Embodiments of the present invention relate to a method and apparatus for securing a cable tie about an object, and in particular, to a relatively compact banding tool that facilitates cable tie tensioning.
Cable ties, which are sometimes referred to as “band clamps,” are typically used to bundle wires, secure back shells to cables, secure heat shields to pipes, and secure signage to poles. Cable ties are generally comprised of a band with an interconnected head that secures a free end of the band after a predetermined band tension has been applied. Some bands have had operatively interconnected heads (or buckles or seals), instead of an integrated head.
Tensioning tools are used to tighten cable ties. For example, the tensioning tool described in U.S. Pat. No. 5,566,726 employs a band gripping mechanism (also denoted a “tension block”) that repeatedly grips and incrementally moves a portion of the band, which tensions the band. More specifically, to tension the band, the tension block is first moved along a length of the band in a first direction, generally toward objects being banded, e.g. wires. The tension block then engages the band and moves a portion of the same away from the objects being banded which incrementally tensions the band. The tension block grips the band with a pin having an axis that is oriented along the width of the band. The pin may be biased by a spring, or other biasing device, to ensure firm engagement with the band when the tension block is pulled away from the objects being banded. After the tension block has moved its full extent away from the objects being banded, the tension block is released from the band so that it can be moved to another location on the band to begin another incremental tension cycle. Band tension is maintained by a front gripper that selectively contacts the band between the tension block and the objects being banded when the tension block is moved from one location on the band to another.
The front gripper 10 also includes an inclined lateral opening 56 and a gripping pin 60 that moves within the opening 56. The gripping pin 60 is biased toward a proximal end 64 of the opening 56. When the tension block 6 is not tensioning the band 14, i.e., moving in the direction of arrow 44, the gripping pin 60 of the front gripper 10 frictionally engages the band 14 so that it is not slackened by a band tension counterforce acting in the direction of arrow 68. Once the tension block 6 has completed its movement toward the front gripper 10, it reverses direction, thereby causing the gripping pin 38 to securely engage the band 14 and pull it in the direction of arrow 48. Movement of the band 14 in the direction of arrow 48 causes the gripping pin 60 to disengage from the band 16, thereby allowing the band 14 to be pulled into the band tightening tool 2.
Tensioning tools often employ a device for firmly interconnecting the band to the head and a device for severing the excess band from the tensioned cable tie. Some tools combine this functionality. For example,
Again, after the tension block and the front gripper perform their respective duties, the band is severed and clamped, i.e., locked to a buckle or seal. A stationary blade is provided beneath the front gripper and a movable knife is provided forward of the front gripper. The knife moves relative to the blade to sever a band located therebetween. More specifically, once the desired band tension is achieved, a linkage is used to move the knife closer to the blade which compresses the band and eventually severs the same. The gap between the knife edge and the blade edge is preferably maintained within a predetermined tolerance that will ensure bands are cut in the most effective manner, even after many cutting cycles.
One drawback of prior art tensioning tools is that downward pressure from the knife is transmitted through the band and to the blade, which stresses the blade and adversely affects its effectiveness. Band cutting is also adversely affected because the blade edge is spaced from the blade's attachment point, i.e., the location where pressure acting on the blade's cutting edge is reacted. Over time, the blade may be prone to flex, which can lead to fatigue and ultimately failure.
One of ordinary skill in the art will appreciate that cutting will eventually weaken the blade and cause it to yield or fracture. Unfortunately, the failure rate and mode is unpredictable, wherein the blade may fail after 100, 200, or 1000 bands are tensioned. When blades fail, the tools are shipped from the end user to the factory for blade or knife replacement, which is expensive, costly, and time consuming.
As alluded to above, blade support of prior art tools is not ideal and blade damage is common. The primary failure mode is blade edge degradation and, in some instances, fracture. More specifically, the blade of prior art tools is rotatably interconnected to a tool head. Further, the blade of some prior art tools possesses an internal non-cutting edge that engages the tool head to react loads generated at an external cutting edge of the blade when the knife contacts the band positioned between the knife and the blade. This complex design came from a desire to provide a blade with two edges such that when one was damaged, the blade could be removed and rotated to locate the previously non-used blade adjacent to the knife.
Another drawback of prior art tensioning tools is that the knife does not travel in a smooth, continuous manner, thus a gap between the knife and the blade is not consistent, which affects cutting performance and can increase blade loads. For example, if the space between the knife's cutting edge and the blade's cutting edge is too wide, knife travel may be inadequate to sever the band as material will deform between the knife edge in the blade edge. If the gap is too narrow, excess loads generated by the knife will be transferred to the blade and cause damage.
In view of the foregoing, there exists a need for a banding tool that maintains tolerance between the knife and blade, which increases blade life.
In accordance with one aspect of the invention, a band tensioning tool is provided that includes a tensioning mechanism having a first longitudinal axis therethrough. The tensioning mechanism comprises a force storing device within a tool handle. A tension adjustment plunger, a tension adjustment screw, and a connecting rod are interconnected to the force storing device and to tension transferring device. In one embodiment, the force storing device is a compression spring that is pre-compressed to a desired amount by the adjustment plunger.
The tension transferring device comprises a tension transfer lever interconnected to the tensioning device and a tensioning block. At least one push link is connected on a first end thereof to the tensioning device, and on a second end to a lever arm. The tension block, which has an elongated slot and a tension pin, is connected to the lever arm, wherein the tension block pulls the band into tension.
It is still yet another aspect the present invention to provide a knife with an arcuate cutting edge and a head deformation surface. More specifically, the cutting edge of one embodiment of the present invention initially contacts the band and is used with the blade to sever the band. Thereafter, the deformation surface of the knife is adapted to contact the cable tie's locking feature, e.g., the cable tie head, and deforms the same. Deforming the head will change its geometry and, thus, change its moment of inertia and strength. As the head is designed to maintain band tension, those of ordinary skill in the art will appreciate that increased head stiffness will maximize the cable tie's retained force. The knife of one embodiment of the present invention also removes sharp corners and provides a smooth cut, which is desirable for safety.
Tools of embodiments of the present invention are designed to tension and secure various types of band clamps and cable ties. Some versions of the contemplated tool are suited to secure cable ties commonly sold by the assignee of the instant application under the trademark TIE-DEX®, which are described in U.S. Pat. No. 4,896,402. As one of skill in the art will appreciate, it is often desirable to reduce cable tie weight, which can be accomplished if tie thickness is reduced. Accordingly, it is one aspect of embodiments of the present invention to provide a cable tie of reduced thickness made of tempered stainless steel. In applications where a reduced diameter banding is required, the thinner band will perform better than the current cable ties.
Existing tools often have difficulty in cutting thinner cable ties. More specifically, because of tolerance stack between the cutter knife (moving portion) and the blade (stationary portion), the gap between the two components that affect cutting may vary over time. Often, the gap will generally increase over time and the cable tie will deform instead of severing as a knife passes the blade. It is thus another aspect of the present invention to control the distance between the blade's cutting surface and the knife. By maintaining a tight tolerance between these two components, thinner bands can be formed and severed without bending.
One embodiment of the present invention achieves this goal of maintaining tight tolerances by including a blade with an integrated knife housing. The knife housing includes a channel that slidingly receives the knife. In this fashion the tolerance between the knife and the blade is maintained because the knife's movement is limited by the knife channel. The blade edge also interacts with a load point that is near the blade edge, which reduces damaging loads acting on the blade. Furthermore, by maintaining the tolerance between the knife and the blade edge, the gap between these two components can be maintained after many uses.
The Summary of the Invention is neither intended nor should it be construed as being representative of the full extent and scope of the present invention. That is, these and other aspects and advantages will be apparent from the disclosure of the invention(s) described herein. Further, the above-described embodiments, aspects, objectives, and configurations are neither complete nor exhaustive. As will be appreciated, other embodiments of the invention are possible using, alone or in combination, one or more of the features set forth above or described below. Moreover, references made herein to “the present invention” or aspects thereof should be understood to mean certain embodiments of the present invention and should not necessarily be construed as limiting all embodiments to a particular description. The present invention is set forth in various levels of detail in the Summary of the Invention as well as in the attached drawings and the Detailed Description of the Invention and no limitation as to the scope of the present invention is intended by either the inclusion or non-inclusion of elements, components, etc. in this Summary of the Invention. Additional aspects of the present invention will become more readily apparent from the Detail Description, particularly when taken together with the drawings.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and together with the general description of the invention given above and the detailed description of the drawings given below, serve to explain the principles of these inventions.
To assist in the understanding of one embodiment of the present invention the following list of components and associated numbering found in the drawings is provided herein:
It should be understood that the drawings are not necessarily to scale. In certain instances, details that are not necessary for an understanding of the invention or that render other details difficult to perceive may have been omitted. It should be understood, of course, that the invention is not necessarily limited to the particular embodiments illustrated herein.
Referring to
As one of ordinary skill will appreciate, the tool described herein can be made to operate pneumatically as shown in
To address this issue, the cutter arm 360 is provided with a protrusion 374 operatively engaged within a recess 378 provided in the knife 328. The protrusion 374 is designed to travel within the recess when the cutter arm 360 is moved. Again, the knife is moved downwardly by rotation of the cutter arm 360 wherein an edge of the knife cooperates with the blade 324 to sever the band. The operation of one embodiment of the present invention is shown in
As one of ordinary skill in the art will appreciate, is often desirable to periodically check and adjust the tension output of the tools described above. That is, it is necessary to maintain a tool's tension accuracy to ensure bands are tensioned as expected. Accordingly, calibration devices are normally employed that selectively interconnect to a band tensioning tool to verify the functionality of the same. One drawback of traditional calibration devices is that they are usually complex, require precision parts, are difficult to calibrate themselves, and require considerable operator skill to ensure accurate readings. This last drawback is often due to a lack of visual feedback provided by the calibration tool.
Accordingly,
The calibration device 400 further includes a distal end 420 that secures a plate 424 with slotted holes (not shown). The plate 424 is interconnected to the distal end by at least one screw 428. The plate 424 includes an aperture 432, which will be described in further detail below. Finally, the calibration tool may include a stop 436 located on a stationary arm 440 that spans from the gauge body 404 and the distal end 420. Finally, the calibration device 400 includes a movable arm 444 associated with the gauge body 404 at the calibration tool's proximal end 448. The stop 436 prevents the arm 440 from moving past a predetermined point.
Some embodiments of the present invention include an adjustment screw 452 that selectively engages an end 456 of the arm 444, whereby the initial location of the movable arm end 456 is set such that the movable arm is pre-loaded towards the stop 436. The movable arm 444 includes an opening 460 that cooperates with the aperture 432 in the plate 424, which will be described in further detail below
In operation, the gauge body 404 is first hooked on to an upper portion of the blade housing 370. This aligns the rear opening 472 and the forward opening 468 of the calibration device 400 with the opening provided by the blade housing 470 that receives the free end of the band. Hooking the gauge body 404 onto the blade housing 370 also positions an inner surface 478 of the gauge body 404 in such a way to prevent movement of the cutter link 382, which prevents movement of the knife 328. The slot 412 receives the cutter arms 360 to position the calibration device laterally with respect to the primary axis of the band tensioning tool 300. Finally, the magnet 416 provided by the calibration device will firmly secure it to the blade housing 370.
After the calibration device is secured to the band tensioning tool, a band 464 is placed through the forward opening 468, the rear opening 472, and through the channel 372 provided by the blade housing 370. After the band 464 passes through the channel 372 it engages the gripper members as described above. Cycling of a tension handle 312 towards the handle 308 tensions the band 464 and moves the movable arm 444 towards the stop 436. When a predetermined tension is achieved, (i.e., the tension the calibration device was tested to—the calibration tension), as indicated by the band tensioning tool, the operator assesses the aperture 432 positioned in the plate and the arm opening 460. If the aperture 432 and the opening 460 are aligned, the tension provided by the tool equals the calibration tension. If the aperture 432 and the opening 460 do not coincide, the applied tension is incorrect and the band tensioning tool must be repaired.
Alternatively, tension may be applied until the aperture 432 and the opening 460 are aligned and a tension reading is obtained from the tool. If the tension reading does not correspond with the calibration tension, the band tensioning tool must be adjusted.
This method of assessing band tension is ideal as light passing through the aligned openings will indicate a predetermined tension has been achieved. That is, when the apertures 432 and the opening 460 are in line, light will shine through the calibration tool. One of ordinary skill in the art will appreciate the light coming through pin holes and solid bodies are very detectable by the human eye. Prior art tools rely on the ability of the operator to find markings, which is which may be fraught with errors.
While various embodiments of the present invention have been described in detail, it is apparent that modifications and alterations of those embodiments will occur to those skilled in the art. It is to be expressly understood that such modifications and alterations are within the scope and spirit of the present invention, as set forth in the following claims. Further, it is to be understood that the invention(s) described herein is not limited in its application to the details of construction and the arrangement of components set forth in the preceding description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
This application is a Continuation-In-Part of U.S. patent application Ser. No. 14/685,330, filed Apr. 13, 2015, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/990,339, filed May 8, 2014, the entirety of which is incorporated by reference herein. This application also claims the benefit of U.S. Provisional Patent Application Ser. No. 62/239,635, filed Oct. 9, 2015, the entirety of which is incorporated by reference herein. This application is related to U.S. Pat. Nos. 5,566,726 and 4,896,402, the entire disclosures of which are incorporated by reference herein. This application is also related to U.S. Patent Application Publication No. 2013/0199382, the entirety of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3782426 | Morgan et al. | Jan 1974 | A |
4896402 | Jansen et al. | Jan 1990 | A |
4934416 | Tonkiss | Jun 1990 | A |
5000232 | Wolcott | Mar 1991 | A |
5111853 | Scruggs | May 1992 | A |
5127446 | Marelin | Jul 1992 | A |
5322091 | Marelin | Jun 1994 | A |
5483998 | Marelin | Jan 1996 | A |
5492156 | Dyer | Feb 1996 | A |
5566726 | Marelin | Oct 1996 | A |
5597018 | Shipman | Jan 1997 | A |
5743310 | Moran | Apr 1998 | A |
5832964 | Joshi | Nov 1998 | A |
7063110 | Chen | Jun 2006 | B2 |
7438094 | Hillegonds | Oct 2008 | B2 |
7650680 | Stillings et al. | Jan 2010 | B2 |
20050284534 | Chen | Dec 2005 | A1 |
20080209692 | Caveney | Sep 2008 | A1 |
20130199382 | Armijo | Aug 2013 | A1 |
20150239588 | Kitago | Aug 2015 | A1 |
20150321778 | Marelin | Nov 2015 | A1 |
20150336694 | Skonieczny, Jr. | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
S49-099683 | Aug 1974 | JP |
WO 2014024296 | Feb 2014 | WO |
Entry |
---|
Official action for Canadian Patent Application No. 2,948,352, dated May 14, 2018, 5 pages. |
Official Action for U.S. Appl. No. 14/685,330, dated May 16, 2018, 13 pages. |
Advisory Action for U.S. Appl. No. 14/685,330, dated Jul. 23, 2018, 6 pages. |
Official Action for Canadian Patent Application No. 2,948,352, dated Sep. 25, 2017, 3 pages. |
Official Action (with English translation) for Chinese Patent Application No. 201580031962.6, dated Nov. 29, 2017, 17 pages. |
Official Action for U.S. Appl. No. 14/685,330, dated Jan. 26, 2018, 19 pages. |
International Search Report and Written Opinion for International (PCT) Patent Application No. PCT/US15/29840, dated Aug. 14, 2015, 13 pages. |
International Preliminary Report on Patentability for International (PCT) Patent Application No. PCT/US15/29840, dated Nov. 17, 2016, 7 pages. |
International Search Report and Written Opinion for International (PCT) Patent Application No. PCT/US17/53595, dated Dec. 19, 2017, 8 pages. |
Extended European Search Report for European Patent Application No. 15789562.4, dated Dec. 6, 2017, 6 pages. |
Official Action (with English translation) for Chinese Patent Application No. 201580031962.6, dated Jul. 30, 2018, 11 pages. |
Notice of Allowance (with English translation) for Chinese Patent Application No. 201580031962.6, dated Jan. 14, 2019, 5 pages. |
Official Action (with English translation) for Japanese Patent Application No. 2017-511551, dated Feb. 22, 2019, 5 pages. |
International Preliminary Report on Patentability for International (PCT) Patent Application No. PCT/US17/53595, dated Apr. 2, 2019. |
Official Action (with English translation) for Japanese Patent Application No. 2017-511551, dated Dec. 3, 2019, 5 pages. |
Decision to Grant (with English translation) Japanese Patent Application No. 2017-511551, dated Sep. 8, 2020, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20170015449 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
61990339 | May 2014 | US | |
62239635 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14685330 | Apr 2015 | US |
Child | 15280848 | US |