for Power Equipment,” filed Aug. 14, 2000, by SD3, LLC, and incorporated herein by reference. Fuse wire 164 may be thought of as restraining mechanism 32, and firing subsystem 166 may be thought of as release mechanism 34.
When cutting pawl 152 cuts blade 14, the tension of the blade around wheels 52 and 54 is released and the blade stops immediately. The blade has relatively little mass, and therefore little momentum, so the blade stops without incident. Additionally, the majority of blade 14 is typically within housing 50 so that the housing would contain the blade even if the blade tended to lash out when cut.
Additionally, any of the cutting pawls described above may have a cutting edge made of carbide or hardened steel.
One example of an electronic subsystem 1000 of contact detection subsystem 22 according to the present invention is illustrated in more detail in
As shown in
It will be appreciated that the particular form of the oscillator signal may vary and there are many suitable waveforms and frequencies that may be utilized. The waveform may be chosen to maximize the signal-to-noise ratio, for example, by selecting a frequency at which the human body has the lowest resistance or highest capacitance relative to the workpiece being cut. As an additional variation, the signal can be made asymmetric to take advantage of potentially larger distinctions between the electrical properties human bodies and green wood at high frequency without substantially increasing the radio-frequency power radiated. For instance, utilizing a square wave with a 250 khz frequency, but a duty cycle of five percent, results in a signal with ten times higher frequency behavior than the base frequency, without increasing the radio-frequency energy radiation. In addition, there are many different oscillator circuits that are well known in the art and which would also be suitable for generating the excitation signal.
The input signal generated by the oscillator is fed through a shielded cable 1110 onto charge plate 440. Shielded cable 1110 functions to insulate the input signal from any electrical noise present in the operating environment, insuring that a “clean” input signal is transmitted onto charge plate 440. Also, the shielded cable reduces cross talk between the drive signal and the detected signal that might otherwise occur should the cables run close together. Alternatively, other methods may be used to prevent noise in the input signal. As a further alternative, monitoring system 1020 may include a filter to remove any noise in the input signal or other electrical noise detected by charge plate 460. Shielded cable 1110 also reduces radio-frequency emissions relative to an unshielded cable.
As described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,211, entitled “Apparatus and Method for Detecting Dangerous Conditions in Power Equipment,” filed Aug. 14, 2000, the input signal is coupled from charge plate 440 to charge plate 460 via blade 400. As shown in
The particular components of monitoring system 1020 may vary depending on a variety of factors including the application, the desired sensitivig, availability of components, type of electrical power available, etc. In the exemplary embodiment, a shielded cable 1120 is connected between charge plate 460 and a voltage divider 1130. Voltage divider 1130 is formed by two 1 MΩ resistors 1140, 1150 connected in series between the supply voltage (tyically about 12 volts) and ground. The voltage divider functions to bias the output signal from charge plate 460 to an average level of half of the supply voltage. The biased signal is fed to the positive input of an op-amp 1160. Op-amp 1160 may be any one of many suitable op-amps that are well known in the art. An example of such an op-amp is a TL082 op-amp. The negative input of the op-amp is fed by a reference voltage source 1170. In the exemplary embodiment, the reference voltage source is formed by a 10 kΩ potentiometer 1180 coupled in series between two 10 kΩ resistors 1190, 1200, which are connected to ground and the supply voltage, respectively. A 0.47 μF capacitor 1210 stabilizes the output of the reference voltage.
As will be understood by those of skill in the art, op-amp 1160 functions as a comparator of the input signal and the reference voltage. Typically, the voltage reference is adjusted so that its value is slightly less than the maximum input signal voltage from charge plate 460. As a result, the output of the op-amp is low when the signal voltage from the charge plate is less than the reference voltage and high when the signal voltage from the charge plate is greater than the reference voltage. Where the input signal is a periodic signal such as the sguare wave generated by excitation system 1010, the output of op-amp 1160 will be a similar periodic signal. However, when a user contacts the blade, the maximum input signal voltage decreases below the reference voltage and the op-amp output no longer goes high.
The output of op-amp 1160 is coupled to a charging circuit 1220. Charging circuit 1220 includes a 240 pF capacitor 1230 that is connected between the output of op-amp 1160 and ground. A 100 kΩ discharge resistor 1240 is connected in parallel to capacitor 1230. When the output of op-amp 1160 is high, capacitor 1230 is charged. Conversely, when the output of op-amp 1160 is low, the charge from capacitor 1230 discharges through resistor 1240 with a time constant of approximately 24 μs. Thus, the voltage on capacitor 1230 will discharge to less than half the supply voltage in approximately 25-50 μs unless the capacitor is recharged by pulses from the op-amp. A diode 1250 prevents the capacitor from discharging into op-amp 1160. Diode 1250 may be any one of many suitable diodes that are well known in the art, such as a 1N914 diode. It will be appreciated that the time reguired for capacitor 1230 to discharge may be adjusted by selecting a different value capacitor or a different value resistor 1240.
As described above, charging circuit 1220 will be recharged repeatedly and the voltage across capacitor 1230 will remain high so long as the detected signal is received substantially unattenuated from its reference voltage at op-amp 1160. The voltage from capacitor 1230 is applied to the negative input of an op-amp 1260. Op-amp 1260 may be any one of many suitable op-amps, which are well known in the art, such as a TL082 op-amp. The positive input of op-amp 1260 is tied to a reference voltage, which is approximately equal to one-half of the supply voltage. In the exemplary embodiment depicted in
So long as charging circuit 1220 is recharged, the output of op-amp 1260 will be low. However, if the output of op-amp 1160 does not go high for a period of 25-50 μs, the voltage across capacitor 1230 will decay to less than the reference voltage, and op-amp 1260 will output a high signal indicating contact between the user's body and the blade. As described in U.S. Provisional Patent Application Ser. No. 60/225,056, entitled “Firing Subsystem for Use in a Fast-Acting Safety System,” U.S. Provisional Patent Application Serial No. 60/225,170, entitled “Spring-Biased Brake Mechanism For Power Equipment,” and U.S. Provisional Patent Application Ser. No. 60/225,169, entitled “Brake Mechanism for Power Equipment,” all filed Aug. 14, 2000, the output signal from op-amp 1260 is coupled to actuate reaction subsystem 24 and stop the blade. The time between contact and activation of the reaction system can be adjusted by selecting the time constant of capacitor 1230 and resistor 1240.
It should be noted that, depending on the size, configuration and number of teeth on the blade and the position of contact with the operator, the electrical contact between the operator and blade will often be intermittent. As a result, it is desirable that the system detect contact in a period less than or equal to the time a single tooth would be in contact with a user's finger or other body portion. For example, assuming a 10-inch circular blade rotating at 4000 rpm and a contact distance of about one-quarter of an inch (the approximate width of a fingertip), a point on the surface of the blade, such as the point of a tooth, will be in contact with the user for approximately 100 μs. After this period of contact, there will normally be an interval of no contact until the next tooth reaches the finger. The length of the contact and non-contact periods will depend on such factors as the number of teeth on the blade and the speed of rotation of the blade.
It is preferable, though not necessary, to detect the contact with the first tooth because the interval to the second tooth may be substantial with blades that have relatively few teeth. Furthermore, any delay in detection increases the depth of cut that the operator will suffer. Thus, in the exemplary embodiment, the charging circuit is configured to decay within approximately 25-50 μs to ensure that monitoring system 102 responds to even momentary contact between the user's body and the blade. Further, the oscillator is configured to create a 200 khz signal with pulses approximately every 5 μs. As a result, several pulses of the input signal occur during each period of contact, thereby increasing the reliability of contact detection. Alternatively, the oscillator and charging circuit may be configured to cause the detection system to respond more quickly or more slowly. Generally, it is desirable to maximize the reliability of the contact detection, while minimizing the likelihood of erroneous detections.
As described above, the contact between a user's body and the teeth of blade 400 might be intermittent depending on the size and arrangement of the teeth. Although monitoring system 1020 typically is configured to detect contact periods as short as 25-50 μs, once the first tooth of the blade passes by the user's body, the contact signal received by the second electrical circuit may return to normal until the next tooth contacts the user's body. As a result, while the output signal at op-amp 1260 will go high as a result of the first contact, the output signal may return low once the first contact ends. As a result, the output signal may not remain high long enough to activate the reaction system. For instance, if the output signal does not remain high long enough to actuate firing subsystem 760, fusible member 700, may not melt. Therefore, monitoring system 1020 may include a pulse extender in the form of charging circuit 1270 on the output of op-amp 1260, similar to charging circuit 1220. Once op-amp 1260 produces a high output signal, charging circuit 1270 functions to ensure that the output signal remains high long enough to sufficiently discharge the charge storage devices to melt the fusible member. In the exemplary embodiment, charging circuit 1270 includes a 0.47 μF capacitor 1280 connected between the output of op-amp 1260 and ground. When the output of op-amp 1260 goes high, capacitor 1280 charges to the output signal level. If the output of op-amp 1260 returns low, the voltage across capacitor 1280 discharges through 10 k resistor 1290 with a time constant of approximately 4.7 ms. A diode 1300, such as an 1N914 diode, prevents capacitor 1280 from discharging through op-amp 1260. The pulse extender insures that even a short contact with a single tooth will result in activation of the reaction system.
The above-described system is capable of detecting contact within approximately 50 μs and activating the reaction system. As described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,056, entitled “Firing Subsystem for Use in a Fast-Acting Safety System,” U.S. Provisional Patent Application Ser. No. 60/225,170, entitled “Spring-Biased Brake Mechanism For Power Equipment,” and U.S. Provisional Patent Application Ser. No. 60/225,169, entitled “Brake Mechanism for Power Eguipment,” all filed Aug. 14, 2000, in the context of reaction system for braking a saw blade, a brake can be released in approximately less than 100 μs and as little as 20 μs. The brake contacts the blade in approximately one to approximately three milliseconds. The blade will normally come to rest within not more than 2-10 ms of brake engagement. As a result, injury to the operator is minimized in the event of accidental contact with the cutting tool. With appropriate selection of components, it may be possible to stop the blade within 2 ms, or less.
While exemplary embodiments of excitation system 1010 and monitoring system 1020 have been described above with specific components having specific values and arranged in a specific configuration, it will be appreciated that these systems may be constructed with many different configurations, components, and values as necessary or desired for a particular application. The above configurations, components, and values are presented only to describe one particular embodiment that has proven effective, and should be viewed as illustrating, rather than limiting, the invention.
As in the exemplag embodiment described above, the signal generated by alternative excitation system 1010 is fed through shielded cable 1110 to charge plate 440. The signal is capacitively coupled to charge plate 460 via blade 400. Alternative monitoring system 1020 receives the signal from charge plate 460 via shielded cable 1120 and compares the signal to a reference voltage. If the signal falls below the reference voltage for approximately 25 μs, an output signal is generated indicating contact between the blade and the user's body.
Alternative monitoring system 1020 includes a voltage divider 1130, which is formed of 22 k resistors 1410 and 1420. The voltage divider biases the sigpal received via cable 1120 to half the low voltage supply V. The lower resistance of resistors 1410, 1420 relative to resistors 114, 1150 serves to reduce 60 hz noise because low-frequency signals are attenuated. The biased signal is fed to the negative input terminal of a second comparator 1430, such as an LM393 comparator. The positive terminal of comparator 1430 is connected to reference voltage source 1440. In the depicted embodiment, the reference voltage source is formed by a 10 kΩ potentiometer 1450 coupled in series between two 100 kΩ resistors 1460, 1470 connected to the low voltage supply V and ground, respectively. A 0.1 μF capacitor 1480 stabilizes the output of the reference voltage. As before, the reference voltage is used to adjust the trigger point.
The output of second comparator 1430 is connected to the base terminal of an NPN bipolar junction transistor 1490, such as a 2N3904 transistor. The base terminal of transistor 1490 is also connected to low voltage supply V through a 100 k resistor 1500, and to ground through a 220 pF capacitor 1510. Potentiometer 1450 is adjusted so that the voltage at the positive terminal of comparator 1430 is slightly lower than the high peak of the signal received at the negative terminal of the second comparator when there is no contact between the blade and the user's body. Thus, each high cycle of the signal causes the second comparator output to go low, discharging capacitor 1510. So long as there is no contact between the blade and the user's body, the Output of the second comparator continues to go low, preventing capacitor 1510 from charging up through resistor 1500 and switching transistor 1490 on. However, when the user's body contacts the blade or other isolated element, the signal received at the negative terminal of the second comparator remains below the reference voltage at the positive terminal and the output of the second comparator remains high. As a result, capacitor 1510 is able to charge up through resistor 1500 and switch transistor 1490 on.
The collector terminal of transistor 1490 is connected to low voltage supply V, while the emitter terminal is connected to 680 Ω resistor 1520. When transistor 1490 is switched on, it supplies an output signal through resistor 1520 of approximately 40 mA, which is fed to alternative firing system 760. As described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,056, titled “Firing Subsystem for Use in a Fast-Acting Safety System,” filed Aug. 14, 2000, the alternative firing circuit includes fusible member 700 connected between a high voltage supply HV and an SCR 6130, such as an NTE 5552 SCR. The gate terminal of the SCR is connected to resistor 1520. Thus, when transistor 1490 is switched on, the approximately 40 mA current through resistor 1520 turns on SCR 6130, allowing the high voltage supply HV to discharge to ground through fusible member 700. Once the SCR is switched on, it will continue to conduct as long as the current through fusible member 700 remains above the holding current of approximately 40 mA, even if the current to the gate terminal is removed. Thus, the SCR will conduct current through the fusible member until the fusible member is melted or the high voltage source is exhausted or removed. The fact that the SCR stays on once triggered allows it to respond to even a short pulse through resistor 1520.
The positive terminal of capacitor 1570 also provides a transformer-less source of voltage for low voltage supply V, which includes a 12 k resistor 1580 connected between the positive terminal of capacitor 1570 and a reverse 40V Zener diode 1590. Diode 1590 functions to maintain a relatively constant 40V potential at the junction between the diode and resistor 1580. It can be seen that the current through the 12 k resistor will be about 10 mA. Most of this current is used by the low voltage circuit, which has a relatively constant current demand of about 8 mA. Note that while resistor 1580 and diode 1590 discharge some current from capacitor 1570, the line voltage supply continuously recharges the capacitor to maintain the HV supply. A 0.1 μF capacitor 1600 is connected in parallel with diode 1590 to buffer the 40V potential of the diode, which is then connected to the input terminal of an adjustable voltage regulator 1610, such as an LM317 voltage regulator. The ratio of a 1 k resistor 1620 connected between the output terminal and adjustment terminal, and a 22 k resistor 1630 connected between the adjustment terminal and ground, set the output voltage of regulator 1610 to approximately 30 VDC. A 50 μF capacitor 1640 is connected to the output terminal of regulator 1610 to buffer sufficient charge to ensure that low voltage supply V can provide the brief 40 mA pulse necessary to switch on SCR 6130. The described low voltage source is advantageous because of its low cost and low complexity.
It should be noted that when high voltage supply HV is discharged through fusible member 700, the input voltage to voltage regulator 1610 may temporarily drop below 30V, thereby causing a corresponding drop in the low voltage supply V. However, since the reaction system has already been triggered, it is no longer necessary for the detection system to continue to function as described and any drop in low voltage supply V will not impair the functioning of safety system 18.
It will be appreciated by those of skill in the electrical arts that the alternative embodiments of excitation system 1010, monitoring system 1020, firing system 760, and electrical supply system 1540 may be implemented on a single substrate and/or in a single package. Additionally, the particular values for the various electrical circuit elements described above may be varied depending on the application.
One limitation of the monitoring systems of
Another embodiment of an electronic subsystem 100 adapted to accommodate green wood and offering certain other benefits is shown in
A computer program listing for a controller as shown in
The controller is programmed to adjust the drive voltage output from the amplifier to maintain a predetermined amplitude at plate 460 under varying capacitive loads. Thus, when cutting green wood, the controller ramps up the drive voltage to maintain the desired voltage on plate 460. The controller is preferably capable of skewing the drive voltage between about 1 and 50% per millisecond, and more preferably between 1 and 10%. This allows the system to maintain a constant output level under the varying load created while sawing green wood, or such as might be created by placing a conductive member such a fence near the blade. The controller should preferably not skew the drive voltage by much more than 50% per millisecond, or it may counteract the drop in signal created by a user contact event.
The input from plate 460 is fed through a high-pass filter 1790 to attenuate any low frequency noise, such as 60 hz noise, picked up by plate 460. Filter 1790 can also provide amplification of the signal to a desired level as necessary. The output of the filter is fed into a set of comparators 1800, 1810. Comparator 1800 pulses high briefly if the maximum signal amplitude from the filter exceeds the value at its positive input set by voltage divider 1820. The output pulses from the comparator are fed to the controller. The controller samples over a 200 μS window and modulates the drive amplitude to attempt to maintain the sensed voltage at a level so that 50% of the waveform cycles generate a pulse through comparator 1800. If less than 50% generate pulses, then the controller raises the drive voltage by a set amount. Likewise, if more than 50% generate pulses, the drive voltage is lowered. The system can be configured to step by larger or smaller amounts depending on the deviation from 50% observed during a particular window. For instance, if 45 pulses are observed, the system may step up the drive amplitude by 1%. However, if only 35 pulses are observed, the system may step by 5%. The system will continually “hunt” to maintain the proper drive level. By selecting the window duration and adjustment amount, it is possible to control the skew rate to the desired level as described above.
Comparator 1810 pulses every cycle of the waveform so long as the sensed voltage exceeds a lower trigger threshold set by voltage divider 1820. Therefore, under normal circumstances, this is a 500 khz pulse. The pulse output from comparator 1810 is fed through a divide-by-four circuit formed by two D-flip flops to reduce the frequency to 125 khz — or an 8 μS period. The output of the divider is fed to the controller. The controller monitors this line to insure that a pulse occurs at least every 18 μS. Therefore, if more than about half of the pulse are missing in over an 18 μS period, the controller will trigger the reaction system. Of course, the particular period can be selected as desired to maximize reliability of contact detection and minimize false triggers. A benefit of the described arrangement is that a single pulse or even two may be missing, such as due to noise, without triggering the system. However, if more pulses are missing, the system will still be triggered reliably. The particular trigger level for missing pulses is set by the voltage divider. This level will typically be between 5 and 40% for the described system.
Boost regulator 1750 and firing system 1760 are shown in
The rotation sense circuit is shown in
For instance, a small eccentricity can be placed on the cutter or some other isolated structure that rotates with the cutter, such as the arbor. This eccentricity can be placed to pass by sense plate 460 or by a separate sensing plate. The eccentricity will modulate the detected signal amplitude so long as the cutter is rotating. This modulation can be monitored to detect rotation. If the eccentricity is sensed by sense plate 460, it should be small enough that the signal modulation generated will not register as a contact event. As another alternative, rotation can be sensed by electromagnetic feedback from the motor.
The controller may also be designed to monitor line voltage to insure that adequate voltage is present to operate the system. For instance, during motor start up, the AC voltage available to the safety system may drop nearly in half depending on the cabling to the saw. If the voltage drops below a safe level, the controller can shut off the saw motor. Alternatively, the controller may include a capacitor of sufficient capacity to operate the system for several seconds without power input while the saw is starting.
User interface 1780 is shown in
Two additional electronic configurations for detection subsystem 22 are shown in
The output of the band pass filter is a 350 khz sine wave that is fed through another buffer amplifier to a sense amplifier 190 shown in
The output of the sense amplifier is fed through a buffer and into a 350 khz band pass filter to filter out any noise that may have been picked up from the blade or plates. The output of the band pass filter is fed through a buffer and into a level detector. The level detector generates a DC output proportional to the amplitude of the sense amplifier. The output of the level detector is smoothed by an RC circuit to reduce ripple and fed into a differentiator. The differentiator generates an output proportional to the rate of change of the sense amplifier output amplitude.
As mentioned above, the sense amplifier output only changes when a user touches the blade or green wood is cut. The change when cutting green wood is slow relative to what happens when a user touches the blade. Therefore, the differentiator is tuned to respond to a user contact, while generating minimal response to green wood. The output of the differentiator is then fed to a comparator that acts as threshold detector to determine if the output of the differentiator has reached a predetermined level set by the a voltage divider network. The output of the threshold detector is fed through a Schmitt-trigger that signals the controller that a contact event has occurred. An RC network acts as a pulse stretcher to insure that the signal lasts long enough to be detected by the controller.
The output from the level detector is also fed to an analog to digital input on the controller. It may be that the under some circumstances, such as while cutting extremely green wood, the response of the sense amplifier will be near saturation. If this happens, the amplifier may no longer be capable of responding to a contact event. In order to provide a warning of this situation, the controller monitors this line to make sure that the detected level stays low enough to allow a subsequent contact to be detected. If an excess impedance load is detected, the controller can shut down the saw without triggering the reaction system to provide the user with a warning. If the user wants to continue, they can initiate the bypass mode as described above.
The second of the two alternative detection systems of
The charging circuit for the capacitor is regulated by an enable line from the controller. By deactivating the charging circuit, the controller can monitor the capacitor voltage through an output to an A/D line on the controller. When the capacitor is not being charged, it should discharge at a relatively know rate through the various paths to ground. By monitoring the discharge rate, the controller can insure that the capacitance of the capacitor is sufficient to burn the fusible member. The trigger control from the controller is used to fire the SCR to burn the fusible member.
With any of the above electronic subsystems, it is possible to avoid triggering in the event metal or metal-foiled materials are cut by looking for the amplitude of the signal, or the rate of change, depending on the system, to fall within a window or band rather than simply exceeding or falling below a certain threshold. More particularly, when metal is cut, the detected signal will drop to almost zero, and will drop within a single cycle. Thus, the controller or threshold detection circuitry can be configured to look for amplitude change of somewhat less than 100%, but more than 10% as a trigger event, to eliminate triggering on metal or other conductive work pieces which would normally substantially completely ground the signal.
It should be noted that, although not essential, all of the described embodiments operate at a relatively high freguency — above 100 khz. This high frequency is believed to be advantageous for two reasons. First, with a high freguency, it is possible to detect contact more quickly and sample many cycles of the waveform within a short period of time. This allows the detection system to look for multiple missed pulses rather than just one missed pulse, such as might occur due to noise, to trigger the reaction system. In addition, the higher freguency is believed to provide a better signal to noise ratio when cutting green wood, which has a lower impedance at lower freguencies.
As described above, the present invention provides a band saw which is substantially safer than existing saws. The band saw includes a safety system adapted to detect the occurrence of a dangerous condition, such as a person accidentally touching the moving blade, and to stop movement of the blade to prevent serious injury to a user. The band saw may be used to cut wood, plastic, or other non-conductive material.
The band saw also may be modified for use in the meat cutting industry. In that case, the detection system would be modified so that a user of the band saw would wear a glove with one or more interior wires on which an electrical signal is induced. When the blade cuts into the glove and contacts the interior wires, the blade would ground the wires and the detection subsystem would detect that the signal on the wires had changed. The reaction system would then trigger as described above.
While several particular exemplary embodiments have been described and illustrated, it will be appreciated that many different modifications and alterations may be made within the scope of the invention.
This application claims the benefit of and priority from the following U.S. Provisional Patent Application, the disclosure of which is herein incorporated by reference: Ser. No. 60/292,100, filed May 17, 2001. This application hereby incorporates by reference the following U.S. patent application: Ser. No. 09/676,190, filed Sep. 29, 2000. This application also hereby incorporates by reference the following PCT patent application: PCT/US00/26812, filed Sep. 29, 2000. This application further incorporates by reference the following U.S. provisional patent applications: Ser. No. 60/157,340, filed Oct. 1, 1999, Ser. No. 60/182,866, filed Feb. 16, 2000, Ser. No. 60/225,056, filed Aug. 14, 2000, Ser. No. 60/225,057, filed Aug. 14, 2000, Ser. No. 60/225,058, filed Aug. 14, 2000, Ser. No. 60/225,059, filed Aug. 14, 2000, Ser. No. 60/225,089, filed Aug. 14, 2000, Ser. No. 60/225,094, filed Aug. 14, 2000, Ser. No. 60/225,169, filed Aug. 14, 2000, Ser. No. 60/225,170, filed Aug. 14, 2000, Ser. No. 60/225,200, filed Aug. 14, 2000, Ser. No. 60/225,201, filed Aug. 14, 2000, Ser. No. 60/225,206, filed Aug. 14, 2000, Ser. No. 60/225,210, filed Aug. 14, 2000, Ser. No. 60/225,211, filed Aug. 14, 2000, Ser. No. 60/225,212, filed Aug. 14, 2000, Ser. No. 60/233,459, filed Sep. 18, 2000, Ser. No. 60/270,011, filed Feb. 20, 2001, Ser. No. 60/270,941, filed Feb. 22, 2001, Ser. No. 60/270,942, filed Feb. 22, 2001, Ser. No. 60/273,178, filed Mar. 2, 2001, Ser. No. 60/273,177, filed Mar. 2, 2001, Ser. No. 60/273,902, filed Mar. 6, 2001, Ser. No. 60/275,594, filed Mar. 13, 2001, Ser. No. 60/275,595, filed Mar. 13, 2001, Ser. No. 60/275,583, filed Mar. 13, 2001, Ser. No. 60/279,313, filed Mar. 27, 2001, and Ser. No. 60/292,081, filed May 17, 2001.
Number | Name | Date | Kind |
---|---|---|---|
941726 | Pfalzgraf | Nov 1909 | A |
982312 | Swafford | Jan 1911 | A |
1205246 | Mowry | Nov 1916 | A |
1450906 | Anderson | Apr 1923 | A |
1551900 | Morrow | Sep 1925 | A |
1582483 | Runyan | Apr 1926 | A |
1584086 | Fonda | May 1926 | A |
1590988 | Campbell | Jun 1926 | A |
1668061 | Falkins | May 1928 | A |
1756287 | Freshwater et al. | Apr 1930 | A |
1787191 | Fisk | Dec 1930 | A |
1807120 | Lewis | May 1931 | A |
1811066 | Tannewitz | Jun 1931 | A |
1816069 | Bennett | Jul 1931 | A |
1896924 | Ulrich | Feb 1933 | A |
1902270 | Tate | Mar 1933 | A |
1910651 | Tautz | May 1933 | A |
1938548 | Tautz | Dec 1933 | A |
1938549 | Tautz | Dec 1933 | A |
1960930 | Thomas | May 1934 | A |
1963688 | Tautz | Jun 1934 | A |
2007887 | Tautz | Jul 1935 | A |
2008673 | Ocenasek | Jul 1935 | A |
2020222 | Tautz | Nov 1935 | A |
2038810 | Tautz | Apr 1936 | A |
2044481 | Manley et al. | Jun 1936 | A |
2106288 | Tautz | Jan 1938 | A |
2121069 | Collins | Jun 1938 | A |
2163320 | Hammond | Jun 1939 | A |
2241556 | MacMillin et al. | May 1941 | A |
2286589 | Tannewitz | Jun 1942 | A |
2305928 | Littell | Dec 1942 | A |
2313686 | Uremovich | Mar 1943 | A |
2328244 | Woodward | Aug 1943 | A |
2352235 | Tautz | Jun 1944 | A |
2377265 | Rady | Mar 1945 | A |
2392486 | Larsen | Jan 1946 | A |
2402232 | Baker | Jun 1946 | A |
2425331 | Kramer | Aug 1947 | A |
2434174 | Morgan | Jan 1948 | A |
2452589 | Mcwhirter et al. | Nov 1948 | A |
2466325 | Ocenasek | Apr 1949 | A |
2496613 | Woodward | Feb 1950 | A |
2501134 | Meckoski et al. | Mar 1950 | A |
2509813 | Dineen | May 1950 | A |
2517649 | Frechtmann | Aug 1950 | A |
2523680 | Christie | Sep 1950 | A |
2562396 | Schutz | Jul 1951 | A |
2572326 | Evans | Oct 1951 | A |
2593596 | Olson | Apr 1952 | A |
2596524 | Bridwell | May 1952 | A |
2601878 | Anderson | Jul 1952 | A |
2623555 | Eschenburg | Dec 1952 | A |
2661780 | Morgan | Dec 1953 | A |
2675707 | Brown | Apr 1954 | A |
2690084 | Van Dam | Sep 1954 | A |
2719547 | Gjerde | Oct 1955 | A |
2722246 | Arnoldy | Nov 1955 | A |
2731049 | Akin | Jan 1956 | A |
2736348 | Nelson | Feb 1956 | A |
2737213 | Richards et al. | Mar 1956 | A |
2785710 | Mowery, Jr. | Mar 1957 | A |
2786496 | Eschenburg | Mar 1957 | A |
2804890 | Fink | Sep 1957 | A |
2839943 | Caldwell et al. | Jun 1958 | A |
2851068 | Goodlet | Sep 1958 | A |
2876809 | Rentsch et al. | Mar 1959 | A |
2883486 | Mason | Apr 1959 | A |
2913581 | Simonton et al. | Nov 1959 | A |
2937672 | Gjerde | May 1960 | A |
2946418 | Leeson, Jr. | Jul 1960 | A |
2954118 | Anderson | Sep 1960 | A |
2954808 | Sweeney et al. | Oct 1960 | A |
2957166 | Gluck | Oct 1960 | A |
2974693 | Goldschmidt et al. | Mar 1961 | A |
2977156 | Gioia | Mar 1961 | A |
2978084 | Vilkaitis | Apr 1961 | A |
2984268 | Vuichard | May 1961 | A |
2991593 | Cohen | Jul 1961 | A |
3007501 | Mundell et al. | Nov 1961 | A |
3011533 | Newman, Sr. | Dec 1961 | A |
3011610 | Stiebel et al. | Dec 1961 | A |
3035995 | Seeley et al. | May 1962 | A |
3047116 | Stiebel et al. | Jul 1962 | A |
3105528 | Loughridge | Oct 1963 | A |
3124178 | Packard | Mar 1964 | A |
3129731 | Tyrrell | Apr 1964 | A |
3163732 | Abbott | Dec 1964 | A |
3184001 | Reinsch et al. | May 1965 | A |
3186256 | Reznick | Jun 1965 | A |
3207273 | Jurin | Sep 1965 | A |
3213731 | Renard | Oct 1965 | A |
3224474 | Bloom | Dec 1965 | A |
3246205 | Miller | Apr 1966 | A |
3276497 | Heer | Oct 1966 | A |
3280861 | Gjerde | Oct 1966 | A |
3313185 | Drake et al. | Apr 1967 | A |
3323814 | Phillips | Jun 1967 | A |
3337008 | Trachte | Aug 1967 | A |
3368596 | Corner | Feb 1968 | A |
3386322 | Stone et al. | Jun 1968 | A |
3439183 | Hurst, Jr | Apr 1969 | A |
3445835 | Fudaley | May 1969 | A |
3454286 | Anderson et al. | Jul 1969 | A |
3456696 | Gregory et al. | Jul 1969 | A |
3512440 | Frydmann | May 1970 | A |
3540338 | McEwan et al. | Nov 1970 | A |
3547232 | Fergle | Dec 1970 | A |
3554067 | Scutella | Jan 1971 | A |
3565137 | Alsruhe | Feb 1971 | A |
3566996 | Crossman | Mar 1971 | A |
3580376 | Loshbough | May 1971 | A |
3581784 | Warrick | Jun 1971 | A |
3593266 | Van Sickle | Jul 1971 | A |
3609495 | Seeselberg | Sep 1971 | A |
3613748 | De Pue | Oct 1971 | A |
3621894 | Niksich | Nov 1971 | A |
3626796 | Pearl | Dec 1971 | A |
3675444 | Whipple | Jul 1972 | A |
3680609 | Menge | Aug 1972 | A |
3688815 | Ridenour | Sep 1972 | A |
3695116 | Baur | Oct 1972 | A |
3696844 | Bernatschek | Oct 1972 | A |
3716113 | Kobayashi et al. | Feb 1973 | A |
3719103 | Streander | Mar 1973 | A |
3739475 | Moore | Jun 1973 | A |
3740000 | Takada | Jun 1973 | A |
3745546 | Struger et al. | Jul 1973 | A |
3749933 | Davidson | Jul 1973 | A |
3772590 | Mikulecky et al. | Nov 1973 | A |
3785230 | Lokey | Jan 1974 | A |
3793727 | Moore | Feb 1974 | A |
3793915 | Hujer | Feb 1974 | A |
3829850 | Guetersloh | Aug 1974 | A |
3829970 | Anderson | Aug 1974 | A |
3841188 | Wiater | Oct 1974 | A |
3858095 | Friemann et al. | Dec 1974 | A |
3861016 | Johnson et al. | Jan 1975 | A |
3863208 | Balban | Jan 1975 | A |
3882744 | McCarroll | May 1975 | A |
3886413 | Dow et al. | May 1975 | A |
3922785 | Fushiya | Dec 1975 | A |
3924688 | Cooper et al. | Dec 1975 | A |
3931727 | Luenser | Jan 1976 | A |
3935777 | Bassett | Feb 1976 | A |
3945286 | Smith | Mar 1976 | A |
3946631 | Malm | Mar 1976 | A |
3947734 | Fyler | Mar 1976 | A |
3953770 | Hayashi | Apr 1976 | A |
3960310 | Nussbaum | Jun 1976 | A |
3967161 | Lichtblau | Jun 1976 | A |
3970178 | Densow | Jul 1976 | A |
3974565 | Ellis | Aug 1976 | A |
3975600 | Marston | Aug 1976 | A |
3978624 | Merkel et al. | Sep 1976 | A |
3994192 | Faig | Nov 1976 | A |
3998121 | Bennett | Dec 1976 | A |
4007679 | Edwards | Feb 1977 | A |
4016490 | Weckenmann et al. | Apr 1977 | A |
4026177 | Lokey | May 1977 | A |
4029159 | Nymann | Jun 1977 | A |
4047156 | Atkins | Sep 1977 | A |
4060160 | Lieber | Nov 1977 | A |
4070940 | McDaniel et al. | Jan 1978 | A |
4074602 | Brower | Feb 1978 | A |
4075961 | Harris | Feb 1978 | A |
4077161 | Wyle et al. | Mar 1978 | A |
4085303 | McIntyre et al. | Apr 1978 | A |
4090345 | Harkness | May 1978 | A |
4091698 | Obear et al. | May 1978 | A |
4106378 | Kaiser | Aug 1978 | A |
4117752 | Yoneda | Oct 1978 | A |
4119864 | Petrizio | Oct 1978 | A |
4145940 | Woloveke et al. | Mar 1979 | A |
4152833 | Phillips | May 1979 | A |
4161649 | Klos et al. | Jul 1979 | A |
4175452 | Idel | Nov 1979 | A |
4184394 | Gjerde | Jan 1980 | A |
4190000 | Shaull et al. | Feb 1980 | A |
4195722 | Anderson et al. | Apr 1980 | A |
4199930 | Lebet et al. | Apr 1980 | A |
4206666 | Ashton | Jun 1980 | A |
4206910 | Biesemeyer | Jun 1980 | A |
4249117 | Leukhardt et al. | Feb 1981 | A |
4249442 | Fittery | Feb 1981 | A |
4262278 | Howard et al. | Apr 1981 | A |
4267914 | Saar | May 1981 | A |
4270427 | Colberg et al. | Jun 1981 | A |
4276459 | Willett et al. | Jun 1981 | A |
4276799 | Muehling | Jul 1981 | A |
4291794 | Bauer | Sep 1981 | A |
4302879 | Murray | Dec 1981 | A |
4305442 | Currie | Dec 1981 | A |
4319146 | Wires, Sr. | Mar 1982 | A |
4321841 | Felix | Mar 1982 | A |
4334450 | Benuzzi | Jun 1982 | A |
4351423 | Rogier | Sep 1982 | A |
4370810 | Schurr et al. | Feb 1983 | A |
4372202 | Cameron | Feb 1983 | A |
4372427 | Rogier | Feb 1983 | A |
4391358 | Haeger | Jul 1983 | A |
4427042 | Mitchell et al. | Jan 1984 | A |
4453112 | Sauer et al. | Jun 1984 | A |
4466170 | Davis | Aug 1984 | A |
4466233 | Thesman | Aug 1984 | A |
4470046 | Betsill | Sep 1984 | A |
4503739 | Konieczka | Mar 1985 | A |
4510489 | Anderson, III et al. | Apr 1985 | A |
4512224 | Terauchi | Apr 1985 | A |
4516612 | Wiley | May 1985 | A |
4518043 | Anderson et al. | May 1985 | A |
4528488 | Susemihl | Jul 1985 | A |
4532501 | Hoffman | Jul 1985 | A |
4532844 | Chang et al. | Aug 1985 | A |
4559858 | Laskowski et al. | Dec 1985 | A |
4560033 | DeWoody et al. | Dec 1985 | A |
4566512 | Wilson | Jan 1986 | A |
4573556 | Andreasson | Mar 1986 | A |
4589047 | Gaus et al. | May 1986 | A |
4589860 | Brandenstein et al. | May 1986 | A |
4599597 | Rotbart | Jul 1986 | A |
4599927 | Eccardt et al. | Jul 1986 | A |
4606251 | Boileau | Aug 1986 | A |
4617544 | Mooz et al. | Oct 1986 | A |
4621300 | Summerer | Nov 1986 | A |
4625406 | Fushiya et al. | Dec 1986 | A |
4635364 | Noll et al. | Jan 1987 | A |
4637188 | Crothers | Jan 1987 | A |
4637289 | Ramsden | Jan 1987 | A |
4641557 | Steiner et al. | Feb 1987 | A |
4657428 | Wiley | Apr 1987 | A |
4661797 | Schmall | Apr 1987 | A |
4672500 | Tholome et al. | Jun 1987 | A |
4675664 | Cloutier et al. | Jun 1987 | A |
4679719 | Kramer | Jul 1987 | A |
4683660 | Schurr | Aug 1987 | A |
4694721 | Brickner, Jr. | Sep 1987 | A |
4722021 | Hornung et al. | Jan 1988 | A |
4751603 | Kwan | Jun 1988 | A |
4756220 | Olsen et al. | Jul 1988 | A |
4757881 | Jonsson et al. | Jul 1988 | A |
4774866 | Dehari et al. | Oct 1988 | A |
4792965 | Morgan | Dec 1988 | A |
4805504 | Fushiya et al. | Feb 1989 | A |
4831279 | Ingraham | May 1989 | A |
4840135 | Yamauchi | Jun 1989 | A |
4845476 | Rangeard et al. | Jul 1989 | A |
4864455 | Shimomura et al. | Sep 1989 | A |
4896607 | Hall et al. | Jan 1990 | A |
4906962 | Duimstra | Mar 1990 | A |
4907679 | Menke | Mar 1990 | A |
4934233 | Brundage et al. | Jun 1990 | A |
4936876 | Reyes | Jun 1990 | A |
4937554 | Herman | Jun 1990 | A |
4962685 | Hagstrom | Oct 1990 | A |
4964450 | Hughes et al. | Oct 1990 | A |
4965909 | McCullough et al. | Oct 1990 | A |
4975798 | Edwards et al. | Dec 1990 | A |
5020406 | Sasaki et al. | Jun 1991 | A |
5025175 | Dubois, III | Jun 1991 | A |
5040444 | Shiotani et al. | Aug 1991 | A |
5042348 | Brundage et al. | Aug 1991 | A |
5046426 | Julien et al. | Sep 1991 | A |
5052255 | Gaines | Oct 1991 | A |
5074047 | King | Dec 1991 | A |
5081406 | Hughes et al. | Jan 1992 | A |
5082316 | Wardlaw | Jan 1992 | A |
5083973 | Townsend | Jan 1992 | A |
5086890 | Turczyn et al. | Feb 1992 | A |
5094000 | Becht et al. | Mar 1992 | A |
5103940 | Meneut et al. | Apr 1992 | A |
5116249 | Shiotani et al. | May 1992 | A |
5119555 | Johnson | Jun 1992 | A |
5122091 | Townsend | Jun 1992 | A |
5123317 | Barnes, Jr. et al. | Jun 1992 | A |
5125160 | Gassen | Jun 1992 | A |
5129300 | Kawakami | Jul 1992 | A |
5148053 | Dubois, III | Sep 1992 | A |
5163334 | Li et al. | Nov 1992 | A |
5184534 | Lee | Feb 1993 | A |
5198702 | McCullough et al. | Mar 1993 | A |
5199343 | OBanion | Apr 1993 | A |
5201110 | Bane | Apr 1993 | A |
5201684 | DeBois, III | Apr 1993 | A |
5205069 | Shapiro | Apr 1993 | A |
5206625 | Davis | Apr 1993 | A |
5207253 | Hoshino et al. | May 1993 | A |
5212621 | Panter | May 1993 | A |
5218189 | Hutchison | Jun 1993 | A |
5230269 | Shiotani et al. | Jul 1993 | A |
5231359 | Masuda et al. | Jul 1993 | A |
5239978 | Plangetis | Aug 1993 | A |
5245879 | McKeon | Sep 1993 | A |
5257570 | Shiotani et al. | Nov 1993 | A |
5265510 | Hoyer-Ellefsen | Nov 1993 | A |
5272946 | McCullough et al. | Dec 1993 | A |
5276431 | Piccoli et al. | Jan 1994 | A |
5285708 | Bosten et al. | Feb 1994 | A |
5287779 | Metzger, Jr. | Feb 1994 | A |
5293802 | Shiotani et al. | Mar 1994 | A |
5320382 | Goldstein et al. | Jun 1994 | A |
5321230 | Shanklin et al. | Jun 1994 | A |
5331875 | Mayfield | Jul 1994 | A |
5353670 | Metzger, Jr. | Oct 1994 | A |
5375495 | Bosten et al. | Dec 1994 | A |
5377554 | Reulein et al. | Jan 1995 | A |
5377571 | Josephs | Jan 1995 | A |
5392568 | Howard, Jr. et al. | Feb 1995 | A |
5392678 | Sasaki et al. | Feb 1995 | A |
5401928 | Kelley | Mar 1995 | A |
5411221 | Collins et al. | May 1995 | A |
5422551 | Takeda et al. | Jun 1995 | A |
5423232 | Miller et al. | Jun 1995 | A |
5436613 | Ghosh et al. | Jul 1995 | A |
5447085 | Gochnauer | Sep 1995 | A |
5451750 | An | Sep 1995 | A |
5453903 | Chow | Sep 1995 | A |
5471888 | McCormick | Dec 1995 | A |
5480009 | Wieland et al. | Jan 1996 | A |
5503059 | Pacholok | Apr 1996 | A |
5510587 | Reiter | Apr 1996 | A |
5510685 | Grasselli | Apr 1996 | A |
5531147 | Serban | Jul 1996 | A |
5534836 | Schenkel et al. | Jul 1996 | A |
5592353 | Shinohara et al. | Jan 1997 | A |
5606889 | Bielinski et al. | Mar 1997 | A |
5619896 | Chen | Apr 1997 | A |
5623860 | Schoene et al. | Apr 1997 | A |
5647258 | Brazell et al. | Jul 1997 | A |
5648644 | Nagel | Jul 1997 | A |
5659454 | Vermesse | Aug 1997 | A |
5667152 | Mooring | Sep 1997 | A |
5671633 | Wagner | Sep 1997 | A |
5695306 | Nygren, Jr. | Dec 1997 | A |
5700165 | Harris et al. | Dec 1997 | A |
5720213 | Sberveglieri | Feb 1998 | A |
5722308 | Ceroll et al. | Mar 1998 | A |
5724875 | Meredith et al. | Mar 1998 | A |
5730165 | Philipp | Mar 1998 | A |
5741048 | Eccleston | Apr 1998 | A |
5755148 | Stumpf et al. | May 1998 | A |
5768786 | Kane et al. | Jun 1998 | A |
5771742 | Bokaie et al. | Jun 1998 | A |
5782001 | Gray | Jul 1998 | A |
5787779 | Garuglieri | Aug 1998 | A |
5791057 | Nakamura et al. | Aug 1998 | A |
5791223 | Lanzer | Aug 1998 | A |
5791224 | Suzuki et al. | Aug 1998 | A |
5791441 | Matos et al. | Aug 1998 | A |
5797307 | Horton | Aug 1998 | A |
5819619 | Miller et al. | Oct 1998 | A |
5819625 | Sberveglieri | Oct 1998 | A |
5852951 | Santi | Dec 1998 | A |
5857507 | Puzio et al. | Jan 1999 | A |
5861809 | Eckstein et al. | Jan 1999 | A |
5880954 | Thomson et al. | Mar 1999 | A |
5921367 | Kashioka et al. | Jul 1999 | A |
5927171 | Sasaki et al. | Jul 1999 | A |
5927857 | Ceroll et al. | Jul 1999 | A |
5930096 | Kim | Jul 1999 | A |
5937720 | Itzov | Aug 1999 | A |
5942975 | Sorensen | Aug 1999 | A |
5943932 | Sberveglieri | Aug 1999 | A |
5950514 | Benedict et al. | Sep 1999 | A |
5963173 | Lian et al. | Oct 1999 | A |
5974927 | Tsune | Nov 1999 | A |
6009782 | Tajima et al. | Jan 2000 | A |
6018284 | Rival et al. | Jan 2000 | A |
6037729 | Woods et al. | Mar 2000 | A |
6052884 | Steckler et al. | Apr 2000 | A |
6062121 | Ceroll et al. | May 2000 | A |
6070484 | Sakamaki | Jun 2000 | A |
6095092 | Chou | Aug 2000 | A |
6112785 | Yu | Sep 2000 | A |
6119984 | Devine | Sep 2000 | A |
6133818 | Hsieh et al. | Oct 2000 | A |
6141192 | Garzon | Oct 2000 | A |
6148504 | Schmidt et al. | Nov 2000 | A |
6148703 | Ceroll et al. | Nov 2000 | A |
6150826 | Hokodate et al. | Nov 2000 | A |
6161459 | Ceroll et al. | Dec 2000 | A |
6236177 | Zick et al. | May 2001 | B1 |
6244149 | Ceroll et al. | Jun 2001 | B1 |
6250190 | Ceroll et al. | Jun 2001 | B1 |
6257061 | Nonoyama et al. | Jul 2001 | B1 |
6283002 | Chiang | Sep 2001 | B1 |
6325195 | Doherty | Dec 2001 | B1 |
6330848 | Nishio et al. | Dec 2001 | B1 |
6336273 | Nilsson et al. | Jan 2002 | B1 |
6352137 | Stegall et al. | Mar 2002 | B1 |
6357328 | Ceroll et al. | Mar 2002 | B1 |
6366099 | Reddi | Apr 2002 | B1 |
6376939 | Suzuki et al. | Apr 2002 | B1 |
6404098 | Kayama et al. | Jun 2002 | B1 |
6418829 | Pilchowski | Jul 2002 | B1 |
6420814 | Bobbio | Jul 2002 | B1 |
6427570 | Miller et al. | Aug 2002 | B1 |
6430007 | Jabbari | Aug 2002 | B1 |
6431425 | Moorman et al. | Aug 2002 | B1 |
6450077 | Ceroll et al. | Sep 2002 | B1 |
6453786 | Ceroll et al. | Sep 2002 | B1 |
6460442 | Talesky et al. | Oct 2002 | B2 |
6471106 | Reining | Oct 2002 | B1 |
6479958 | Thompson et al. | Nov 2002 | B1 |
6484614 | Huang | Nov 2002 | B1 |
D466913 | Ceroll et al. | Dec 2002 | S |
6492802 | Bielski | Dec 2002 | B1 |
D469354 | Curtsinger | Jan 2003 | S |
6530303 | Parks et al. | Mar 2003 | B1 |
6536536 | Gass et al. | Mar 2003 | B1 |
6543324 | Dils | Apr 2003 | B2 |
6546835 | Wang | Apr 2003 | B2 |
6564909 | Razzano | May 2003 | B1 |
6575067 | Parks et al. | Jun 2003 | B2 |
6578856 | Kahle | Jun 2003 | B2 |
6581655 | Huang | Jun 2003 | B2 |
6595096 | Ceroll et al. | Jul 2003 | B2 |
D478917 | Ceroll et al. | Aug 2003 | S |
6601493 | Crofutt | Aug 2003 | B1 |
6607015 | Chen | Aug 2003 | B1 |
D479538 | Welsh et al. | Sep 2003 | S |
6617720 | Egan, III et al. | Sep 2003 | B1 |
6619348 | Wang | Sep 2003 | B2 |
6640683 | Lee | Nov 2003 | B2 |
6644157 | Huang | Nov 2003 | B2 |
6647847 | Hewitt et al. | Nov 2003 | B2 |
6659233 | DeVlieg | Dec 2003 | B2 |
6684750 | Yu | Feb 2004 | B2 |
6713980 | Mukai et al. | Mar 2004 | B2 |
6722242 | Chuang | Apr 2004 | B2 |
6734581 | Griffis | May 2004 | B1 |
6736042 | Behne et al. | May 2004 | B2 |
6742430 | Chen | Jun 2004 | B2 |
6796208 | Jorgensen | Sep 2004 | B1 |
6800819 | Sato et al. | Oct 2004 | B2 |
6813983 | Gass et al. | Nov 2004 | B2 |
6826988 | Gass et al. | Dec 2004 | B2 |
6826992 | Huang | Dec 2004 | B1 |
6840144 | Huang | Jan 2005 | B2 |
6854371 | Yu | Feb 2005 | B2 |
6857345 | Gass et al. | Feb 2005 | B2 |
6874397 | Chang | Apr 2005 | B2 |
6874399 | Lee | Apr 2005 | B2 |
6877410 | Gass et al. | Apr 2005 | B2 |
6880440 | Gass et al. | Apr 2005 | B2 |
6889585 | Harris et al. | May 2005 | B1 |
6900728 | Metzger, Jr. | May 2005 | B2 |
6920814 | Gass et al. | Jul 2005 | B2 |
6922153 | Pierga et al. | Jul 2005 | B2 |
6945148 | Gass et al. | Sep 2005 | B2 |
6945149 | Gass et al. | Sep 2005 | B2 |
6957601 | Gass et al. | Oct 2005 | B2 |
6968767 | Yu | Nov 2005 | B2 |
6986370 | Schoene et al. | Jan 2006 | B1 |
6994004 | Gass et al. | Feb 2006 | B2 |
6997090 | Gass et al. | Feb 2006 | B2 |
7000514 | Gass et al. | Feb 2006 | B2 |
7024975 | Gass et al. | Apr 2006 | B2 |
7047854 | Sako | May 2006 | B2 |
7055417 | Gass | Jun 2006 | B1 |
7077039 | Gass et al. | Jul 2006 | B2 |
7098800 | Gass | Aug 2006 | B2 |
7100483 | Gass et al. | Sep 2006 | B2 |
7137326 | Gass et al. | Nov 2006 | B2 |
7171879 | Gass et al. | Feb 2007 | B2 |
7197969 | Gass et al. | Apr 2007 | B2 |
7210383 | Gass et al. | May 2007 | B2 |
7225712 | Gass et al. | Jun 2007 | B2 |
7228772 | Gass | Jun 2007 | B2 |
7231856 | Gass et al. | Jun 2007 | B2 |
7267038 | Parks et al. | Sep 2007 | B2 |
7284467 | Gass et al. | Oct 2007 | B2 |
7290472 | Gass et al. | Nov 2007 | B2 |
7308843 | Gass et al. | Dec 2007 | B2 |
7347131 | Gass | Mar 2008 | B2 |
7350444 | Gass et al. | Apr 2008 | B2 |
7350445 | Gass et al. | Apr 2008 | B2 |
7353737 | Gass et al. | Apr 2008 | B2 |
7357056 | Gass et al. | Apr 2008 | B2 |
7359174 | Gass | Apr 2008 | B2 |
7373863 | O'Banion et al. | May 2008 | B2 |
7377199 | Gass et al. | May 2008 | B2 |
7421315 | Gass et al. | Sep 2008 | B2 |
7458301 | Yu | Dec 2008 | B2 |
7472634 | Gass et al. | Jan 2009 | B2 |
7481140 | Gass et al. | Jan 2009 | B2 |
7509899 | Gass et al. | Mar 2009 | B2 |
7525055 | Gass et al. | Apr 2009 | B2 |
7536238 | Gass | May 2009 | B2 |
7591210 | Gass et al. | Sep 2009 | B2 |
7600455 | Gass et al. | Oct 2009 | B2 |
7610836 | Gass et al. | Nov 2009 | B2 |
7617752 | Gass et al. | Nov 2009 | B2 |
7621205 | Gass | Nov 2009 | B2 |
7640835 | Gass | Jan 2010 | B2 |
7640837 | Gass et al. | Jan 2010 | B2 |
7644645 | Gass et al. | Jan 2010 | B2 |
7661343 | Gass et al. | Feb 2010 | B2 |
7681479 | Gass et al. | Mar 2010 | B2 |
7685912 | Gass et al. | Mar 2010 | B2 |
7698976 | Gass | Apr 2010 | B2 |
7707918 | Gass et al. | May 2010 | B2 |
7707920 | Gass et al. | May 2010 | B2 |
7712403 | Gass et al. | May 2010 | B2 |
7721633 | Gaw | May 2010 | B2 |
7784507 | Gass et al. | Aug 2010 | B2 |
7788999 | Gass et al. | Sep 2010 | B2 |
7789002 | Gass et al. | Sep 2010 | B2 |
7827890 | Gass et al. | Nov 2010 | B2 |
7827893 | Gass et al. | Nov 2010 | B2 |
7832314 | Gass | Nov 2010 | B2 |
7836804 | Gass | Nov 2010 | B2 |
7845258 | Gass et al. | Dec 2010 | B2 |
7866239 | Gass et al. | Jan 2011 | B2 |
7895927 | Gass | Mar 2011 | B2 |
7895929 | Zhang et al. | Mar 2011 | B2 |
7900541 | Gass et al. | Mar 2011 | B2 |
7908950 | Gass et al. | Mar 2011 | B2 |
7921754 | Gass et al. | Apr 2011 | B2 |
7958806 | Gass et al. | Jun 2011 | B2 |
7971613 | Gass et al. | Jul 2011 | B2 |
7991503 | Gass | Aug 2011 | B2 |
7997176 | Gass et al. | Aug 2011 | B2 |
8006595 | Gass | Aug 2011 | B2 |
8011279 | Gass et al. | Sep 2011 | B2 |
8051758 | Eppard | Nov 2011 | B2 |
8051759 | Gass et al. | Nov 2011 | B2 |
8061245 | Gass | Nov 2011 | B2 |
8061246 | Gass et al. | Nov 2011 | B2 |
8065943 | Gass et al. | Nov 2011 | B2 |
8079292 | Gass et al. | Dec 2011 | B2 |
8079295 | Gass | Dec 2011 | B2 |
8087438 | Gass | Jan 2012 | B2 |
8100039 | Gass | Jan 2012 | B2 |
8122798 | Shafer et al. | Feb 2012 | B1 |
8122807 | Gass et al. | Feb 2012 | B2 |
8151675 | Gass et al. | Apr 2012 | B2 |
8186255 | Gass et al. | May 2012 | B2 |
8186256 | Carrier | May 2012 | B2 |
8191450 | Gass | Jun 2012 | B2 |
8196499 | Gass | Jun 2012 | B2 |
8246059 | Gass et al. | Aug 2012 | B2 |
8266997 | Gass et al. | Sep 2012 | B2 |
8291797 | Gass et al. | Oct 2012 | B2 |
8297159 | Voruganti et al. | Oct 2012 | B2 |
8316547 | Hecht et al. | Nov 2012 | B2 |
8336432 | Butler | Dec 2012 | B1 |
8371196 | Gass et al. | Feb 2013 | B2 |
8402869 | Gass et al. | Mar 2013 | B2 |
8408106 | Gass | Apr 2013 | B2 |
8413559 | Gass | Apr 2013 | B2 |
8430005 | Gass et al. | Apr 2013 | B2 |
8438958 | Gass et al. | May 2013 | B2 |
8459157 | Gass et al. | Jun 2013 | B2 |
8469067 | Gass et al. | Jun 2013 | B2 |
8489223 | Gass | Jul 2013 | B2 |
8490527 | Gass et al. | Jul 2013 | B2 |
8498732 | Gass | Jul 2013 | B2 |
8505424 | Gass et al. | Aug 2013 | B2 |
8511693 | Gass et al. | Aug 2013 | B2 |
8522655 | Gass et al. | Sep 2013 | B2 |
8534174 | Kdita et al. | Sep 2013 | B2 |
8646369 | Gass et al. | Feb 2014 | B2 |
8689665 | Winkler | Apr 2014 | B2 |
8925433 | Stellmann | Jan 2015 | B2 |
8935000 | Krapf et al. | Jan 2015 | B2 |
8943937 | Haldar et al. | Feb 2015 | B2 |
9038515 | Gass | May 2015 | B2 |
9522476 | Gass | Dec 2016 | B2 |
9555491 | Gass et al. | Jan 2017 | B2 |
9586335 | Tsuda et al. | Mar 2017 | B2 |
9623498 | Gass et al. | Apr 2017 | B2 |
20010032534 | Ceroll et al. | Oct 2001 | A1 |
20020017175 | Gass et al. | Feb 2002 | A1 |
20020017176 | Gass et al. | Feb 2002 | A1 |
20020017178 | Gass et al. | Feb 2002 | A1 |
20020017179 | Gass et al. | Feb 2002 | A1 |
20020017180 | Gass et al. | Feb 2002 | A1 |
20020017181 | Gass et al. | Feb 2002 | A1 |
20020017182 | Gass et al. | Feb 2002 | A1 |
20020017183 | Gass et al. | Feb 2002 | A1 |
20020017184 | Gass et al. | Feb 2002 | A1 |
20020017336 | Gass et al. | Feb 2002 | A1 |
20020020261 | Gass et al. | Feb 2002 | A1 |
20020020262 | Gass et al. | Feb 2002 | A1 |
20020020263 | Gass et al. | Feb 2002 | A1 |
20020020265 | Gass et al. | Feb 2002 | A1 |
20020020271 | Gass et al. | Feb 2002 | A1 |
20020043776 | Chuang | Apr 2002 | A1 |
20020050201 | Lane et al. | May 2002 | A1 |
20020056348 | Gass et al. | May 2002 | A1 |
20020056349 | Gass et al. | May 2002 | A1 |
20020056350 | Gass et al. | May 2002 | A1 |
20020059853 | Gass et al. | May 2002 | A1 |
20020059854 | Gass et al. | May 2002 | A1 |
20020059855 | Gass et al. | May 2002 | A1 |
20020066346 | Gass et al. | Jun 2002 | A1 |
20020069734 | Gass et al. | Jun 2002 | A1 |
20020109036 | Denen et al. | Aug 2002 | A1 |
20020170399 | Gass et al. | Nov 2002 | A1 |
20030000359 | Eccardt et al. | Jan 2003 | A1 |
20030005588 | Gass et al. | Jan 2003 | A1 |
20030019341 | Gass et al. | Jan 2003 | A1 |
20030020336 | Gass et al. | Jan 2003 | A1 |
20030037651 | Gass et al. | Feb 2003 | A1 |
20030037655 | Chin-Chin | Feb 2003 | A1 |
20030056853 | Gass et al. | Mar 2003 | A1 |
20030074873 | Freiberg et al. | Apr 2003 | A1 |
20030089212 | Parks et al. | May 2003 | A1 |
20030109798 | Kermani | Jun 2003 | A1 |
20030193400 | Grasselli et al. | Oct 2003 | A1 |
20040011177 | Huang | Jan 2004 | A1 |
20040060404 | Metzger, Jr. | Apr 2004 | A1 |
20040104085 | Lang et al. | Jun 2004 | A1 |
20040123709 | Metzger, Jr. | Jul 2004 | A1 |
20040159198 | Peot et al. | Aug 2004 | A1 |
20040194594 | Dils et al. | Oct 2004 | A1 |
20040200329 | Sako | Oct 2004 | A1 |
20040226424 | O'Banion et al. | Nov 2004 | A1 |
20040226800 | Pierga et al. | Nov 2004 | A1 |
20040255745 | Peot et al. | Dec 2004 | A1 |
20050057206 | Uneyama | Mar 2005 | A1 |
20050092149 | Hartmann | May 2005 | A1 |
20050139051 | Gass et al. | Jun 2005 | A1 |
20050139056 | Gass et al. | Jun 2005 | A1 |
20050139057 | Gass et al. | Jun 2005 | A1 |
20050139058 | Gass et al. | Jun 2005 | A1 |
20050139459 | Gass et al. | Jun 2005 | A1 |
20050145080 | Voigtlaender | Jul 2005 | A1 |
20050155473 | Gass | Jul 2005 | A1 |
20050166736 | Gass et al. | Aug 2005 | A1 |
20050178259 | Gass et al. | Aug 2005 | A1 |
20050204885 | Gass et al. | Sep 2005 | A1 |
20050211034 | Sasaki et al. | Sep 2005 | A1 |
20050235793 | O'Banion et al. | Oct 2005 | A1 |
20050268767 | Pierga et al. | Dec 2005 | A1 |
20050274432 | Gass et al. | Dec 2005 | A1 |
20060000337 | Gass | Jan 2006 | A1 |
20060032352 | Gass et al. | Feb 2006 | A1 |
20060096425 | Keller | May 2006 | A1 |
20060197020 | Trzecieski et al. | Sep 2006 | A1 |
20080016998 | Keller | Jan 2008 | A1 |
20080078470 | O'Branion et al. | Apr 2008 | A1 |
20100050843 | Gass et al. | Mar 2010 | A1 |
20100307307 | Butler | Dec 2010 | A1 |
20100307308 | Butler | Dec 2010 | A1 |
20110023674 | Stasiewicz et al. | Feb 2011 | A1 |
20110048204 | Chung | Mar 2011 | A1 |
20110079124 | Carrier | Apr 2011 | A1 |
20110179923 | Tsuda et al. | Jul 2011 | A1 |
20110203438 | Nenadic et al. | Aug 2011 | A1 |
20120090439 | Butler | Apr 2012 | A1 |
20120216665 | Gass et al. | Aug 2012 | A1 |
20140150615 | Pierga et al. | Jun 2014 | A1 |
20140182430 | Haldar | Jul 2014 | A1 |
20140260852 | Laliberte | Sep 2014 | A1 |
20140290799 | Gass | Oct 2014 | A1 |
20150107427 | Gass et al. | Apr 2015 | A1 |
20150107428 | Burke et al. | Apr 2015 | A1 |
20150107430 | Gass et al. | Apr 2015 | A1 |
20150165641 | Gass et al. | Jun 2015 | A1 |
20150273723 | Gass et al. | Oct 2015 | A1 |
20150375314 | Gass et al. | Dec 2015 | A1 |
20160008997 | Gass et al. | Jan 2016 | A1 |
20160016240 | Koegel | Jan 2016 | A1 |
20160046034 | Burke et al. | Feb 2016 | A1 |
20160082529 | Gass et al. | Mar 2016 | A1 |
20160121412 | Fulmer et al. | May 2016 | A1 |
20160214189 | Stasiewicz et al. | Jul 2016 | A9 |
20160243632 | Fulmer et al. | Aug 2016 | A9 |
20160346849 | Gass | Dec 2016 | A1 |
20170008189 | Gass et al. | Jan 2017 | A9 |
20170072481 | Gass et al. | Mar 2017 | A1 |
20170072582 | Gass | Mar 2017 | A1 |
20170136561 | Gass et al. | May 2017 | A1 |
20170173818 | Tsuda et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
2140991 | Jan 1995 | CA |
297525 | Jun 1954 | CH |
76186 | Aug 1921 | DE |
2227184 | Jun 1972 | DE |
2917497 | Apr 1979 | DE |
2800403 | Jul 1979 | DE |
3427733 | Jan 1986 | DE |
4235161 | May 1993 | DE |
4326313 | Feb 1995 | DE |
4334933 | Apr 1995 | DE |
19612246 | Sep 1997 | DE |
19609771 | Jun 1998 | DE |
20102704 | Feb 2001 | DE |
146460 | Nov 1988 | EP |
0362937 | Apr 1990 | EP |
0715934 | Jun 1996 | EP |
1961525 | Aug 2008 | EP |
2152184 | Jan 2001 | ES |
2187981 | Jun 1973 | FR |
2556643 | Jun 1985 | FR |
2570017 | Mar 1986 | FR |
598204 | Feb 1948 | GB |
1132708 | Nov 1968 | GB |
1425378 | Feb 1976 | GB |
2096844 | Oct 1982 | GB |
2142571 | Jan 1985 | GB |
988922 | Jun 1973 | IT |
60-98605 | Jul 1985 | JP |
64-2803 | Jan 1989 | JP |
83283 | Jun 1973 | SE |
WO 8606816 | Nov 1986 | WO |
WO 9001670 | Feb 1990 | WO |
WO 9622175 | Jul 1996 | WO |
WO 9712174 | Apr 1997 | WO |
WO 0126064 | Apr 2001 | WO |
WO 11040957 | Apr 2011 | WO |
Entry |
---|
U.S. Appl. No. 60/157,340, filed Oct. 1, 1999, entitled “Fast-Acting Safety Stop.” |
U.S. Appl. No. 60/182,866, filed Feb. 16, 2000, entitled “Fast-Acting Safety Stop.” |
IWF 2000 Challengers Award Official Entry Form, submitted Apr. 26, 2000, 6 pages plus CD (the portions of US patent applications referenced in the form are from U.S. Appl. No. 60/157,340, filed Oct. 1, 1999 and U.S. Appl. No. 60/182,866, filed Feb. 16, 2000). |
Gordon Engineering Corp., Product Catalog, Oct. 1997, pp. cover, 1, 3 and back, Brookfield, Connecticut, US. |
Analog Devices, Inc., 3-Axis Capacitive Sensor—Preliminary Technical Data AD7103, pp. 1-44, © 1998. |
Skil Model 3400—Type 1 10″ Table Saw Parts List and Technical Bulletin, S-B Power Tool Company, Jun. 1993. |
Shop Fox® Fence Operating Manual, Woodstock International, Inc., 1996, revised May 1997. |
Excaliber T-Slot Precision Saw Fence Model TT45 Owner's Manual, Sommerville Design & Manufacturing, Inc., May 2000. |
Bosch Model 4000 Worksite Table Saw Operating/Safety Instructions, S-B Power Tool Company, Jul. 2000. |
XACTA Fence II™ Homeshop 30/52 Owner's Manual, JET Equipment & Tools, Mar. 2001. |
XACTA Fence II™ Commercial 30/50 Owner's Manual, JET Equipment & Tools, Mar. 2001. |
Bosch 10″ Table Saw Model 0601476139 Parts List and Technical Bulletin, S-B Power Tool Company, Apr. 2001. |
Biesemeyer® T-Square® Universal Home Shop Fence system Instruction Manual, Delta Machinery, Jun. 1, 2001. |
Powermatic 10″ Tilting Arbor Saw Model 66 Instruction Manual & Parts List, Jet Equipment & Tools, Jun. 2001. |
Skil Model 3400 Table Saw Operating/Safety Instructions, S-B Power Tool Company, Sep. 2001. |
The Merlin Splitter by Excalibur a Sommerville Design Product Overview & Generic Installation Notes, Sommerville Design & Manufacturing Inc., at least as early as 2002. |
INCRA Incremental Micro Precision Table Saw Fence Owner's Manual, Taylor Design Group, Inc., 2003. |
Shop Fox® Models W2005, W2006, W2007 Classic Fence Instruction Manual, Woodstock International, Jan. 2000, revised Mar. 2004. |
ACCU-FENCE® 64A Fence and Rail System Owner's Manual, WMH Tool Group, Sep. 2004. |
Unifence™ Saw Guide Instruction Manual, Delta Machinery, Feb. 22, 2005. |
Biesemeyer® T-Square® Commercial Fence System Instruction Manual, Delta Machinery, May 2, 2005. |
Laguna Tools table saw owner's manual, date unknown. |
You Should Have Invented It, French television show video. |
Sears Owners Manual Model No. 113.299131, Dec. 1973. |
Elmshorn Student Wins for the Seconds Time at Jugend Forscht, Hamburg Morning News, May 5, 1997. |
Active Safety System on a Table Saw, Jan Nieberle & Sebastian Hauer, 1997 Workplace Bavaria. |
Grizzly Industrial, Inc. Heavy-Duty 12″ Table Saw Model G5959 and G9957 Parts List, 1998 and Oct. 2001. |
OSHA: A Guide for Protecting Workers from Woodworking Hazards, 1999. |
Pictures of SawStop Prototype Cabinet Saw, May 2002. |
Young Inventor: Teen's Device Earns Her Trip to Science Fair, The Arizona Republic, May 5, 2006. |
Grizzly Industrial, Inc. Model G0605X/G0606X Extreme Series 12″ Table Saw Owner's Manual, Grizzly Industrial, Inc., Oct. 2006. |
Grizzly Industrial, Inc. Model G0651/G0652 10″ Extreme Series Table Saws Owner's Manual, Grizzly Industrial, Inc., Mar. 2008. |
Memorandum Opinion, Findings of Fact, and Conclusions of Law, SD3, LLC v. Michelle K. Lee, Civil Case No. 08-CV-1242, filed Aug. 31, 2016. |
Operator Injury Mitigation Using Electronic Sensing and Mechanical Braking and Decoupling Devices in Handheld Circular Saws, Erin F. Eppard, date unknown. |
Number | Date | Country | |
---|---|---|---|
20020170400 A1 | Nov 2002 | US |
Number | Date | Country | |
---|---|---|---|
60292100 | May 2001 | US |