Band transducer ultrasound therapy

Information

  • Patent Grant
  • 11351401
  • Patent Number
    11,351,401
  • Date Filed
    Friday, February 21, 2020
    4 years ago
  • Date Issued
    Tuesday, June 7, 2022
    a year ago
Abstract
Embodiments of a dermatological cosmetic treatment and/or imaging system and method can include use of transducer to create a linear thermal treatment zone at a focal depth to form a band shaped treatment area. The system can include one or more ultrasound transducers, a cylindrical transduction element, an imaging element, a hand wand, a removable transducer module, a control module, and/or graphical user interface. In some embodiments, a coated transducer may be used to provide more consistent treatment in cosmetic procedures, including brow lifts, fat reduction, sweat reduction, and treatment of the décolletage. Skin tightening, lifting and amelioration of wrinkles and stretch marks are provided. Treatment may include heating of tissue for a duration to deactivate a percentage of cells in the treatment region.
Description
FIELD

Several embodiments of the present invention generally relate to noninvasive, semi-invasive, and/or invasive energy-based treatments to achieve cosmetic and/or medical effects. For example, some embodiments generally relate to devices, systems and methods with linear, curved, planar, and/or three-dimensional ultrasound treatment focus zones for performing various treatment procedures safely and effectively. Various embodiments of a treatment system can improve cosmetic results and patient outcomes through reduced treatment time and/or reduced treatment energy, which can increase comfort and cosmetic outcomes. In various embodiments, ultrasound transducers have treatment focus zones in the form of one or more lines, belts, bands, and/or planes.


DESCRIPTION OF THE RELATED ART

Many cosmetic procedures involve invasive procedures that may require invasive surgery, which can places more requirements on biocompatibility and sterility. Patients not only have to endure weeks of recovery time, but also are frequently required to undergo risky anesthetic procedures for aesthetic treatments. Traditional cosmetic procedures involving piercing or cutting the skin surface to access target tissue under the skin surface tend to involve higher requirements on biocompatibility and sterility. Certain traditional energy based treatments, such as with radio-frequency (RF) and laser treatments must heat or treat tissue starting from the skin surface affecting all the intermediary tissue between the skin surface and a target tissue at a depth under the skin surface.


SUMMARY

Although energy-based treatments have been disclosed for cosmetic and medical purposes, no procedures are known to Applicant, other that Applicant's own work, that successfully achieve an aesthetic tissue heating and/or treatment effect using targeted and precise ultrasound to cause a visible and effective cosmetic results via a thermal pathway by using band shaped treatment focus zone techniques to expand the area and volume of tissue treated at a specific, targeted area. Treatment can include heating, coagulation, and/or ablation (including, for example, hyperthermia, thermal dosimetry, apoptosis, and lysis). In various embodiments, band treatment provides improved thermal heating and treatment of tissue compared to diathermy or general bulk heating techniques. In various embodiments, band treatment provides the capability of heating and/or treating tissue at specific depth ranges without affecting proximal tissues. In general, diathermy and bulk heating techniques usually involve heating a skin surface and conducting the heat through the skin surface and all underlying tissue to reach a tissue at a target depth below the skin surface. In various embodiments, band treatment provides targeted heating and treatment at a specific, prescribed depth range below the skin surface without heating the skin surface and/or intermediary tissue between the skin surface and the target tissue. This offset band treatment reduces damage and associated pain at the skin surface, and treats tissue only at the prescribed, targeted tissue depth. Thus, embodiments of the present invention can be used to treat tissue in a specific range of depths below the skin surface without heating the skin surface. In some embodiments, band treatment can also be used to prepare tissue at target depths for a second, ultrasound treatment by pre-heating the target tissue to an elevated temperature so the secondary treatment can be performed with reduced time and/or energy and increased comfort.


In accordance with various embodiments, a cosmetic ultrasound treatment system and/or method can non-invasively produce single or multiple cosmetic treatment zones and/or thermal treatment points, lines, bands, belts, planes, areas, volumes, and/or shapes, where ultrasound is focused in one or more locations in a region of treatment in tissue at one or more depths under a skin surface. Some systems and methods provide cosmetic treatment at different locations in tissue, with treatment areas at various depths, heights, widths, and/or positions. In one embodiment, a method and system comprise a transducer system configured for providing ultrasound treatment to more than one region of interest, such as between at least two treatment positions and/or regions of interest. In one embodiment, a method and system comprise a transducer system configured for providing ultrasound treatment to more than one region of interest, such as between at least two lines in various locations (e.g. at a fixed or variable depth, height, width, orientation, etc.) in a region of interest in tissue. In various embodiments, lines can be straight, curved, continuous, and/or non-continuous. In some embodiments, the energy beam is split to focus at two, three, four, or more focal zones (e.g., multiple focal lines, multi-focal lines) for cosmetic treatment zones and/or for imaging in a region of interest in tissue. Position of the focal zones can be positioned axially, laterally, or otherwise within the tissue. Some embodiments can be configured for spatial control, such as by the location of a focus line, changing the distance or angle between a transducer and an optional motion mechanism, and/or changing the angles of energy focused or unfocused to the region of interest, and/or configured for temporal control, such as by controlling changes in the frequency, drive amplitude and timing of the transducer. In some embodiments the position of multiple treatment zones can be enabled through poling, phasic poling, biphasic poling, and/or multi-phasic poling. As a result, changes in the location of the treatment region, the number, shape, size and/or volume of treatment zones, heating zones, and/or lesions in a region of interest, as well as the thermal conditions, can be dynamically controlled over time. Additional details regarding poling and modulation are disclosed in U.S. application Ser. No. 14/193,234 filed on Feb. 28, 2014 and published as U.S. Publication No. 2014-0257145, which is incorporated in its entirety by reference herein.


In one embodiment, an aesthetic imaging and treatment system includes a hand held probe with a housing that encloses an ultrasound transducer configured to apply ultrasound therapy to tissue at a focal zone. In one embodiment, the focal zone is a line. In one embodiment, the focal zone is a two dimensional region or plane. In one embodiment, the focal zone is a volume. In various embodiments, the focal zone treats a treatment area that is linear, curved, rectangular, and/or planar. In various embodiments, the size of the treatment area depends on the size of the transducer. The treatment can be performed in lines and/or planes. In various embodiments, the width of the treatment focal zone is 5-50 mm, 5-30 mm, 5-25 mm, 10-25 mm, 10 mm-15 mm, 15 mm-20 mm, 10 mm, 15 mm, 20 mm, 25 mm, or any range therein (including but not limited to 12 mm-22 mm). In various embodiments, a focal zone can be moved to sweep a volume between a first position and a second position. In various embodiments, one or more a focal zone locations are positioned in a substantially linear sequence within a cosmetic treatment zone. In various embodiments, one or more a focal zone locations are positioned with one, two, or more motion mechanisms to form any shape for a treatment area within a cosmetic treatment zone. In one embodiment, a first set of locations is positioned within a first cosmetic treatment zone and a second set of locations is positioned within a second cosmetic treatment zone, the first zone being different from the second zone. In one embodiment, the first cosmetic treatment zone includes a substantially linear sequence of the first set of locations and the second cosmetic treatment zone includes a substantially linear sequence of the second set of locations. In some non-limiting embodiments transducers can be configured for a treatment zone at a tissue depth below a skin surface of 1.5 mm, 3 mm, 4.5 mm, 6 mm, less than 3 mm, between 1.5 mm and 3 mm, between 1.5 mm and 4.5 mm, more than more than 4.5 mm, more than 6 mm, and anywhere in the ranges of 0.1 mm-3 mm, 0.1 mm-4.5 mm, 3 mm-7 mm, 3 mm-9 mm, 0.1 mm-25 mm, 0.1 mm-100 mm, and any depths therein (including, for example, 4.5 mm-6 mm, 1 mm-20 mm, 1 mm-15 mm, 1 mm-10 mm, 5 mm-25 mm, and any depths therein). In one embodiment, cosmetic treatment zones are continuous. In one embodiment, cosmetic treatment zones have no spacing. In one embodiment, a sequence of individual cosmetic treatment zones with a treatment spacing in a range from about 0.05 mm to about 25 mm (e.g., 0.05-0.1 mm, 0.05-1 mm, 0.2-0.5 mm, 0.5-2 mm, 1-10 mm, 0.5-3 mm, 5-12 mm). In various embodiments, the treatment spacing has a constant pitch, a variable pitch, an overlapping pitch, and/or a non-overlapping pitch.


In one embodiment, the ultrasonic transducer is configured to provide therapeutic intensity on the transducer surface in a range of between about 1 W/cm2 to 100 W/cm2 (e.g., 1-50, 10-90, 25-75, 10-40, 50-80 W/cm2 and any ranges and values therein). In one embodiment, the ultrasonic transducer is configured to provide an acoustic power of the ultrasonic therapy in a range of between about 1 W to about 100 W and a frequency of about 1 MHz to about 10 MHz to thermally heat the tissue. In various embodiments, the transducer module is configured to provide an acoustic power of the ultrasonic therapy in a range of between about 1 W to about 100 W (e.g., 5-40 W, 10-50 W, 25-35 W, 35-60 W, 35 W, 40 W, 50 W, 60 W) and a frequency of about 1 MHz to about 10 MHz to thermally heat the tissue. In one embodiment, the acoustic power can be from a range of 1 W to about 100 W in a frequency range from about 1 MHz to about 12 MHz (e.g., 3.5 MHz, 4 MHz, 4.5 MHz, 7 MHz, 10 MHz, 3-5 MHz), or from about 10 W to about 50 W at a frequency range from about 3 MHz to about 8 MHz. In one embodiment, the acoustic power and frequencies are about 40 W at about 4.3 MHz and about 30 W at about 7.5 MHz. In various embodiments, the transducer module is configured to deliver energy with no pitch or a pitch of 0.1-2 mm (e.g., 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5 mm). In various embodiments, the pitch is constant or variable. In various embodiments, the transducer module is configured to deliver energy with an on-time of 10-500 ms (e.g., 30-100, 90-200, 30, 32, 35, 40, 50, 60, 64, 75, 90, 100, 112, 200, 300, 400 ms and any range therein). In various embodiments, the transducer module is configured to deliver energy with an off-time of 1-200 ms (e.g., 4, 10, 22, 45, 60, 90, 100, 150 ms and any range therein). In one embodiment, an acoustic energy produced by this acoustic power can be between about 0.01 joule (“J”) to about 10 J or about 2 J to about 5 J. In one embodiment, the acoustic energy is in a range less than about 3 J. In various embodiments, an acoustic energy produced by this acoustic power in a single dose pass can be between about 1-500 J (e.g., 20-310, 70, 100, 120, 140, 150, 160, 200, 250, 300, 350, 400, 450 J and any range therein). In various embodiments, a treatment can involve 1, 2, 3, 4, 5, 10 or more dose passes.


In several embodiments disclosed herein, non-invasive ultrasound is used to achieve one or more of the following effects: tissue heating, tissue pre-heating, a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a fat or adipose and/or cellulite reduction, a sun spot removal, an acne treatment, a pimple reduction. Treatment of the décolletage is provided in several embodiments. In another embodiment the system, device and/or method may be applied in the genital area (e.g., vaginal rejuvenation and/or vaginal tightening, such as for tightening the supportive tissue of the vagina). In several of the embodiments described herein, the procedure is entirely cosmetic and not a medical act. For example, in one embodiment, the methods described herein need not be performed by a doctor, but at a spa or other aesthetic institute. In some embodiments, a system can be used for the non-invasive cosmetic treatment of skin.


In one embodiment, a method of reducing variance in focal gain of a cylindrical ultrasound transducer includes providing a cylindrical transduction element comprising a convex surface and a concave surface, wherein one of the surfaces (e.g., the concave surface) comprises a plurality of electrodes (or e.g., electrical conductor or electrical material), and subsequently applying a current to the electrode, thereby directing ultrasound energy to a linear focal zone at a focal depth. The ultrasound energy produces a reduced variance in focal gain at the linear focal zone. The concave surface can be plated with silver. The convex surface can include an uncoated region and a plurality of coated regions. The plurality of coated regions can include fired silver to form the plurality of electrodes. The features on the convex surface can instead be on the concave surface.


In one embodiment, the reduction of edge noise facilitates the efficient and consistent treatment of tissue, wherein the cylindrical transduction element is configured to apply ultrasonic therapy to a linear tissue thermal treatment zone at a focal depth.


In one embodiment, the reduction of edge noise facilitates the efficient and consistent heating of a material, wherein the material is any one of the group consisting of a compound, an adhesive, and food.


In one embodiment, an ultrasound transduction system for reducing edge noise at a focal line includes a cylindrical transduction element and a power source configured to drive the cylindrical transduction element. The cylindrical transduction element is configured to apply ultrasonic energy to a linear focal zone at a focal depth. The cylindrical transduction element includes a convex surface and a concave surface. The concave surface is plated with an electrical conductor, such as silver. The convex surface includes an uncoated region and one or more coated regions, wherein the one or more coated regions includes silver to form an electrode. The power source is in electric communication with the electrode. The coated regions are configured to reduce variance in focal gain at the linear focal zone at the focal depth.


In one embodiment, an ultrasound transduction system for reducing edge noise at a focal line includes a cylindrical transduction element and a power source configured to drive the cylindrical transduction element. The cylindrical transduction element is configured to apply ultrasonic energy to a linear focal zone at a focal depth. The cylindrical transduction element includes a convex surface and a concave surface. The convex surface plated with silver. The concave surface includes an uncoated region and one or more coated regions, wherein the one or more coated regions includes silver to form an electrode. The power source is in electric communication with the electrode. The coated regions are configured to reduce variance in focal gain at the linear focal zone at the focal depth.


In one embodiment, a coated transducer for reducing variance in focal gain at a focal zone includes a cylindrical transduction element comprising a convex surface and a concave surface. The concave surface is plated with silver. The convex surface includes an uncoated region and a plurality of coated regions. The plurality of coated regions includes silver to form a plurality of electrodes. The cylindrical transduction element is configured to apply ultrasonic therapy to a linear focal zone at a focal depth. The coated regions are configured to reduce variance in focal gain at the linear focal zone.


In one embodiment, a coated transducer for reducing variance in focal gain at a focal zone includes a cylindrical transduction element comprising a convex surface and a concave surface. In one embodiment the convex surface is plated. In one embodiment the concave surface is plated. In one embodiment the concave surface includes an uncoated region and a plurality of coated regions. In one embodiment the convex surface includes an uncoated region and a plurality of coated regions. The plurality of coated regions includes a conductor to form a plurality of electrodes. The cylindrical transduction element is configured to apply ultrasonic therapy to a linear focal zone at a focal depth. The coated regions are configured to reduce variance in focal gain at the linear focal zone.


In one embodiment, an aesthetic treatment system includes a cylindrical transduction element comprising a convex surface and a concave surface. In one embodiment the concave surface is plated with silver to form an electrode. In one embodiment the convex surface is plated with silver to form an electrode. In one embodiment the convex surface includes an uncoated region and one or more coated regions, wherein the one or more coated regions includes silver to form an electrode. In one embodiment the concave surface includes an uncoated region and one or more coated regions, wherein the one or more coated regions includes silver to form an electrode. The cylindrical transduction element is configured to apply ultrasonic therapy to a linear tissue thermal treatment zone at a focal depth. The coated regions are configured to reduce variance in focal gain at the thermal treatment zone. The cylindrical transduction element is housed within an ultrasonic hand-held probe. In one embodiment, the ultrasonic probe includes a housing, the cylindrical transduction element, and a motion mechanism. The ultrasound transducer is movable within the housing. The motion mechanism is attached to the ultrasound transducer and configured to move the ultrasound transducer along a linear path within the housing.


In one embodiment, an aesthetic imaging and treatment system includes an ultrasonic probe that includes a housing, a coated ultrasound transducer, and a motion mechanism. The ultrasound transducer is movable within the housing, the ultrasound transducer including a cylindrical transduction element and an imaging element. The cylindrical transduction element is configured to apply ultrasonic therapy to a linear tissue thermal treatment zone at a focal depth. The cylindrical transduction element has an opening configured for placement of the imaging element. The cylindrical transduction element includes a convex surface and a concave surface. In one embodiment, the entire concave surface is plated with silver. In one embodiment, the entire convex surface is plated with silver. In one embodiment, the convex surface includes an uncoated portion and one or more coated regions. In one embodiment, the concave surface includes an uncoated portion and one or more coated regions. The coated region includes silver to form an electrode. The coated regions are configured to reduce variance in focal gain at the thermal treatment zone. The motion mechanism is attached to the ultrasound transducer and configured to move the ultrasound transducer along a linear path within the housing.


As provided herein, one of the surfaces of the transduction element (either the convex or the concave surface) is fully coated (or at least 90% coated) with an electrically conductive material (including but not limited to silver or another metal or alloy) and the other surface (either the convex or the concave surface) has regions (or a pattern or patchwork) of coated and uncoated portions that are coated with an electrically conductive material (including but not limited to silver or another metal or alloy). This, in several embodiments, can be advantageous because it facilitates uniform heating (e.g., reducing temperature spikes or fluctuations). In some embodiments, both surfaces (convex and concave surfaces) contain regions (or a pattern or patchwork) of coated and uncoated portions. Although convex and concave surfaces are described herein, one or both of these surfaces may be planar in some embodiments. Additionally, convex or concave surfaces as described herein may be multi-faceted (e.g., with multiple convexities and/or concavities) and also include surfaces with a curvature (e.g., one or more angles less than 180 degrees). In several embodiments, the pattern of coated and uncoated regions can include one, two or more coated regions and one, two or more uncoated regions, wherein the coated regions cover at least 60%, 70%, 80%, or 90% of the surfaces. Further, the uncoated region may be considered uncoated to the extent it does not have an electrically conductive coating—the uncoated region may have other types of surface coatings in certain embodiments.


In various embodiments, an ultrasound system includes a transducer with a transduction element (e.g., a flat, round, circular, cylindrical, annular, have rings, concave, convex, contoured or other shaped transduction element).


In various embodiments, an ultrasound transduction system, includes a transduction element (e.g., a cylindrical transduction element), and a power source configured to drive the transduction element, wherein the transduction element is configured to apply ultrasonic energy to a linear focal zone at a focal depth, wherein the transduction element comprises a first surface and a second surface, wherein the first surface comprises an electrically conductive coating, wherein the second surface comprises at least one electrically conductive coated region and at least one uncoated region that is not coated with an electrically conductive coating, wherein the at least one coated region on the second surface comprises a conductive material that forms an electrode when the power source is in electric communication with the at least one coated region, wherein the at least one coated region on the second surface is configured to reduce edge noise at the linear focal zone at the focal depth.


In various embodiments, an ultrasound transduction system includes a cylindrical transduction element and a power source configured to drive the cylindrical transduction element, wherein the cylindrical transduction element is configured to apply ultrasonic energy to a linear focal zone at a focal depth. In some embodiments, the cylindrical transduction element comprises a first surface and a second surface, wherein the first surface comprises a coating, wherein the second surface comprises at least one coated region and at least one uncoated region, wherein the at least one coated region on the second surface comprises a conductive material that forms an electrode when the power source is in electric communication with the at least one coated region, wherein the at least one coated region on the second surface is configured to reduce edge noise at the linear focal zone at the focal depth.


In an embodiment, the uncoated region does not comprise a conductive material. In an embodiment, the conductive material is a metal (e.g., silver, gold, platinum, mercury, and/or copper, or an alloy). In an embodiment, the first surface is a concave surface and the second surface is a convex surface. In an embodiment, the first surface is a convex surface and the second surface is a concave surface. In an embodiment, the cylindrical transduction element is housed within an ultrasonic hand-held probe, wherein the ultrasonic probe includes a housing, the cylindrical transduction element, and a motion mechanism, wherein the ultrasound transducer is movable within the housing, wherein the motion mechanism is attached to the ultrasound transducer and configured to move the ultrasound transducer along a linear path within the housing. In an embodiment, the motion mechanism automatically moves the cylindrical transduction element to heat a treatment area at the focal depth to a temperature in a range between 40-65 degrees Celsius (e.g., 40-45, 40-50, 40-55, 45-60, 45-55, 45-50 degrees Celsius, and any values therein). In an embodiment, the reduction of edge noise facilitates the production of a uniform (e.g., completely uniform, substantially uniform, about uniform) temperature in a treatment area. In an embodiment, the reduction of edge noise facilitates the efficient and consistent treatment of a tissue, wherein the cylindrical transduction element is configured to apply ultrasonic therapy to a treatment zone at the focal depth in the tissue. In an embodiment, the reduction of edge noise reduces a peak such that a variance around the focal depth is reduced by 75-200% (e.g., 75-100, 80-150, 100-150, 95-175%, and any values therein). In an embodiment, the reduction of edge noise reduces a peak such that a variance of an intensity around the focal depth is 5 mm or less (e.g., 4.5, 4, 3.5, 3, 2.5, 2, 1.5, 1, 0.5 or less). In an embodiment, the reduction of edge noise reduces a variance in focal gain in a range of 0.01-10 (e.g., 1-5, 2-8, 0.5-3, and any any values therein). In an embodiment, the power source is configured to drive the cylindrical transduction element to produce a temperature in a range of 42-55 degrees Celsius (e.g., 43-48, 45-53, 45-50 degrees Celsius, and any values therein) in a tissue at the focal depth. In an embodiment, a temperature sensor is located on the housing proximate an acoustic window in the housing configured to measure a temperature at a skin surface. In an embodiment, a system includes one or more imaging elements, wherein the cylindrical transduction element has an opening configured for placement of the one or more imaging elements. In an embodiment, the imaging element is configured to confirm a level of acoustic coupling between the system and a skin surface. In an embodiment, the imaging element is configured to confirm a level of acoustic coupling between the system and a skin surface via any one of the group consisting of: defocused imaging and Voltage Standing Wave Ratio (VSWR). In an embodiment, the imaging element is configured to measure a temperature at a target tissue at the focal depth below a skin surface. In an embodiment, the imaging element is configured to measure a temperature at a target tissue at the focal depth below a skin surface with any one of the group of Acoustic Radiation Force Impulse (ARFI), Shear Wave Elasticity Imaging (SWEI), and measurement of attenuation.


In several embodiments, a method of heating tissue with a cylindrical ultrasound transducer includes providing a cylindrical transduction element comprising a first surface, a second surface, a coated region, and an uncoated region. In some embodiments, the coated region comprises an electrical conductor. In some embodiments, the uncoated region does not comprise an electrical conductor. In some embodiments, the first surface comprises at least one coated region, wherein the second surface comprises the uncoated region and a plurality of coated regions, applying a current to the coated region, thereby directing ultrasound energy to a linear focal zone at a focal depth, wherein the ultrasound energy produces a reduction in focal gain at the linear focal zone.


In several embodiments, a cosmetic method of non-invasively and non-ablatively heating tissue with a heating source (e.g., a cylindrical ultrasound transducer) to heat the region under a subject's skin by between 5-25 degrees Celsius) while causing the temperature at the skin surface to stay the same or increases to a temperature that does not causing discomfort (e.g., by 1-5, 1-10, 1-15 degrees Celsius). This differential aids in the comfort of the subject. The heating, in one embodiment, occurs in increments over a period of 5-120 minutes with a graded or gradual increase in temperature. The heating can be performed by the cylindrical ultrasound transducer systems described herein. Optionally, an ablative or coagulative energy can subsequently be applied by increasing the temperature by another 5-25 degrees Celsius. The initial pre-heating step or bulk heating is advantageous because it allows less energy to be applied to achieve the coagulative/ablative state. In one embodiment, the initial pre-heating step is performed with a heating source other than an ultrasound transducer. For example, radiofrequency, microwave, light, convective, conversion, and/or conductive heat sources can be used instead of or in addition to ultrasound.


In several embodiments, a non-invasive, cosmetic method of heating tissue includes applying a cosmetic heating system to a skin surface, wherein the cosmetic heating system comprises a hand-held probe. In some embodiments, the hand-held probe comprises a housing that encloses an ultrasound transducer configured to heat tissue below the skin surface to a tissue temperature in the range of 40-50 degrees Celsius (e.g., 44-47, 41-49, 45-50 degrees Celsius, and any values therein). In some embodiments, the ultrasound transducer comprises a cylindrical transduction element comprising a first surface, a second surface, a coated region, and an uncoated region, wherein the coated region comprises an electrical conductor, wherein the first surface comprises at least one coated region, wherein the second surface comprises the uncoated region and a plurality of coated regions. In some embodiments, the method includes applying a current to the plurality of coated regions, thereby directing ultrasound energy to a linear focal zone at a focal depth, wherein the ultrasound energy produces a reduction in focal gain at the linear focal zone, thereby heating the tissue at the focal depth in the linear focal zone to the tissue temperature in the range of 40-50 degrees Celsius for a cosmetic treatment duration of less than 1 hour (e.g., 1-55, 10-30, 5-45, 15-35, 20-40 minutes and any values therein), thereby reducing a volume of an adipose tissue in the tissue.


In an embodiment, the reduction of focal gain facilitates the efficient and consistent treatment of tissue, wherein the cylindrical transduction element is configured to apply ultrasonic therapy to a thermal treatment zone at a focal depth. In an embodiment, the reduction of focal gain reduces a peak such that a variance around the focal depth is reduced by 25-100% (e.g., 30-50, 45-75, 50-90%, and any values therein). In an embodiment, the reduction of focal gain reduces a peak such that a variance of an intensity around the focal depth is 5 mm or less (e.g., 1, 2, 3, 4 mm or less). In an embodiment, the reduction of focal gain reduces a variance in focal gain in a range of 0.01-10 (e.g., 0.06, 3, 4.5, 8, or any values therein). In an embodiment, the electrical conductor is a metal. In an embodiment, the first surface is a concave surface and the second surface is a convex surface. In an embodiment, the first surface is a convex surface and the second surface is a concave surface. In an embodiment, the cylindrical transduction element is housed within an ultrasonic hand-held probe, wherein the ultrasonic probe includes a housing, the cylindrical transduction element, and a motion mechanism, wherein the ultrasound transducer is movable within the housing, wherein the motion mechanism is attached to the ultrasound transducer and configured to move the ultrasound transducer along a linear path within the housing. In an embodiment, the motion mechanism automatically moves the cylindrical transduction element to heat a treatment area at the focal depth to a temperature in a range between 40-65 degrees Celsius. In an embodiment, the cylindrical transduction element produces a temperature in a range of 42-55 degrees Celsius in a tissue at the focal depth. In an embodiment, the method also includes imaging tissue with one or more imaging elements, wherein the cylindrical transduction element has an opening configured for placement of the one or more imaging elements. In an embodiment, the method also includes confirming a level of acoustic coupling between the system and a skin surface with an image from the imaging element. In an embodiment, the method also includes confirming a level of acoustic coupling between the system and a skin surface with the imaging element using any one of the group consisting of: defocused imaging and Voltage Standing Wave Ratio (VSWR). In an embodiment, the method also includes measuring a temperature at a target tissue at the focal depth below a skin surface with the imaging element. In an embodiment, the method also includes measuring a temperature with the imaging element at a target tissue at the focal depth below a skin surface with any one of the group of Acoustic Radiation Force Impulse (ARFI), Shear Wave Elasticity Imaging (SWEI), and measurement of attenuation.


The methods summarized above and set forth in further detail below describe certain actions taken by a practitioner; however, it should be understood that they can also include the instruction of those actions by another party. Thus, actions such as “applying an ultrasound energy” include “instructing the application of ultrasound energy.”


Further, areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the embodiments disclosed herein.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way. Embodiments of the present invention will become more fully understood from the detailed description and the accompanying drawings wherein:



FIG. 1 is a schematic illustration of an ultrasound system according to various embodiments of the present invention.



FIG. 2 is a schematic illustration of an ultrasound system coupled to a region of interest according to various embodiments of the present invention.



FIG. 3 illustrates a schematic cross-sectional side view of a cylindrical transducer in a cosmetic treatment system according to an embodiment. Although a cylinder transducer is illustrated here, the transducer need not be cylindrical. In several embodiments, the transducer has one or more shapes or configurations that cause edge effects, such as variance, spikes or other inconsistencies in the delivery of ultrasound. For example, the transducer may have one or more non-linear (e.g., curved) portions.



FIG. 4 illustrates a schematic isometric side view of a sectioned cylindrical transducer of FIG. 3;



FIGS. 5A-5B illustrate a schematic isometric side view of a cylindrical transducer being moved by a motion mechanism in a cosmetic treatment system, wherein the thermal treatment zone (TTZ) sweeps a treatment area, according to an embodiment.



FIG. 6 illustrates a schematic exploded isometric view of a cylindrical transduction element in a cosmetic treatment system according to an embodiment.



FIG. 7 illustrates a schematic isometric view of the cylindrical transduction element of FIG. 6 with a motion mechanism in a cosmetic treatment system according to an embodiment.



FIG. 8 illustrates a schematic isometric view of the cylindrical transduction element with a motion mechanism of FIG. 7 in a probe housing of a cosmetic treatment system according to an embodiment.



FIG. 9 is a schematic partial cut away illustration of a portion of a transducer according to various embodiments of the present invention.



FIG. 10 is a partial cut away side view of an ultrasound system according to various embodiments of the present invention.



FIGS. 11A-11B are schematic illustrations and plots illustrating normalized pressure intensity distributions at a depth of 20 mm according to an embodiment of a transducer comprising a cylindrical transduction element.



FIGS. 12A-12B are schematic illustrations and plots illustrating normalized pressure intensity distributions at a depth of 15 mm according to the embodiment of a transducer comprising a cylindrical transduction element of FIG. 11A-11B.



FIGS. 13A-13B are schematic illustrations and plots illustrating normalized pressure intensity distributions at a depth of 13 mm according to the embodiment of a transducer comprising a cylindrical transduction element of FIG. 11A-11B.



FIGS. 14A-14B are schematic plots illustrating normalized pressure intensity distributions at a depth of 20 mm according to an embodiment of a transducer comprising a cylindrical transduction element.



FIGS. 15A-15B are schematic plots illustrating normalized pressure intensity distributions at a depth of 15 mm according to the embodiment of a transducer comprising a cylindrical transduction element of FIG. 11A-11B.



FIGS. 16A-16B are schematic plots illustrating normalized pressure intensity distributions at a depth of 13 mm according to the embodiment of a transducer comprising a cylindrical transduction element of FIG. 11A-11B.



FIG. 17 is a plot illustrating temperature in porcine muscle over time at different power levels for an embodiment of a transducer comprising a cylindrical transduction element.



FIG. 18 is a photograph of porcine muscle after experimental treatment confirming confirmed line and plane heating with an embodiment of a transducer comprising a cylindrical transduction element.



FIG. 19 is a cross-section cut through the porcine muscle in FIG. 18 showing a linear thermal treatment zone.



FIG. 20 is an orthogonal cross-section cut through the porcine muscle in FIG. 19 showing a planar thermal treatment zone.



FIG. 21 is a cross-section view of a combined imaging and cylindrical therapy transducer according to an embodiment of the present invention.



FIG. 22 is a side view of a combined imaging and cylindrical therapy transducer according to FIG. 21.



FIG. 23 is a plot illustrating harmonic pressure across an azimuth of an embodiment of a cylindrical element with an imaging element.



FIG. 24 is a plot illustrating harmonic pressure across an azimuth of an embodiment of a coated cylindrical element with an imaging element.



FIG. 25 is a plot illustrating harmonic pressure across an azimuth of an embodiment of a cylindrical element with an imaging element compared to an embodiment of a coated cylindrical element with an imaging element.



FIG. 26 is a side view of a coated transducer comprising a cylindrical transduction element with one or more coated regions according to an embodiment of the present invention.



FIG. 27 is a plot illustrating focal gain across the azimuth of two embodiments of cylindrical transduction elements.



FIG. 28 is a schematic plot illustrating normalized pressure intensity distributions at a depth distal to the focal zone by about 5 mm according to an embodiment of a coated transducer comprising a cylindrical transduction element with one or more coated regions.



FIG. 29 is a schematic plot illustrating normalized pressure intensity distributions at a focal depth according to the embodiment of the coated transducer of FIG. 28.



FIG. 30 is a schematic plot illustrating normalized pressure intensity distributions at a depth proximal to the focal depth by about 2 mm according to the embodiment of the coated transducer of FIG. 28.



FIG. 31 is a side view of a coated transducer according to an embodiment of the present invention.



FIG. 32 is a side view of a coated transducer according to an embodiment of the present invention.



FIG. 33 is a side view of a coated transducer according to an embodiment of the present invention.



FIG. 34 is a side view of a coated transducer according to an embodiment of the present invention.



FIG. 35 is a side view of a coated transducer according to an embodiment of the present invention.



FIG. 36 is a side view of a coated transducer according to an embodiment of the present invention.



FIG. 37 is a side view of a coated transducer according to an embodiment of the present invention.



FIG. 38 is a side view of a coated transducer according to an embodiment of the present invention.



FIG. 39 illustrates a charts relating time and temperature to attain various theoretical cell kill fractions according to an embodiment of the present invention.



FIG. 40 illustrates charts relating time and temperature to attain various theoretical cell kill fractions according to an embodiment of the present invention.



FIG. 41 is a table listing isoeffective dosages to theoretically achieve 1% survival fraction in tissue, listing temperature and time, according to an embodiment of the present invention.



FIG. 42 is a chart relating time and temperature for isoeffective doses applied for surviving fraction of cells according to an embodiment of the present invention.



FIG. 43 illustrates simulations of cylindrical transducer output showing linear superposition of multiple pulses according to an embodiment of the present invention.



FIG. 44 is a top view of an apodized transducer according to an embodiment of the present invention.



FIG. 45 illustrates acoustic pressure profiles with an apodized transducer according to the embodiment of FIG. 44.



FIG. 46 is a chart illustrating temperature profiles from an embodiment of an in-vivo porcine model treatment dosage study according to an embodiment of the present invention.



FIG. 47 is a chart for setting for an isoeffective dosage study according to an embodiment of the present invention.



FIG. 48 illustrates cumulative dose relating time, temperature, and pass count of a treatment study according to an embodiment of the present invention.



FIG. 49 is a table with target temperatures and time for a treatment study according to an embodiment of the present invention.



FIG. 50 is a table with various embodiments of transducers treatments settings for an isoeffective thermal dosage treatment study according to an embodiment of the present invention.



FIG. 51 is an image of a thermally overdosed site with a transducer according to an embodiment of the present invention.



FIG. 52 is chart relating time and temperature with target goal temperatures according to an embodiment of the present invention.



FIG. 53 is an isometric side view of a transducer and treatment area according to an embodiment of the present invention.



FIG. 54 is a chart illustrating velocity and position along an axis according to an embodiment of the present invention.



FIG. 55 is a chart illustrating velocity and position along an axis according to an embodiment of the present invention.



FIG. 56 is a chart illustrating amplitude and position along an axis according to an embodiment of the present invention.



FIG. 57 is a chart illustrating velocity and position along an axis according to an embodiment of the present invention.



FIG. 58 is a chart illustrating velocity and position along an axis according to an embodiment of the present invention.



FIG. 59 illustrates a non-overlapping treatment according to an embodiment of the present invention.



FIG. 60 illustrates a partially overlapping and a partially non-overlapping treatment according to an embodiment of the present invention.



FIG. 61 illustrates a treatment area according to various embodiments of the present invention.



FIG. 62 is a chart illustrating intensity and depth according to an embodiment of the present invention.



FIG. 63 is an isometric side view of a transducer and treatment area with multiple thermal treatment zones according to an embodiment of the present invention.



FIG. 64 is a schematic side view of a system comprising a plurality of ultrasound elements on a motion mechanism according to an embodiment of the present invention.





DETAILED DESCRIPTION

The following description sets forth examples of embodiments, and is not intended to limit the present invention or its teachings, applications, or uses thereof. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features. The description of specific examples indicated in various embodiments of the present invention are intended for purposes of illustration only and are not intended to limit the scope of the invention disclosed herein. Moreover, recitation of multiple embodiments having stated features is not intended to exclude other embodiments having additional features or other embodiments incorporating different combinations of the stated features. Further, features in one embodiment (such as in one figure) may be combined with descriptions (and figures) of other embodiments.


In various embodiments, systems and methods for ultrasound treatment of tissue are configured to provide cosmetic treatment. Various embodiments of the present invention address potential challenges posed by administration of ultrasound therapy. In various embodiments, the amount of time and/or energy to create a thermal treatment zone (also referred to herein “TTZ”) for a desired cosmetic and/or therapeutic treatment for a desired clinical approach at a target tissue is reduced. In various embodiments, tissue below or at a skin surface such as epidermis, dermis, platysma, lymph node, nerve, fascia, muscle, fat, and/or superficial muscular aponeurotic system (“SMAS”), are treated non-invasively with ultrasound energy. In various embodiments, tissue below or at a skin surface such as epidermis, dermis, platysma, lymph node, nerve, fascia, muscle, fat, and/or SMAS are not treated. The ultrasound energy can be focused at one or more treatment zones, can be unfocused and/or defocused, and can be applied to a region of interest to achieve a cosmetic and/or therapeutic effect. In various embodiments, systems and/or methods provide non-invasive dermatological treatment to tissue through heating, thermal treatment, coagulation, ablation, and/or tissue tightening (including, for example, hyperthermia, thermal dosimetry, apoptosis, and lysis). In one embodiment, dermal tissue volume is increased. In one embodiment, fat tissue volume is reduced, or decreased.


In various embodiments, target tissue is, but is not limited to, any of skin, eyelids, eye lash, eye brow, caruncula lacrimalis, crow's feet, wrinkles, eye, nose, mouth, tongue, teeth, gums, ears, brain, chest, back, buttocks, legs, arms, hands, arm pits, heart, lungs, ribs, abdomen, stomach, liver, kidneys, uterus, breast, vagina, penis, prostate, testicles, glands, thyroid glands, internal organs, hair, muscle, bone, ligaments, cartilage, fat, fat lobuli, adipose tissue, cellulite, subcutaneous tissue, implanted tissue, an implanted organ, lymphoid, a tumor, a cyst, an abscess, or a portion of a nerve, or any combination thereof. In several embodiments disclosed herein, non-invasive ultrasound is used to achieve one or more of the following effects: a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a fat reduction, a reduction in the appearance of cellulite, a décolletage treatment, a burn treatment, a tattoo removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, sun spot removal, an acne treatment, and a pimple removal. In some embodiments, two, three or more beneficial effects are achieved during the same treatment session, and may be achieved simultaneously.


Various embodiments of the present invention relate to devices or methods of controlling the delivery of energy to tissue. In various embodiments, various forms of energy can include acoustic, ultrasound, light, laser, radio-frequency (RF), microwave, electromagnetic, radiation, thermal, cryogenic, electron beam, photon-based, magnetic, magnetic resonance, and/or other energy forms. Various embodiments of the present invention relate to devices or methods of splitting an ultrasonic energy beam into multiple beams. In various embodiments, devices or methods can be used to alter the delivery of ultrasound acoustic energy in any procedures such as, but not limited to, therapeutic ultrasound, diagnostic ultrasound, non-destructive testing (NDT) using ultrasound, ultrasonic welding, any application that involves coupling mechanical waves to an object, and other procedures. Generally, with therapeutic ultrasound, a tissue effect is achieved by concentrating the acoustic energy using focusing techniques from the aperture. In some instances, high intensity focused ultrasound (HIFU) is used for therapeutic purposes in this manner. In one embodiment, a tissue effect created by application of therapeutic ultrasound at a particular location (e.g., depth, width) to can be referred to as creation of a thermal treatment zone. It is through creation of thermal treatment zones at particular positions that thermal and/or mechanical heating, coagulation, and/or ablation of tissue can occur non-invasively or remotely offset from the skin surface.


System Overview

Various embodiments of ultrasound treatment and/or imaging devices are described in U.S. Publication No. 2011-0112405, which is a national phase publication from International Publication WO 2009/149390, each of which is incorporated in its entirety by reference herein.


With reference to the illustration in FIG. 1, an embodiment of an ultrasound system 20 includes a hand wand 100, module 200, and a controller 300. The hand wand 100 can be coupled to the controller 300 by an interface 130, which may be a wired or wireless interface. The interface 130 can be coupled to the hand wand 100 by a connector 145. The distal end of the interface 130 can be connected to a controller connector on a circuit 345. In one embodiment, the interface 130 can transmit controllable power from the controller 300 to the hand wand 100. In various embodiments, the controller 300 can be configured for operation with the hand wand 100 and the module 200, as well as the overall ultrasound system 20 functionality. In various embodiments, a controller 300 is configured for operation with a hand wand 100 with one or more removable modules 200, 200′, 200″, etc. The controller 300 can include an interactive graphical display 310, which can include a touchscreen monitor and Graphic User Interface (GUI) that allows the user to interact with the ultrasound system 20. As is illustrated, the graphical display 315 includes a touchscreen interface 315. In various embodiments, the display 310 sets and displays the operating conditions, including equipment activation status, treatment parameters, system messages and prompts, and ultrasound images. In various embodiments, the controller 300 can be configured to include, for example, a microprocessor with software and input/output devices, systems and devices for controlling electronic and/or mechanical scanning and/or multiplexing of transducers and/or multiplexing of transducer modules, a system for power delivery, systems for monitoring, systems for sensing the spatial position of the probe and/or transducers and/or multiplexing of transducer modules, and/or systems for handling user input and recording treatment results, among others. In various embodiments, the controller 300 can include a system processor and various analog and/or digital control logic, such as one or more of microcontrollers, microprocessors, field-programmable gate arrays, computer boards, and associated components, including firmware and control software, which may be capable of interfacing with user controls and interfacing circuits as well as input/output circuits and systems for communications, displays, interfacing, storage, documentation, and other useful functions. System software running on the system process may be configured to control all initialization, timing, level setting, monitoring, safety monitoring, and all other ultrasound system functions for accomplishing user-defined treatment objectives. Further, the controller 300 can include various input/output modules, such as switches, buttons, etc., that may also be suitably configured to control operation of the ultrasound system 20. In one embodiment, the controller 300 can include one or more data ports 390. In various embodiments, the data ports 390 can be a USB port, Bluetooth port, IrDA port, parallel port, serial port, and the like. The data ports 390 can be located on the front, side, and/or back of the controller 300, and can be used for accessing storage devices, printing devices, computing devices, etc. The ultrasound system 20 can include a lock 395. In one embodiment, in order to operate the ultrasound system 20, the lock 395 should be unlocked so that a power switch 393 may be activated. In one embodiment, the lock 395 can be connectable to the controller 300 via a data port 390 (e.g., a USB port). The lock 395 could be unlocked by inserting into the data port 390 an access key (e.g., USB access key), a hardware dongle, or the like. The controller 300 can include an emergency stop button 392, which can be readily accessible for emergency deactivation.


As is illustrated in FIG. 1, in one embodiment, the hand wand 100 includes one or more finger activated controllers or switches, such as 150 and 160. In one embodiment, the hand wand 100 can include a removable module 200. In other embodiments, the module 200 may be non-removable. The module 200 can be mechanically coupled to the hand wand 100 using a latch or coupler 140. An interface guide 235 can be used for assisting the coupling of the module 200 to the hand wand 100. The module 200 can include one or more ultrasound transducers 280. In some embodiments, an ultrasound transducer 280 includes one or more ultrasound elements 281. The module 200 can include one or more ultrasound elements 281. The elements 281 can be therapy elements, and/or imaging elements. The hand wand 100 can include imaging-only modules 200, treatment-only modules 200, imaging-and-treatment modules 200, and the like. In one embodiment, the imaging is provided through the hand wand 100. In one embodiment, the control module 300 can be coupled to the hand wand 100 via the interface 130, and the graphic user interface 310 can be configured for controlling the module 200. In one embodiment, the control module 300 can provide power to the hand wand 100. In one embodiment, the hand wand 100 can include a power source. In one embodiment, the switch 150 can be configured for controlling a tissue imaging function and the switch 160 can be configured for controlling a tissue treatment function


In one embodiment, the module 200 can be coupled to the hand wand 100. The module 200 can emit and receive energy, such as ultrasonic energy. The module 200 can be electronically coupled to the hand wand 100 and such coupling may include an interface which is in communication with the controller 300. In one embodiment, the interface guide 235 can be configured to provide electronic communication between the module 200 and the hand wand 100. The module 200 can comprise various probe and/or transducer configurations. For example, the module 200 can be configured for a combined dual-mode imaging/therapy transducer, coupled or co-housed imaging/therapy transducers, separate therapy and imaging probes, and the like. In one embodiment, when the module 200 is inserted into or connected to the hand wand 100, the controller 300 automatically detects it and updates the interactive graphical display 310.


In various embodiments, tissue below or even at a skin surface such as epidermis, dermis, hypodermis, fascia, and SMAS, and/or muscle are treated non-invasively with ultrasound energy. Tissue may also include blood vessels and/or nerves. The ultrasound energy can be focused, unfocused or defocused and applied to a region of interest containing at least one of epidermis, dermis, hypodermis, fascia, and SMAS to achieve a therapeutic effect. FIG. 2 is a schematic illustration of the ultrasound system 20 coupled to a region of interest 10, such as with an acoustic gel. With reference to the illustration in FIG. 2, an embodiment of the ultrasound system 20 includes the hand wand 100, the module 200, and the controller 300. In various embodiments, tissue layers of the region of interest 10 can be at any part of the body of a subject. In various embodiments, the tissue layers are in the head, face, neck and/or body region of the subject. The cross-sectional portion of the tissue of the region of interest 10 includes a skin surface 501, an epidermal layer 502, a dermal layer 503, a fat layer 505, a SMAS 507, and a muscle layer 509. The tissue can also include the hypodermis 504, which can include any tissue below the dermal layer 503. The combination of these layers in total may be known as subcutaneous tissue 510. Also illustrated in FIG. 2 is a treatment zone 525 which is the active treatment area below the surface 501. In one embodiment, the surface 501 can be a surface of the skin of a subject 500. Although an embodiment directed to therapy at a tissue layer may be used herein as an example, the system can be applied to any tissue in the body. In various embodiments, the system and/or methods may be used on muscles (or other tissue) of the face, neck, head, arms, legs, or any other location in the body. In various embodiments, the therapy can be applied to a face, head, neck, submental region, shoulder, arm, back, chest, buttock, abdomen, stomach, waist, flank, leg, thigh, or any other location in or on the body.


Band Therapy Using a Cylindrical Transducer

In various embodiments, a transducer 280 can comprise one or more therapy elements 281 that can have various shapes that correspond to various focal zone geometries. In one embodiment, the transducer 280 comprises a single therapy element 281. In one embodiment, the transducer 280 does not have a plurality of elements. In one embodiment, the transducer 280 does not have an array of elements. In several embodiments, the transducers 280 and/or therapy elements 281 described herein can be flat, round, circular, cylindrical, annular, have rings, concave, convex, contoured, and/or have any shape. In some embodiments, the transducers 280 and/or therapy elements 281 described herein are not flat, round, circular, cylindrical, annular, have rings, concave, convex, and/or contoured. In one embodiment, the transducers 280 and/or therapy elements 281 have a mechanical focus. In one embodiment, the transducers 280 and/or therapy elements 281 do not have a mechanical focus. In one embodiment, the transducers 280 and/or therapy elements 281 have an electrical focus. In one embodiment, the transducers 280 and/or therapy elements 281 do not have an electrical focus. Although a cylinder transducer and/or a cylindrical element is discussed here, the transducer and/or element need not be cylindrical. In several embodiments, the transducer and/or element has one or more shapes or configurations that cause edge effects, such as variance, spikes or other inconsistencies in the delivery of ultrasound. For example, the transducer and/or element may have one or more non-linear (e.g., curved) portions. A transducer may be comprised of one or more individual transducers and/or elements in any combination of focused, planar, or unfocused single-element, multi-element, or array transducers, including 1-D, 2-D, and annular arrays; linear, curvilinear, sector, or spherical arrays; spherically, cylindrically, and/or electronically focused, defocused, and/or lensed sources. In one embodiment, the transducer is not a multi-element transducer. In one embodiment, a transducer 280 can include a spherically shaped bowl with a diameter and one or more concave surfaces (with respective radii or diameters) geometrically focused to a single point TTZ 550 at a focal depth 278 below a tissue surface, such as skin surface 501. In one embodiment, a transducer 280 may be radially symmetrical in three dimensions. For example, in one embodiment, transducer 280 may be a radially symmetrical bowl that is configured to produce a focus point in a single point in space. In some embodiments, the transducer is not spherically shaped. In some embodiments, the element is not spherically shaped.


In various embodiments, increasing the size (e.g. width, depth, area) and/or number of focus zone locations for an ultrasonic procedure can be advantageous because it permits treatment of a patient at varied tissue widths, heights and/or depths even if the focal depth 278 of a transducer 280 is fixed. This can provide synergistic results and maximizing the clinical results of a single treatment session. For example, treatment at larger treatment areas under a single surface region permits a larger overall volume of tissue treatment, which can heat larger tissue volumes, and which can result in enhanced collagen formation and tightening. Additionally, larger treatment areas, such as at different depths, affects different types of tissue, thereby producing different clinical effects that together provide an enhanced overall cosmetic result. For example, superficial treatment may reduce the visibility of wrinkles and deeper treatment may induce skin tightening and/or collagen growth. Likewise, treatment at various locations at the same or different depths can improve a treatment. In various embodiments, a larger treatment area can be accomplished using a transducer with a larger focus zones (e.g., such as a linear focus zone compared to a point focus zone).


In one embodiment, as illustrated in FIGS. 3 and 4, a transducer 280 comprises a cylindrical transduction element 281. In FIG. 4, the view of the cylindrical transduction element 281, which has a concave surface 282 and a convex surface 283, is sectioned to show energy emission from the concave surface to a linear TTZ 550. The cylindrical transduction element 281 extends linearly along its longitudinal axis (X-axis, azimuth) with a curved cross section along a Y-axis (elevation). In one embodiment, the cylindrical surface has a radius at a focal depth (z-axis) at the center of the curvature of the cylindrical surface, such that the TTZ 550 is focused at the center of the radius. For example, in one embodiment, cylindrical transduction element 281 has a concave surface that extends like a cylinder that produces a focus zone that extends along a line, such as a therapy line, such as TTZ 550. The focus zone TTZ 550 extends along the width (along the X-axis, azimuth) of the cylindrical transduction element 281, in a line parallel to the longitudinal axis of the cylindrical transduction element 281. As illustrated in FIG. 3, the TTZ 550 is a line extending in and/or out of the page. In various embodiments of the cylindrical transduction element 281, a concave surface directs ultrasound energy to a linear TTZ 550. Cylindrical transduction element 281 need not be cylindrical; in some embodiments, element 281 is a transduction element having one or more curved or non-linear portions.


In various embodiments, transducers 280 can comprise one or more transduction elements 281. The transduction elements 281 can comprise a piezoelectrically active material, such as lead zirconante titanate (PZT), or any other piezoelectrically active material, such as a piezoelectric ceramic, crystal, plastic, and/or composite materials, as well as lithium niobate, lead titanate, barium titanate, and/or lead metaniobate. In various embodiments, in addition to, or instead of, a piezoelectrically active material, transducers can comprise any other materials configured for generating radiation and/or acoustical energy. In one embodiment, when cylindrical transduction element 281 comprises a piezoelectric ceramic material that is excited by an electrical stimulus, the material may expand or contract. The amount of expansion or contraction is related to boundary conditions in the ceramic as well as the magnitude of the electric field created in the ceramic. In some embodiments of conventional HIFU design, the front surface (e.g. subject side) is coupled to water and the back surface of a transducer 280 is coupled to a low impedance medium which is typically air. In some embodiments, although the ceramic is free to expand at the back interface, essentially no mechanical energy is coupled from the ceramic to the air because of the significant acoustic impedance disparity. This results in this energy at the back of the ceramic reflecting and exiting the front (or subject side) surface. As illustrated in an embodiment in FIGS. 3-5B, the focus is created by forming, casting, and/or machining the ceramic to the correct radius-of-curvature. In one embodiment, a flat transducer material is bent to form a cylindrical transducer. In various embodiments, transducers 280 and/or therapy elements 281 can be configured to operate at different frequencies and treatment depths. Transducer properties can be defined by a focal length (FL), sometimes referred to as a focal depth 278. The focal depth 278 is the distance from the concave cylindrical surface to the focal zone TTZ 550. In various embodiments, the focal depth 278 is the sum of a standoff distance 270 and a treatment depth 279 when the housing of a probe is placed against a skin surface. In one embodiment, the standoff distance 270, or offset distance 270, is the distance between the transducer 280 and a surface of an acoustically transparent member 230 on the housing of a probe. The treatment depth 279 is a tissue depth 279 below a skin surface 501, to a target tissue. In one embodiment, the height of the aperture in the curved dimension is increased or maximized to have a direct effect on overall focal gain, which correlates to the ability to heat tissue. For example, in one embodiment, the height of the aperture in the curved dimension is maximized for a treatment depth of 6 mm or less. In one embodiment, as the aperture is increased (e.g. decreasing the f #), the actual heating zone gets closer to the surface.


In one embodiment, a transducer can be configured to have a focal depth 278 of 6 mm, 2-12 mm, 3-10 mm, 4-8 mm, 5-7 mm. In other embodiments, other suitable values of focal depth 278 can be used, such as focal depth 278 of less than about 15 mm, greater than about 15 mm, 5-25 mm, 10-20 mm, etc. Transducer modules can be configured to apply ultrasonic energy at different target tissue depths. In one embodiment, a therapy of 20 mm or less (e.g., 0.1 mm-20 mm, 5-17 mm, 10-15 mm). In one embodiment, a devices that goes to 6 mm or less has a radius of curvature (ROC) of 13.6 mm, with a ratio of treatment depth to ROC at approximately 44%. In one embodiment, the height of the element is 22 mm. In one embodiment, using an aspect ratio for a treatment depth of 20 mm, the aperture height would be 74.5 mm with a ROC of 45 mm.


As illustrated in FIGS. 5A-5B, 7, 9 and 10 in several embodiments, a system may comprise a movement mechanism 285 configured to move a transducer 280 comprising a cylindrical transduction element 281 in one, two, three or more directions. In one embodiment, a motion mechanism 285 can move in a linear direction, one or both ways, denoted by the arrow marked 290 in order move a TTZ 550 through tissue. In various embodiments, the motion mechanism 285 can move the transducer in one, two, and/or three linear dimensions and/or one, two, and/or three rotational dimensions. In one embodiment, a motion mechanism 285 can move in up to six degrees of freedom. Movement of the TTZ 550 can be with the transducer continuously delivering energy to create a treatment area 552. In one embodiment, a movement mechanism 285 can automatically move the cylindrical transduction element 281 across the surface of a treatment area so that the TTZ 550 can form a treatment area 552.


As indicated in FIGS. 6, 7, and 8, a cylindrical transduction element 281 can be connected to a motion mechanism 285 and placed inside a module 200 or a probe. In various embodiments, a movement mechanism 285, or a motion mechanism 285, moves the transducer 280 and/or treatment element 281 such that the corresponding TTZ 550 moves to treat a larger treatment area 552. In various embodiments, a movement mechanism 285 is configured to move a transducer within a module or a probe. In one embodiment, a transducer is held by a transducer holder. In one embodiment, the transducer holder includes a sleeve which is moved along motion constraining bearings, such as linear bearings, namely, a bar (or shaft) to ensure a repeatable linear movement of the transducer. In one embodiment, sleeve is a spline bushing which prevents rotation about a spline shaft, but any guide to maintain the path of motion is appropriate. In one embodiment, the transducer holder is driven by a motion mechanism 285, which may be located in a hand wand or in a module, or in a probe. In one embodiment, a motion mechanism 285 includes any one or more of a scotch yoke, a movement member, and a magnetic coupling. In one embodiment, the magnetic coupling helps move the transducer. One benefit of a motion mechanism 285 is that it provides for a more efficient, accurate and precise use of an ultrasound transducer, for imaging and/or therapy purposes. One advantage this type of motion mechanism has over conventional fixed arrays of multiple transducers fixed in space in a housing is that the fixed arrays are a fixed distance apart. By placing transducer on a track (e.g., such as a linear track) under controller control, embodiments of the system and device provide for adaptability and flexibility in addition to efficiency, accuracy and precision. Real time and near real time adjustments can be made to imaging and treatment positioning along the controlled motion by the motion mechanism 285. In addition to the ability to select nearly any resolution based on the incremental adjustments made possible by the motion mechanism 285, adjustments can be made if imaging detects abnormalities or conditions meriting a change in treatment spacing and targeting. In one embodiment, one or more sensors may be included in the module. In one embodiment, one or more sensors may be included in the module to ensure that a mechanical coupling between the movement member and the transducer holder is indeed coupled. In one embodiment, an encoder may be positioned on top of the transducer holder and a sensor may be located in a portion of the module, or vice versa (swapped). In various embodiments the sensor is a magnetic sensor, such as a giant magnetoresistive effect (GMR) or Hall Effect sensor, and the encoder a magnet, collection of magnets, or multi-pole magnetic strip. The sensor may be positioned as a transducer module home position. In one embodiment, the sensor is a contact pressure sensor. In one embodiment, the sensor is a contact pressure sensor on a surface of the device to sense the position of the device or the transducer on the patient. In various embodiments, the sensor can be used to map the position of the device or a component in the device in one, two, or three dimensions. In one embodiment the sensor is configured to sense the position, angle, tilt, orientation, placement, elevation, or other relationship between the device (or a component therein) and the patient. In one embodiment, the sensor comprises an optical sensor. In one embodiment, the sensor comprises a roller ball sensor. In one embodiment, the sensor is configured to map a position in one, two and/or three dimensions to compute a distance between areas or lines of treatment on the skin or tissue on a patient.


In various embodiments, a motion mechanism 285 can be any mechanism that may be found to be useful for movement of the transducer. In one embodiment, the motion mechanism 285 comprises a stepper motor. In one embodiment, the motion mechanism 285 comprises a worm gear. In various embodiments, the motion mechanism 285 is located in a module 200. In various embodiments, the motion mechanism 285 is located in the hand wand 100. In various embodiments, the motion mechanism 285 can provide for linear, rotational, multi-dimensional motion or actuation, and the motion can include any collection of points, lines and/or orientations in space. Various embodiments for motion can be used in accordance with several embodiments, including but not limited to rectilinear, circular, elliptical, arc-like, spiral, a collection of one or more points in space, or any other 1-D, 2-D, or 3-D positional and attitudinal motional embodiments. The speed of the motion mechanism 285 may be fixed or may be adjustably controlled by a user. One embodiment, a speed of the motion mechanism 285 for an image sequence may be different than that for a treatment sequence. In one embodiment, the speed of the motion mechanism 285 is controllable by a controller.


In some embodiments, the energy transmitted from the transducer is turned on and off, forming a non-continuous treatment area 552 such that the TTZ 550 moves with a treatment spacing between individual TTZ 550 positions. For example, treatment spacing can be about 1 mm, 1.5 mm, 2 mm, 5 mm, 10 mm, etc. In several embodiments, a probe can further comprise a movement mechanism configured to direct ultrasonic treatment in a sequence so that TTZs 550 are formed in linear or substantially linear sequences. For example, a transducer module can be configured to form TTZs 550 along a first linear sequence and a second linear sequence separated by treatment spacing between about 2 mm and 3 mm from the first linear sequence. In one embodiment, a user can manually move the transducer modules across the surface of a treatment area so that adjacent linear sequences of TTZs are created.


In one embodiment, a TTZ can be swept from a first position to a second position. In one embodiment, a TTZ can be swept from the first position to the second position repeatedly. In one embodiment, a TTZ can be swept from the first position, to the second position, and back to the first position. In one embodiment, a TTZ can be swept from the first position, to the second position, and back to the first position, and repeated. In one embodiment, multiple sequences of TTZs can be created in a treatment region. For example, TTZs can be formed along a first linear sequence and a second linear sequence separated by a treatment distance from the first linear sequence.


In one embodiment, TTZs can be created in a linear or substantially linear zone or sequence, with each individual TTZ separated from neighboring TTZs by a treatment spacing, such as shown in FIG. 9. FIG. 9 illustrates an embodiment of an ultrasound system 20 with a transducer 280 configured to treat tissue at a focal depth 278. In one embodiment, the focal depth 278 is a distance between the transducer 280 and the target tissue for treatment. In one embodiment, a focal depth 278 is fixed for a given transducer 280. In one embodiment, a focal depth 278 is variable for a given transducer 280. As illustrated in FIG. 9, in various embodiments, delivery of emitted energy 50 at a suitable focal depth 278, distribution, timing, and energy level is provided by the module 200 through controlled operation by the control system 300 to achieve the desired therapeutic effect of controlled thermal injury to treat at least one of the epidermis layer 502, dermis layer 503, fat layer 505, the SMAS layer 507, the muscle layer 509, and/or the hypodermis 504. FIG. 9 illustrates one embodiment of a depth that corresponds to a depth for treating muscle. In various embodiments, the depth can correspond to any tissue, tissue layer, skin, epidermis, dermis, hypodermis, fat, SMAS, muscle, blood vessel, nerve, or other tissue. During operation, the module 200 and/or the transducer 280 can also be mechanically and/or electronically scanned along the surface 501 to treat an extended area. Before, during, and after the delivery of ultrasound energy 50 to at least one of the epidermis layer 502, dermis layer 503, hypodermis 504, fat layer 505, the SMAS layer 507 and/or the muscle layer 509, monitoring of the treatment area and surrounding structures can be provided to plan and assess the results and/or provide feedback to the controller 300 and the user via a graphical interface 310. In one embodiment, an ultrasound system 20 generates ultrasound energy which is directed to and focused below the surface 501. This controlled and focused ultrasound energy 50 creates the thermal treatment zone (TTZ) 550. In one embodiment, the TTZ 550 is a line. In one embodiment, the TTZ 550 is a point. In one embodiment, the TTZ 550 is a two dimensional region or plane. In one embodiment, the TTZ 550 is a volume. In one embodiment, the ultrasound energy 50 heat treats the subcutaneous tissue 510. In various embodiments, the emitted energy 50 targets the tissue below the surface 501 which heats, cuts, ablates, coagulates, micro-ablates, manipulates, and/or causes a lesion in the tissue portion 10 below the surface 501 at a specified focal depth 278. In one embodiment, during the treatment sequence, the transducer 280 moves in a direction denoted by the arrow marked 290 to move the TTZ 550.


In various embodiments, an active TTZ can be moved (continuously, or non-continuously) through tissue to form a treatment area 552, such as shown in FIG. 10. With reference to the illustration in FIG. 10, the module 200 can include a transducer 280 which can emit energy through an acoustically transparent member 230. In various embodiments, a depth may refer to the focal depth 278. In one embodiment, the transducer 280 can have an offset distance 270, which is the distance between the transducer 280 and a surface of the acoustically transparent member 230. In one embodiment, the focal depth 278 of a transducer 280 is a fixed distance from the transducer. In one embodiment, a transducer 280 may have a fixed offset distance 270 from the transducer to the acoustically transparent member 230. In one embodiment, an acoustically transparent member 230 is configured at a position on the module 200 or the ultrasound system 20 for contacting the skin surface 501. In various embodiments, the focal depth 278 exceeds the offset distance 270 by an amount to correspond to treatment at a target area located at a tissue depth 279 below a skin surface 501. In various embodiments, when the ultrasound system 20 placed in physical contact with the skin surface 501, the tissue depth 279 is a distance between the acoustically transparent member 230 and the target area, measured as the distance from the portion of the hand wand 100 or module 200 surface that contacts skin (with or without an acoustic coupling gel, medium, etc.) and the depth in tissue from that skin surface contact point to the target area. In one embodiment, the focal depth 278 can correspond to the sum of an offset distance 270 (as measured to the surface of the acoustically transparent member 230 in contact with a coupling medium and/or skin 501) in addition to a tissue depth 279 under the skin surface 501 to the target region. In various embodiments, the acoustically transparent member 230 is not used.


In various embodiments, therapeutic treatment advantageously can be delivered at a faster rate and with improved accuracy by using a transducer configured to deliver energy to an expanded TTZ. This in turn can reduce treatment time and decrease pain experienced by a subject. In several embodiments, treatment time is reduced by creating a TTZ and sweeping the TTZ through an area or volume for treatment from a single transducer. In some embodiments, it is desirable to reduce treatment time and corresponding risk of pain and/or discomfort experienced by a patient. Therapy time can be reduced by treating larger areas in a given time by forming larger a TTZ 550, multiple TTZs simultaneously, nearly simultaneously, or sequentially, and/or moving the TTZ 550 to form larger treatment areas 552. In one embodiment, a reduction in treatment time is reduced by treating a given area or volume with multiple TTZs reduces the overall amount of movement for a device. In some embodiments, overall treatment time can be reduced 10%, 20%, 25%, 30%, 35%, 40%, 4%, 50%, 55%, 60%, 65%, 70%, 75%, 80% or more by through creation of continuous treatment areas 552 or discrete, segmented treatment areas 552 from a sequence of individual TTZs. In various embodiments, therapy time can be reduced by 10-25%, 30-50%, 40-80%, 50-90%, or approximately 40%, 50%, 60%, 70%, and/or 80%. Although treatment of a subject at different locations in one session may be advantageous in some embodiments, sequential treatment over time may be beneficial in other embodiments. For example, a subject may be treated under the same surface region at one depth in time one, a second depth in time two, etc. In various embodiments, the time can be on the order of nanoseconds, microseconds, milliseconds, seconds, minutes, hours, days, weeks, months, or other time periods. For example, in some embodiments, the transducer module is configured to deliver energy with an on-time of 10 ms-100 minutes (e.g., 100 ms, 1 second, 1-60 seconds, 1 minute-10 minutes, 1 minute-60 minutes, and any range therein). The new collagen produced by the first treatment may be more sensitive to subsequent treatments, which may be desired for some indications. Alternatively, multiple depth treatment under the same surface region in a single session may be advantageous because treatment at one depth may synergistically enhance or supplement treatment at another depth (due to, for example, enhanced blood flow, stimulation of growth factors, hormonal stimulation, etc.). In several embodiments, different transducer modules provide treatment at different depths. In one embodiment, a single transducer module can be adjusted or controlled for varied depths.


In one embodiment, an aesthetic treatment system includes an ultrasonic probe with a removable module that includes an ultrasound transducer configured to apply ultrasonic therapy to tissue at in a focal zone. In one embodiment, the focal zone is a point. In one embodiment, the focal zone is a line. In one embodiment, the focal zone is a two dimensional region or plane. In one embodiment, the focal zone is a volume. In various embodiments, a focal zone can be moved to sweep a volume between a first position and a second position. In various embodiments, one or more a focal zone locations are positioned in a substantially linear sequence within a cosmetic treatment zone. In one embodiment, a first set of locations is positioned within a first cosmetic treatment zone and a second set of locations is positioned within a second cosmetic treatment zone, the first zone being different from the second zone. In one embodiment, the first cosmetic treatment zone includes a substantially linear sequence of the first set of locations and the second cosmetic treatment zone includes a substantially linear sequence of the second set of locations.


In one embodiment, the transducer module 280 can provide an acoustic power in a range of about 1 W or less, between about 1 W to about 100 W, and more than about 100 W. In one embodiment, the transducer module 280 can provide an acoustic power at a frequency of about 1 MHz or less, between about 1 MHz to about 10 MHz, and more than about 10 MHz. In one embodiment, the module 200 has a focal depth 278 for a treatment at a tissue depth 279 of about 4.5 mm below the skin surface 501. Some non-limiting embodiments of transducers 280 or modules 200 can be configured for delivering ultrasonic energy at a tissue depth of 3 mm, 4.5 mm, 6 mm, less than 3 mm, between 3 mm and 4.5 mm, between 4.5 mm and 6 mm, more than more than 4.5 mm, more than 6 mm, etc., and anywhere in the ranges of 0.1-3 mm, 0.1-4.5 mm, 0.1-6 mm, 0.1-25 mm, 0.1-100 mm, etc. and any depths therein. In one embodiment, the ultrasound system 20 is provided with two or more removable transducer modules 280. In one embodiment, a transducer 280 can apply treatment at a tissue depth (e.g., about 6 mm). For example, a first transducer module can apply treatment at a first tissue depth (e.g., about 4.5 mm) and a second transducer module can apply treatment at a second tissue depth (e.g., of about 3 mm), and a third transducer module can apply treatment at a third tissue depth (e.g., of about 1.5-2 mm). In one embodiment, at least some or all transducer modules can be configured to apply treatment at substantially same depths. In various embodiments, the tissue depth can be 1.5 mm, 2 mm, 3 mm, 4.5 mm, 7 mm, 10 mm, 12 mm, 14 mm, 15 mm, 17 mm, 18 mm, and/or 20 mm, or any range therein (including but not limited to 12-20 mm, or higher).


In one embodiment, a transducer module permits a treatment sequence at a fixed depth at or below the skin surface. In one embodiment, a transducer module permits a treatment sequence at a range of depths below the skin surface. In several embodiments, the transducer module comprises a movement mechanism configured to move the ultrasonic treatment at the TTZ. In one embodiment, the linear sequence of individual TTZs has a treatment spacing in a range from about 0.01 mm to about 25 mm. For example, the spacing can be 1.1 mm or less, 1.5 mm or more, between about 1.1 mm and about 1.5 mm, etc. In one embodiment, the individual TTZs are discrete. In one embodiment, the individual TTZs are overlapping. In one embodiment, the movement mechanism is configured to be programmed to provide variable spacing between the individual TTZs. In several embodiments, a transducer module comprises a movement mechanism configured to direct ultrasonic treatment in a sequence so that TTZs are formed in linear or substantially linear sequences separated by a treatment distance. For example, a transducer module can be configured to form TTZs along a first linear sequence and a second linear sequence separated by a treatment distance from the first linear sequence. In one embodiment, treatment distance between adjacent linear sequences of individual TTZs is in a range from about 0.01 mm to about 25 mm. For example, the treatment distance can be 2 mm or less, 3 mm or more, between about 2 mm and about 3 mm, etc. In several embodiments, a transducer module can comprise one or more movement mechanisms configured to direct ultrasonic treatment in a sequence so that TTZs are formed in linear or substantially linear sequences of individual thermal lesions separated by a treatment distance from other linear sequences. In one embodiment, the treatment distance separating linear or substantially linear TTZs sequences is the same or substantially the same. In one embodiment, the treatment distance separating linear or substantially linear TTZs sequences is different or substantially different for various adjacent pairs of linear TTZs sequences.


Band Therapy Using a Cylindrical Transducer with an Imaging Element

In various embodiments, including an imaging transducer or imaging element with a cylindrical transduction element 281 can be used to improve safety and/or efficacy of a treatment. In one embodiment, an imaging element can be used to confirm acceptable coupling between the ultrasound therapy transducer and/or identify target tissue below the skin surface. As illustrated at FIGS. 21 and 22, in various embodiments, a transducer 280 comprises a cylindrical transduction element 281 and one or more imaging elements 284. The imaging element 284 is configured to image a region of interest at any suitable tissue depths 279. In one embodiment, an imaging element is centered on a therapy element. In one embodiment, an imaging element is axis symmetric with a therapy element. In one embodiment, an imaging element is not axis symmetric with a therapy element. In one embodiment, the imaging axis may be pointed in a completely different direction and translated from the therapy beam axis. In one embodiment, the number of imaging elements in the aperture may be greater than one. For example, in one embodiment, the imaging elements may be located on each corner of a cylinder pointed straight ahead and/or in the middle. In one embodiment, a combined imaging and cylindrical therapy transducer 280 comprises a cylindrical transduction element 281 and one or more imaging elements 284. In one embodiment, a combined imaging and cylindrical therapy transducer 280 comprises a cylindrical transduction element 281 with an opening 285 through which one imaging element 284 is configured to operate. In one embodiment, the opening 284 is a circular hole through the wall thickness of the cylindrical transduction element 281 at the center of the X-axis (azimuth) and Y-axis (elevation) of the cylindrical transduction element 281. In one embodiment, the imaging element 284 is circular in cross-section and fits in the opening 284.


In one embodiment, first and second removable transducer modules are provided. In one embodiment, each of the first and second transducer modules are configured for both ultrasonic imaging and ultrasonic treatment. In one embodiment, a transducer module is configured for treatment only. In one embodiment, an imaging transducer may be attached to a handle of a probe or a hand wand. The first and second transducer modules are configured for interchangeable coupling to a hand wand. The first transducer module is configured to apply ultrasonic therapy to a first treatment area, while the second transducer module is configured to apply ultrasonic therapy to a second treatment area. The second treatment area can be at a different depth, width, height, position, and/or orientation than the first treatment area.


Band Therapy Using a Coated Transducer Configured to Reduce Edge Effects

In various embodiments, treatment advantageously can be delivered with improved accuracy. Further, efficiency, comfort and safety can be increased if variance is reduced in a treatment area. This in turn can reduce treatment time and decrease pain experienced by a subject. In some instances, non-uniform heating at a focal zone can result from geometric aspects of a transducer. Inconsistencies in pressure or temperature profiles can be attributed to edge effects, which can cause spikes in pressure or temperature around the focal zone of a transducer. Thus, with edge effects, instead of achieving a uniform line segment of heating, the segment is broken into many isolated hot spots which may fail to meet an objective a more uniform heat distribution at the focal zone. This phenomenon is further exacerbated at high heating rates which relate to elevated acoustic pressures. This is due to the generation of nonlinear harmonics created especially in areas of high pressure. Energy at harmonic frequencies is more readily absorbed than energy at the fundamental frequency. In one embodiment, energy absorption is governed by the following equation:

H=2*α*f*p2/Z  (1)

where alpha is the absorption constant in nepers per MHz cm, f is frequency in MHz, p is the pressure at that frequency, Z is the acoustic impedance of tissue, and H is the heating rate in Watt/cm3. In one embodiment, the amount of harmonics produced is proportional to the intensity. FIG. 23 shows the normalized harmonic pressure at the focal depth across an azimuth of one embodiment of a cylindrical element with an imaging element. FIG. 23 shows the rapid swings in harmonic pressure at this depth which causes hot spots and non-uniform heating.


In one embodiment, a way to combat these hot and cold spots that are the result from edge effects is to reduce the average intensity at the focal depth and/or increase the heating time. These two processes can reduce the amount on nonlinear heating as well as allow for the conduction of the heat away from the hot spot into the cold areas. The thermal conduction of tissue effectively acts as a low pass filter to the acoustic intensity distribution as the heating time increases. Although these methods may reduce the non-uniform heating issues, they can also reduce the localization of the heating zone and can also increase the treatment time. Therefore, three performance areas of ultrasound therapy, e.g. efficacy, comfort, and treatment time, are adversely affected. In one embodiment, a more normalized pressure profile results in more consistent therapy, such that temperature increase through heating, coagulation, and/or ablation is more predictable and can better ensure the desired or targeted temperature profiles are obtained in the TTZ 550. In various embodiments, apodization of edge effects is accomplished with transducers coated in specific regions.


In one embodiment, use of coatings, or shadings, can help circumvents these issues such that efficacy, comfort and treatment time are optimized. FIG. 24 shows a harmonic pressure distribution from an embodiment of a shaded aperture, or a coated element, that has an imaging transducer. In one embodiment, the coated element is a coated cylindrical element with an imaging element. The variation in harmonic pressure across the treatment line varies by less the 1.5 dB with the highest intensity near the center and sharp edges at −10 mm and +10 mm. In one embodiment, the coated element design does not require the conduction of heat away from hot spots since the tissue along the focused line has a uniform temperature increase during the absorption. Therefore, the amount of intensity at the focus can be increased to localize the heating zone and reduce treatment time.


In one embodiment, the coated element is a shaded therapeutic cylinder. In one embodiment, a coated element also has benefits outside the intended heating zone. In one embodiment, the boundary between the heated and unheated junction is vastly improved when compared to an uncoated element. FIG. 25 shows a comparison of harmonic pressure across an azimuth of an embodiment of a cylindrical element 280 compared to an embodiment of a coated cylindrical element 600 at this boundary. FIG. 25 shows that, in one embodiment, the possible harmonic pressures are approximately 20 dB lower for the shaded aperture with a coated cylindrical element 600, which helps confine the heating zone and maximize comfort. In one embodiment, areas of plating or non-plating are initially used to define regions where the piezoelectric material will be poled or not poled. Regions where there is plating define regions that will be poled or actually mechanically vibrating. In one embodiment, a cylindrical element 280 can be uncoated. Further, an uncoated region may be considered uncoated to the extent it does not have an electrically conductive coating—the uncoated region may have other types of surface coatings in certain embodiments. In one embodiment, a cylindrical element is completely coated. For example, in one embodiment, a first transducer 280 includes a first coated region 287 that fully plates the concave surface 282 of the cylindrical transduction element and a second coated region 287 that fully plates the convex surface 283 of the cylindrical transduction element. A second coated transducer 600 includes a first coated region 287 that fully plates the concave surface 282 of the cylindrical transduction element and at least a second coated region 287 that partially plates the convex surface 283 of the cylindrical transduction element. As shown in FIG. 27, the fully coated first transducer 281 demonstrates the spikes in focal gain due to edge effects.


Referring to FIGS. 11A-13B, in one embodiment, transducer treatment profiles were plotted based on theoretical and experimental performance with a cylindrical transduction element 281 that was coated on the entire concave surface 282 and the entire convex surface 283 with a coating. In one embodiment, the coating is a metal. In one embodiment, the coating is a conductive metal. In one embodiment, the coating is an electrical conductor. In various embodiments, the coating is plated with any one or more of silver, gold, platinum, mercury, copper or other materials. In one embodiment, a coating comprises fired silver. In one embodiment, a surface is fully coated. In one embodiment, a surface is fully non-coated. In one embodiment, a surface is partially coated and partially non-coated. The normalized pressure is proportional to a thermal heating measure at the specified depth. The discontinuous spikes (pointed regions at the top of the plots) plots indicate pressure and/or temperature peaks that occur as a result of the geometric edge effects of the geometry of the cylindrical transduction element 281. In various embodiments, the spikes, or peaks, can be reduced with a coated transducer 600 comprising one or more coated regions 287. In one embodiment, the coated region 287 only partially coats a transducer surface. In one embodiment, the coated region 287 does not completely coat a transducer surface.


As shown in FIG. 26, in various embodiments, a coated transducer 600 comprises a cylindrical transduction element 281 with one or more coated regions 287. In various embodiments, the coated region 287 coats part, a portion, and/or all of a surface of the transducer 600. In various embodiments, the coated region 287 coats part or all of a surface of the cylindrical transduction element 281. In various embodiments, a coated transducer 600 comprises one or more imaging elements 284. In some embodiments, one, two, three or more imaging element(s) are placed in ‘unused regions’ of coatings/shading for the purpose of imaging.


The edge effects from the geometry of one embodiment of a combined imaging and cylindrical therapy transducer comprising a cylindrical transduction element 281 with an opening 285 through it are more pronounced due to the additional edges of the opening 285. FIG. 27 is a plot illustrating focal gain across the azimuth of two embodiments of combined imaging and cylindrical therapy transducers with different coatings. A first transducer 280 includes a first coated region 287 that fully plates the concave surface 282 of the cylindrical transduction element and a second coated region 287 that fully plates the convex surface 283 of the cylindrical transduction element. Both the first and the second coated regions 287 of the first transducer 280 are plated with silver. A second coated transducer 600 includes a first coated region 287 that fully plates the concave surface 282 of the cylindrical transduction element and at least a second coated region 287 that partially plates the convex surface 283 of the cylindrical transduction element. Both the first and the second coated regions 287 of the second transducer 600 are plated with silver. As shown in FIG. 27, the fully coated first transducer 281 demonstrates the spikes in focal gain due to edge effects. The partially coated second transducer 600 has a more consistent, normalized performance output with the spikes substantially reduced and/or removed. In various embodiments, a coated transducer 600 reduces the peaks such that variance around the focal depth is reduced by 1-50%, 25-100%, 75-200%, and/or 10-20%, 20-40% and 60-80%. In various embodiments, a coated transducer 600 reduces the peaks such that variance of the intensity in a location around the focal depth is +/−0.01-5 mm, 5 mm or less, 4 mm or less, 3 mm or less, 2 mm or less, 1 mm or less, 0.5 mm or less, 0.25 mm or less, 0.1 mm or less, 0.05 mm or less, or any range therein. In various embodiments, a coated transducer 600 reduces the peaks in focal gain such that variance in focal gain is 0.01-0.1, 0.01-1.0, 0.01-5, 0.01-10, 1-10, 1-5, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 or less, or any range therein.


As described in Example 2 below, FIGS. 28, 29, and 30 illustrate the embodiment of the performance of the partially coated second transducer 600 in FIG. 27 at different depths. In the illustrated embodiment, the partially coated second transducer 600 has a focal depth of 15 mm. In various embodiments, the focal depth can be at any depth. In various embodiments, the focal depth is at 7, 8, 9, 10, 12, 13, 13.6, 14, 15, 16, 17, 18, or any depth therein.


In one embodiment, the coated region 287 is plating. In one embodiment, the coated region 287 is a conductive material. In one embodiment, the coated region 287 is a semi-conductive material. In one embodiment, the coated region 287 is an insulator material. In various embodiments, the coated region 287 is silver, copper, gold, platinum, nickel, chrome, and/or any conductive material that will adhere with the surface of a piezoelectric material, or any combinations thereof. In one embodiment, the coated region 287 is silver plating.


In various embodiments, a cylindrical transduction element 281 has an azimuth (x-axis) dimension in the range of 1-50 mm, 5-40 mm, 10-20 mm, 15-25 mm, and/or 15 mm, 16 mm, 17 mm, 18 mm, 19 mm, 20 mm, 21 mm, 22 mm, 23 mm, 24 mm, and 25 mm. In various embodiments, a cylindrical transduction element 281 has an elevation (y-axis) dimension in the range of 1-50 mm, 5-40 mm, 10-20 mm, 15-25 mm, and/or 15 mm, 16 mm, 17 mm, 18 mm, 19 mm, 20 mm, 21 mm, 22 mm, 23 mm, 24 mm, and 25 mm. In various embodiments, a cylindrical transduction element 281 has focal depth (z-axis) dimension in the range of 1-50 mm, 5-40 mm, 10-20 mm, 15-25 mm, 12-17 mm, 13-15 mm, and/or 10 mm, 11 mm, 12 mm, 13 mm, 13.6 mm, 14 mm, 15 mm, 16 mm, 17 mm, 18 mm, 19 mm, 20 mm, 21 mm, 22 mm, 23 mm, 24 mm, and 25 mm. In some non-limiting embodiments transducers can be configured for a treatment zone at a tissue depth below a skin surface of 1.5 mm, 3 mm, 4.5 mm, 6 mm, less than 3 mm, between 1.5 mm and 3 mm, between 1.5 mm and 4.5 mm, more than more than 4.5 mm, more than 6 mm, and anywhere in the ranges of 0.1 mm-3 mm, 0.1 mm-4.5 mm, 3 mm-7 mm, 3 mm-9 mm, 0.1 mm-25 mm, 0.1 mm-100 mm, and any depths therein.


In various embodiments, a coated transducer 600 comprising a cylindrical transduction element 281 has one, two, three, four, or more coated regions 287. In one embodiment, a coated region 287 covers an entire surface of the element. In one embodiment, a coated region 287 covers a portion of a surface of the element. In various embodiments, the coated region 287 includes a conductive plating. In one embodiment, a coated region 287 includes a silver plating to form an electrode. When an electrical signal is applied to an electrode at a coated region 287, the coated region 287 expands and/or contracts the corresponding portion of the cylindrical transduction element 281. In various embodiments, the coated region 287 has a shape or border that is a complete or a partial point, edge, line, curve, radius, circle, oval, ellipse, parabola, star, triangle, square, rectangle, pentagon, polygon, a combination of shapes, or other shape. In various embodiments, a coated transducer 600 can also comprise an opening 285.


In one embodiment illustrated at FIG. 31, a partially coated transducer 600 comprising a cylindrical transduction element 281 has one, two, three, four, or more coated regions 287 of one or more shapes on a convex 283 surface. In one embodiment, a partially coated transducer 600 comprising a cylindrical transduction element 281 has one, two, three, four, or more coated regions 287 of one or more shapes on a concave 282 surface. In various embodiments, the coated region 287 has a lateral edge 293, a side edge 290, and a medial edge 291. The various edges can be straight, curved, and/or have a radius, and the sizes can be modified to result in various performance profiles.


In one embodiment illustrated at FIG. 32, a partially coated transducer 600 comprising a cylindrical transduction element 281 has one, two, three, four, or more circular, round, curved and/or elliptical coated regions 287. In various embodiments, the coated region 287 has a lateral edge 293, a side edge 290, and a medial edge 291. The various edges can be straight, curved, and/or have a radius, and the sizes can be modified to result in various performance profiles.


In one embodiment illustrated at FIG. 33, a partially coated transducer 600 comprising a cylindrical transduction element 281 has one, two, three, four, or more triangular coated regions 287. In various embodiments, the coated region 287 has a lateral edge 293, a side edge 290, and a medial edge 291. The various edges can be straight, curved, and/or have a radius, and the sizes can be modified to result in various performance profiles.


In one embodiment illustrated at FIG. 34, a partially coated transducer 600 comprising a cylindrical transduction element 281 has one, two or more square, rectangular, and/or polygon coated regions 287. In various embodiments, the coated region 287 has a lateral edge 293, a side edge 290, and a medial edge 291. The various edges and/or sizes can be modified to result in various performance profiles.


In one embodiment illustrated at FIG. 35, a partially coated transducer 600 comprising a cylindrical transduction element 281 has one, two or more combined and/or mixed shape coated regions 287. In one embodiment illustrated at FIG. 35, a partially coated transducer 600 is a combined imaging and cylindrical therapy transducer comprising a cylindrical transduction element 281 with an opening 285 for an imaging element 284. In one embodiment, the coated transducer 600 includes a concave surface 282 that is fully plated with fired silver, and has a convex surface 283 with two coated regions 287 that are plated with fired silver to form electrodes. When an electrical signal is applied to an electrode at a coated region 287, the coated region 287 expands and/or contracts the corresponding portion of the cylindrical transduction element 281. In some embodiments, the shape may be applied before or after the poling process, as vibration will occur where the electrode is located. In various embodiments, an electrode could be defined before or after poling. In various embodiments, a coating pattern may be on the concave or convex surface. In one embodiment, the coated region 287 has a lateral edge 293, a first and second side edge 290, and a medial edge 291 with a central edge 297. The various edges can be straight, curved, and/or have a radius. Various dimensions 294, 295, 296, and the various edges can be modified to result in various performance profiles. In one embodiment, the medial edge 291 along the curved dimension (elevation) is a portion of an ellipse. In one embodiment, the medial edge 291 along the curved dimension (elevation) is a portion of a parabola. In one embodiment, the first and second side edge 290 along the uncurved dimension (azimuth) is a portion of a parabola. In one embodiment, the first and second side edge 290 along the uncurved dimension (azimuth) is a portion of an ellipse.


In one embodiment illustrated at FIG. 36, a partially coated transducer 600 comprising a cylindrical transduction element 281 has one, two, three, four, or more diamond, rhombus, and/or other polygon coated regions 287. In various embodiments, the coated region 287 has a lateral edge 293, a side edge 290, and a medial edge 291. The various edges and/or sizes can be modified to result in various performance profiles.


In one embodiment illustrated at FIGS. 37 and 38, a partially coated transducer 600 comprising a cylindrical transduction element 281 has one, two, three, four or more coated regions 287. In various embodiments, the coated region 287 has a lateral edge 293, a side edge 290, and a medial edge 291. In some embodiments, the coated region 287 is configured to position one, two, three, four, or more (e.g., multiple) thermal treatment zones through poling, phasic poling, biphasic poling, and/or multi-phasic poling. Various embodiments of ultrasound treatment and/or imaging devices with of multiple treatment zones enabled through poling, phasic poling, biphasic poling, and/or multi-phasic poling are described in U.S. application Ser. No. 14/193,234 filed on Feb. 28, 2014, which is incorporated in its entirety by reference herein.


Non-Therapeutic Uses of a Coated Cylindrical Transducer with Reduced Edge Effects

In various embodiments, a coated cylindrical transducer 600 comprising one or more coated regions 287 is configured for non-therapeutic use.


In one embodiment, a coated cylindrical transducer 600 comprising one or more coated regions 287 is configured for materials processing. In one embodiment, a coated cylindrical transducer 600 comprising one or more coated regions 287 is configured for ultrasonic impact treatment for the enhancement of properties of a material, such as a metal, compound, polymer, adhesive, liquid, slurry, industrial material.


In one embodiment, a coated cylindrical transducer 600 comprising one or more coated regions 287 is configured for material heating. In various embodiments, the cylindrical transducer 600 is configured for cooking, heating, and/or warming materials, food, adhesives or other products.


Heating Tissue and Quantification of Thermal Dose for Ultrasound Band Therapy

As described above, in various embodiments, systems and/or methods provide non-invasive dermatological treatment to tissue through heating, hyperthermia, thermal dosimetry, thermal treatment, coagulation, ablation, apoptosis, lysis, increasing tissue volume, decreasing or reducing tissue volume, and/or tissue tightening. In one embodiment, dermal tissue volume is increased. In one embodiment, fat tissue volume is reduced, or decreased.


In various embodiments, band treatment involves metrics that quantify the magnitude of adipocyte death with heat. For example, in one embodiment, thermal dosage in a heat treatment relates time-temperature curves back to a single reference temperature, e.g. T=43 degrees Celsius, using the Arrhenius equation. In one embodiment, a band treatment is configured under a relationship that that for every 1 degree Celsius increase in tissue temperature above in a range above body temperature, the rate of cell death doubles. A theoretical survival fraction can then be determined by comparing the thermal dose to empirical data from the literature.


In various embodiments, band treatment provides improved thermal heating and treatment of tissue compared to diathermy or general bulk heating techniques. In general, normal body temperatures tend to range between about 33-37 degrees Celsius. In various embodiments, as tissue is heated in a range of about 37-43 degrees Celsius, physiological hyperthermia can take place, and exposure to this temperature range on order of, for example, a few hours, can result in increased normal tissue metabolism and/or increased normal tissue blood flow, and in some embodiments, accelerated normal tissue repair. As temperature in the tissues reaches the higher ˜43 degrees Celsius range and/or the tissue is subject to the temperature for longer periods of time (e.g., 2 hours, 3, hours or more) the tissue can experience acute tissue metabolism and/or acute tissue blood flow, and in some embodiments, accelerated normal tissue repair. In one embodiment, heating (e.g., bulk heating) of tissue to a range of about 42-55 degrees Celsius is performed. In various embodiments, heating of tissue to about 43-50 degrees Celsius can be considered adjuvant synergistic hyperthermia, and exposure to this temperature range on order of, for example, a few minutes, can result in immediate or delayed cell death, apoptosis, decreased tumor metabolism, increased tissue oxygen levels, increased tissue damage, increased sensitivity to therapy, vascular status, DNA damage, cell reproductive failure, and/or cell destruction. In various embodiments, heating of tissue to about 50-100 degrees Celsius can be considered surgical hyperthermia, and exposure to this temperature range on order of, for example, a few seconds or fractions of a second, can result in coagulation, ablation, vaporization, and immediate cell destruction.


In some embodiments of the invention, the temperature of the tissue treatment site (e.g., the adipocytes) is elevated to 38-43 degrees Celsius, and according to one embodiment, thereby increasing tissue metabolism and perfusion and accelerating tissue repair mechanisms. In other embodiments, the temperature of the tissue treatment site (e.g., the adipocytes) is elevated to 43-50 degrees Celsius, which in one embodiment can increase cell damage starts and result in immediate cell death, particularly when the temperature remains elevated on the order of several minutes to an hour (or longer). In yet other embodiments, the temperature of the tissue treatment site (e.g., the adipocytes) is elevated to above 50 degrees Celsius, which in one embodiment results in protein coagulation on the order of seconds and less and can lead to immediate cell death and ablation. In various embodiments, the temperature of the tissue treatment site is heated to 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 70, 75, 80, 90, or 100 degrees Celsius, and/or any range therein. In various embodiments, a treatment area has uniform temperature, a variance of 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 12%, 15%, 20%, 25%, 30%, 40%, 50% or more. In various embodiments, a treatment area has a variance of +/−0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25 degrees Celsius or more.


In several embodiments, the invention comprises elevating the temperature of the tissue treatment site (e.g., the adipocytes) is elevated to 38-50 degrees Celsius for a time period between 1-120 minutes, and then optionally increasing the temperature in one, two, three, four five or more increments by 10-50%. As an example using three increments, the target temperatures may be increased as follows: (i) elevate temperature to about 40-42 degrees Celsius for 10-30 minutes, (ii) then optionally increase temperature by about 20% to elevate temperature to about 48-51 degrees Celsius for 1-10 minutes, and (iii) then optionally increase by about 10-50% for a shorter time frame. As another example, the target temperature may be increased as follows: (i) elevate temperature to about 50 degrees Celsius for 30 seconds to 5 minutes (e.g., about 1 minute) to destroy over 90%, 95% or 99% of target (e.g., adipose) cells, with an optional pre-heating step of raising the temperature to 38-49 degrees Celsius for a period of 10-120 minutes prior to the elevation to 50 degrees Celsius. As yet another example, in some embodiments, a non-invasive, cosmetic method of heating tissue, comprises applying a cosmetic heating system to a skin surface, wherein the cosmetic heating system comprises a hand-held probe, wherein the hand-held probe comprises a housing that encloses an ultrasound transducer configured to heat tissue below the skin surface to a tissue temperature in the range of 40-50 degrees Celsius, wherein the ultrasound transducer comprises a cylindrical transduction element comprising a first surface, a second surface, a coated region, and an uncoated region, wherein the coated region comprises an electrical conductor, wherein the first surface comprises at least one coated region, wherein the second surface comprises the uncoated region and a plurality of coated regions, applying a current to the plurality of coated regions, thereby directing ultrasound energy to a linear focal zone at a focal depth, wherein the ultrasound energy produces a reduction in focal gain at the linear focal zone, thereby heating the tissue at the focal depth in the linear focal zone to the tissue temperature in the range of 40-50 degrees Celsius for a cosmetic treatment duration of less than 1 hour, thereby reducing a volume of an adipose tissue in the tissue.


In one embodiment, a band therapy system uses a relationship between cell death and time-temperature dosages as quantified using the Arrhenius equation. The Arrhenius equation shows an exponential relationship exists between cell death and exposure time and temperature. Above a certain break temperature, the increase in the rate of cell killing with temperature is relatively constant. Time-temperature relationships to achieve isoeffective dose in several types of tissue appears to be conserved both in vitro and in-vivo across multiple cell types.


In some embodiments, clinical situations involve ramp-up of temperatures, cooling, and fluctuations when approaching and maintaining a steady state temperature. In various embodiments, different thermal profiles can produce the same thermal dose. In order to estimate the thermal dosage from a time-varying thermal profile, a temperature curve is discretized into small time steps, and the average temperature during each time step is calculated. The thermal dosage is then calculated as an equivalent exposure time at the break temperature (43 degrees Celsius) by integrating these temperatures according to equation (2):












t
43

=




t
=
0


t











final





R

(

43
-

T
_


)



Δ





t









t
43



:






Equivalent





time





at





43

°






C
.





T
_




:






Average





temperature





during





Δ





t







R
=

{




0.5
,

T


43

°






C
.









0.25
,

T
<

43

°






C
.







}






(
2
)







Equation (2) suggests that the increase in the rate of killing with temperature is relatively constant. In some embodiments, a 1 degree Celsius increase above a break point results in the rate of cell death doubles. FIGS. 39 and 40 illustrate theoretical cell death fractions over time depending on tissue temperature, with higher theoretical cell killing fractions at higher temperatures and/or higher periods of time. The higher a kill fraction (such as shown with kill fractions of 99%, 80%, 50%, 40%, and 20%) the higher a temperature and/or a time is used in an embodiment of a treatment.


Once a thermal dose has been calculated, a dose survival response can be estimated from empirical data. In one embodiment, an isoeffective dose of 43 degrees Celsius for 100 minutes theoretically yields a cell survival fraction of 1%. Based on the Arrhenius relationship, a similar surviving fraction can be obtained with an isoeffective dose of 44 degrees Celsius for 50 minutes, or 25 minutes at 45 degrees Celsius, etc. as tabulated in the table listing isoeffective dosages to theoretically achieve 1% survival fraction at FIG. 41, according to embodiments of the present invention.


In various embodiment, simulations of various embodiments of band therapy using a cylindrical transducer source conditions linked to the relationship between tissue and heat equation showed that successive treatment pulses obey linear superposition, which allows for simplification of the heat transfer physics so that the heating rate may be described as a temperature rise per time (degrees Celsius/sec), and as a temperature rise per pass (degrees Celsius/button push).


Heating Tissue Via Ultrasound Band Therapy

In various embodiments, a band therapy system is configured for treating the tissue. For example, in one embodiment, a band treatment is configured for treatment of supraplatysmal submental fat. In one embodiment, a treatment of fat includes selectively causing thermal heat shock followed by apoptosis to a fat layer, at a depth of about 2.5-6.0 mm, without causing any major skin surface effects. In one embodiment, the treatment involves exposing fat to a bulk heating treatment with a temperature of 42-55 degrees Celsius for 1-5 minutes without exceeding 41 degrees Celsius on the skin surface, with physiologic/biologic effect (e.g. one or more of coagulation, apoptosis, fat cell lysis, etc.). In various embodiments, treatment with a band transducer treats tissue with isoeffective doses, as shown in a graph representing various levels of theoretical cell kill fractions in FIG. 42.


In various embodiments, a theoretical review of the effect of stacking multiple treatment pulses using the Khokhlov-Zabolotskaya-Kuznetsov (KZK) Equation was implemented with cylindrical source acoustic geometry, linked to a bioheat equation (e.g., in one embodiment, using the Arrhenius equation). FIG. 43 shows the results of a KZK simulation of cylindrical transducer output showing linear superposition of multiple pulses; approximately the same temperatures are reached when treating with 3 pulses of 0.45 J or 1 pulse of 1.35 J (3*0.45 J). The results of a theoretical experiment with one embodiment of a band therapy system as shown in FIG. 43, suggest non-linear acoustics are not a major contributor to the final temperature for the energies, and suggests that body tissue acts as a linear time-invariant system, which allows for simplification of the heat transfer physics, and the heating and cooling rates to be described in relatively few parameters. In various embodiments, a therapy system with a hand wand 100 includes a module 200 with one or more ultrasound transducers 280. In some embodiments, an ultrasound transducer 280 includes one or more cylindrical ultrasound elements 281, as shown in FIGS. 5A-8. The cylindrical transducer element 281 is configured for bulk heating treatments with its linear focus along an axis, resulting in a continuous line that can be moved with an automated motion mechanism to treat a rectangular plane. In one embodiment, lines of treatment are deposited perpendicular to the direction of motor movement in a single direction. A single “pass” of treatment creates a number of therapy lines equal to {Length}/{Spacing}.


In various embodiments, various cylindrical geometries were tested from the first build (4.5 MHz-12 mm width at 4.5 mm and 6.0 mm depths); however, acoustic tank testing showed higher acoustic pressures (and therefore heating rates) at the each edge of the therapy line. In one embodiment, a ceramic transducer was apodized to produce a flat thermal profile, as shown in FIGS. 44 and 45. In various embodiments, different cylindrical geometries based on two operating frequencies, two treatment widths, and two treatment depths were built: (1) 3.5 MHz-22 mm Width-4.5 mm Depth; (2) 3.5 MHz-22 mm Width-6.0 mm Depth; (3) 4.5 MHz-22 mm Width-4.5 mm Depth; (4) 4.5 MHz-22 mm Width-6.0 mm Depth; (5) 3.5 MHz-12 mm Width-4.5 mm Depth; (6) 4.5 MHz-12 mm Width-4.5 mm Depth; (7) 3.5 MHz-12 mm Width-6.0 mm Depth; and (8) 4.5 MHz-12 mm Width-6.0 mm Depth. In various embodiments, a tissue temperature measurement system included one or more of including IR thermography, temperature strips, and resistance temperature detectors (RTDs), and thermocouples. IR thermography can be used to read skin surface temperatures. Temperature strips are able to provide peak temperature reached. RTD sheaths have a large thermal mass and may have a slow response time. In various embodiments, thermocouples have a response time less than a second, which is helpful for measuring the heating and cooling phase of a single treatment pass. Thermocouples also have the advantage of being small enough that they can be positioned through a large bore needle to the desired tissue depth. In one embodiment, a particular isoeffective dose is attached via the heating phase followed by a maintenance phase in which the system or an operator pulses treatment at an interval to sustain a steady state temperature. A parameter of interest during this phase is the average pulse period needed to maintain the steady state temperature.


Body Contouring Via Ultrasound Band Therapy

In various embodiments, a band therapy system is configured for body contouring. In one embodiment, body contouring treatment involves thermal heat shock concurrent with, and/or followed by apoptosis. In one embodiment, body contouring treatment involves exposing fat to 42-55 degrees Celsius for 1-5 minutes to induce delayed apoptosis. In one embodiment, body contouring treatment involves exposing fat at a focus depth of at least 13 mm below the skin surface.


Temperature and Dose Control

In various embodiments, one or more sensors may be included in the module 200 or system 20 to measure a temperature. In one embodiment, methods of temperature and/or dose control are provided. In one embodiment, temperature is measured to control dosage of energy provided for a tissue treatment. In various embodiments, a temperature sensor is used to measure a tissue temperature to increase, decrease, and/or maintain the application of energy to the tissue in order to reach a target temperature or target temperature range. In some embodiments, a temperature sensor is used for safety, for example, to reduce or cease energy application if a threshold or maximum target temperature is reached. In one embodiment, a cooling device or system can be employed to cool a tissue temperature if a certain temperature is reached. In some embodiments, a temperature sensor is used to modulate an energy dose, for example, via modulation, termination of amplitude, power, frequency, pulse, speed, or other factors.


In one embodiment, a temperature sensor is used to measure a skin surface temperature. In one embodiment, a temperature sensor may be positioned on top of the transducer holder and a sensor may be located in a portion of the module, or vice versa (swapped). In various embodiments, a temperature sensor is positioned on a system or module housing, such as in one embodiment, near or on an acoustic window, such as an acoustically transparent member 230. In one embodiment, one or more temperature sensors are positioned around or proximate an acoustically transparent member 230. In one embodiment, one or more temperature sensors are positioned in or on an acoustically transparent member 230. In one embodiment, a temperature sensor measure from a skin surface can be used to calculate a temperature in a tissue at the focus depth of the energy application. In various embodiments, a target tissue temperature can be calculated and/or correlated to the depth in tissue, type of tissue (e.g. epidermis, dermis, fat, etc.) and relative thickness of tissue between the skin surface and the focus depth. In some embodiments, a temperature sensor provides a temperature measurement for a signal to a control system. In some embodiments, a temperature sensor provides a temperature measurement for visual and/or auditory feedback to a system operator, such as a text, color, flash, sound, beep, alert, alarm, or other sensory indicator of a temperature state.


In some embodiments, imaging can be used to control energy dose. In one embodiment, a thermal lens effect can be used to account for speckle shift and/or feature shift to indicate a temperature of a tissue at a target location, such as at a focus depth in tissue below the skin surface. In one embodiment, Acoustic Radiation Force Impulse (ARFI) imaging is used to calculate a tissue temperature. In one embodiment, Shear Wave Elasticity Imaging (SWEI) is used to calculate a tissue temperature. In one embodiment, attenuation is used to calculate a tissue temperature.


In various embodiments, a variable dose delivery technique is used to attain a target temperature in a tissue and maintain that target temperature. The body temperature at a depth in tissue surrounds a thermal treatment zone (TTZ). In one embodiment, to overcome the body temperature, a treatment focuses energy at the TTZ at a first rate to bring the tissue temperature in the TTZ to a target temperature. Once that target temperature is attained, the second rate can be reduced or stopped to maintain the tissue at the target temperature.


In some embodiments, energy is focused at a depth or position in tissue at the TTZ, such that the temperature in the focal zone is increased. However, at the edges (e.g., ends, top, bottom, sides, etc.) of the focal zone, a boundary condition at body temperature can result in temperature fluctuations at the boundaries of the treatment area 552. In various embodiments, movement of the TTZ 550 can be with the transducer delivering energy to create a treatment area 552. In one embodiment, a movement mechanism 285 can automatically move the cylindrical transduction element 281 across the surface of a treatment area so that the TTZ 550 can form a treatment area 552. In FIG. 53, the treatment area 552 is surrounded at the edges by body temperature, or approximately body temperature. In some embodiments, the temperature in the treatment area 552 along the edges/boundary are lower than the desired, target temperature.


In various embodiments, mechanical velocity modulation is used to attain a specific thermal distribution in the treatment area 552. In one embodiment, in order to attain a more uniform temperature in the treatment area 552, the applied temperature at the edges/boundaries is increased to counteract the surrounding body temperature difference. FIG. 54 illustrates an embodiment of mechanical velocity modulation in which the velocity, or speed of the automatic motion of the motion mechanism moving the transducer along direction 290 (along the elevation direction), is varied to provide a more uniform temperature in the treatment area 552 by slowing near the boundaries, resulting in increased temperature at the boundaries (start and stop position, such as along a 25 mm travel distance, in one embodiment). The increased velocity near the middle delivers a lower temperature than the decreased velocity.


In various embodiments, amplitude modulation is used to attain a specific thermal distribution in the treatment area 552. In one embodiment, in order to attain a more uniform temperature in the treatment area 552, the applied temperature at the edges/boundaries is increased to counteract the surrounding body temperature difference. FIG. 55 illustrates an embodiment of amplitude modulation in which the amplitude (correlates to power) of the energy delivered by the transducer as the automatic motion of the motion mechanism moves along direction 290 (along the elevation direction), is varied to provide a more uniform temperature in the treatment area 552 by increasing amplitude near the boundaries, resulting in increased temperature at the boundaries (start and stop position, such as along a 25 mm travel distance, in one embodiment). The lower amplitude near the middle delivers a lower temperature than the higher amplitude near the boundaries.


In various embodiments, aperture apodization is used to attain a specific thermal distribution in the treatment area 552. In one embodiment, aperture apodization along the non-focused dimension (such as along TTZ 550 and/or the azimuth direction) is used in order to attain a more uniform temperature in the treatment area 552. The applied temperature at the end points, along the edges/boundaries is increased to counteract the surrounding body temperature difference. FIG. 56 illustrates an embodiment of aperture apodization in which the amplitude of the energy delivered by the transducer along the TTZ 550 is varied to provide a more uniform temperature in the treatment area 552 by increasing amplitude near the end points near the boundaries, resulting in increased temperature at the boundaries (with L as a length of the focused line TTZ 550, L/2 from center is the end point). The lower amplitude near the middle delivers a lower temperature than the higher amplitude near the boundaries. In various embodiments, a temperature profile can be generated along the TTZ with embodiments of a coated transduction element 600, such as illustrated in FIGS. 31-38.


In various embodiments, pulsing and/or duty cycles are controlled to attain a specific thermal distribution in the treatment area 552. At FIG. 57, in various embodiments, treatment patterns can have a consistent or a constant pulsing or duty cycle. At FIG. 58, in various embodiment, treatment patterns can have variable pulsing or a variable duty cycle, with variations in any of peak amplitude, spacing of application, duration of application. As shown in FIG. 58, the application of energy is longer and covers more area near the boundary of the treatment area 552, while the internal region has less power application for a corresponding lower temperature application in the internal region.


In various embodiments, treatment patterns are used to attain a specific thermal distribution in the treatment area 552. In some embodiments the TTZ 550 has a dimension (e.g., width, height, thickness, etc.). In some embodiments, the pulsed application of TTZ 550 is non-overlapping, as shown in FIG. 59. In some embodiments, the pulsed application of TTZ 550 is overlapping, as is shown near a boundary in FIG. 60, where the amount of overlapping can be constant or vary. As shown in the embodiment in FIG. 60, the amount of overlap varies and includes a non-overlapping portion. In various embodiments, a cross hatching pattern is used, wherein the system hand piece is rotated about 90 degrees, or orthogonally, and the motion mechanism is operated in one or more additional passes over a target tissue region in an orthogonal direction to a prior treatment pass.


In various embodiments, a specific thermal distribution in the treatment area 552 comprises treatment with a tissue temperature of 37-50 degrees Celsius for a duration of minutes to hours to cause a targeted percentage of cell death (such as fat cell death) which a relationship can be determined via Arrhenius equation, such as is shown on the left side of FIG. 61. In various embodiments, a specific thermal distribution in the treatment area 552 comprises treatment with a tissue temperature of over 60 degrees Celsius for a duration of seconds to fractions of a second (or near instantaneous) coagulation, ablation, and/or cell death (such as fat cell death) at the elevated temperature, such as shown on the right side of FIG. 62. In various embodiments, a treatment can be either one, or both in sequence and/or simultaneous treatments.


In some embodiments, one, two, three, four, or more of mechanical velocity modulation, amplitude modulation, aperture apodization, pulsing duty cycles, and/or treatments at different temperatures can be used to achieve a desired temperature profile across the treatment area 552. In various embodiments, one or more of mechanical velocity modulation, amplitude modulation, aperture apodization, pulsing duty cycles, and/or treatments at different temperatures is used to create a temperature profile, wherein the temperature profile can include areas for increased, decreased, and/or uniform temperatures. In some embodiments, one, two, or more types of treatment are applied in one, two, or three dimensions (along any of the azimuth, elevation, and/or depth directions) and is configured for treatment in any of one, two, or three dimensions to create a one, two, or three dimensional temperature profile.


In some embodiments, a compound lens system produces various peak intensities and different depths. In various embodiments, a mechanical and/or electronic focus lens can be used in any one or more of the azimuth, elevation, and/or depth directions. As illustrated in FIG. 62 and FIG. 63, a compound lens system can create two or more focal lines 550 and 550a.


In various embodiments, an ultrasound system 20 comprises a motion mechanism 285 configured for moving a plurality of ultrasound transducers 280 and/or a plurality of ultrasound elements 281. In some embodiments, such as illustrated in an embodiment at FIG. 64, the motion mechanism 285 is configured to minimize heat fluctuation in treated tissue and reduce treatment time by presenting the plurality of elements 281 on a conveyor system, such as with a belt and/or pulley system that can move the plurality of elements 281 at a velocity v. In various embodiments, velocity can be constant, variable, zero (e.g., stopped), reversible (e.g., forward and backward, left and right, first direction and second direction, etc.) and/or have values in the range 0-100 RPM, 1 RPM-50 RPM, or other velocities. In various embodiments, the velocity is any value 1-1,000 cm/second (e.g., 10, 20, 50, 100, 200, 500, 1000 cm/sec, and any other values therein). In various embodiments, the motion mechanism 285 moves one, two, three, four, five, six, seven, eight, or more ultrasound elements 281. In various embodiments, ultrasound elements 281 are connected, or spaced at a distance of 0.01-10 cm apart, (e.g., 0.1, 0.5, 1, 2, 5 cm and any values therein), such that one, two, or more ultrasound elements 281 are configured to treat a treatment area.


In some embodiments, imaging is used to confirm the quality of the acoustic coupling between a treatment device and the skin. In one embodiment, clarity of an ultrasound image along a treatment area, line, or point is used to determine the extent to which a device is acoustically coupled to a skin surface. In one embodiment, defocused imaging and/or Voltage Standing Wave Ratio (VSWR) from backscatter is used to check acoustic coupling for a treatment.


In some embodiments, a treatment is automated. In one embodiment, a treatment is set up by acoustically coupling a system to a skin surface, and the movement mechanism and treatment is automated to function. In various embodiments, the system is coupled to a skin surface via suction. In various embodiments, a system operator couples the system to a skin surface, activates the system, and can leave the system to automatically perform a treatment, or a portion of a treatment. In one embodiment, a system uses suction and/or vacuum pressure to hold a probe or portion of the system to a skin surface, allowing the system user to initiate treatment and leave the system to automatically perform a treatment or a portion of a treatment for a period of time. In some embodiments, a treatment system includes a TENS stimulation device to reduce pain at a skin treatment site.


Theoretical and Experimental Treatments with a Cylindrical Transducer

The following examples illustrate various non-limiting embodiments.


EXAMPLE 1

The following example is intended to be a non-limiting embodiment of the invention.


As illustrated at FIGS. 11A-20, it was experimentally verified that an embodiment of a transducer 280 comprising a cylindrical transduction element 281, which was applied to a simulated target tissue, an artificial tissue, and to porcine tissue sample, formed localized, linear thermal treatment zone (TTZ 550) in a targeted focal area 552. In the experiment, the single cylindrical transduction element 281 was constructed with a radius and focal depth of 15 mm. The size of the cylindrical transduction element 281 was 20 mm (azimuth) by 17 mm (elevation). Additional focal gain could be achieved with a larger aperture. Depth is limited by frequency and focal gain, and was set to 6 mm below a simulated tissue surface.


In FIGS. 11A-13B, treatment profiles were plotted based on theoretical and experimental performance with a cylindrical transduction element 281. The normalized pressure is proportional to a thermal heating measure at the specified depth. The spikes (pointed regions at the top of the plots) plots indicate pressure peaks that occur as a result of the geometric edge effects of the geometry of the cylindrical transduction element 281. The spikes are visible in both the theoretical and the experimental performance results. The software simulated experiments reflect the theoretical performance of the 15 mm cylindrical transduction element 281 in FIGS. 11A, 12A, 13A, 14A, 15A, and 16A. The physical experiments in simulated tissue were performed and measured, with results in FIGS. 11B, 12B, 13B, 14B, 15B and 16B.


In FIGS. 11A-11B and 14A-14B, the depth is 20 mm, where the normalized pressure peaks at a value of roughly 0.15. As shown in FIG. 14A-14B, the normalized pressure is not visible. In FIGS. 12A-12B and 15A-15B, the depth is the designed, optimal 15 mm, where the normalized pressure peaks at a value of roughly 0.8. As shown in FIG. 15A-15B, the normalized pressure is clearly visible, with peak normalized pressures at approximately 0.9-1.0. The size of the cylindrical transduction element 281 was 20 mm (azimuth) by 17 mm (elevation). The size of the TTZ 550 at a depth of 15 mm was about 0.5 mm thick (along azimuth) by 17 mm width (along elevation). In FIGS. 13A-13B and 16A-16B, the depth is 13 mm, where the normalized pressure peaks at a value of roughly 0.25. As shown in FIG. 16A-16B, the normalized pressure is barely visible. As shown through both the theoretical and experimental data, the normalized pressure corresponding to the TTZ 550 for a 15 mm focal depth cylindrical transduction element 281 is at the 15 mm depth, with a linear TTZ 550.


As illustrated at FIGS. 17-20, it was experimentally verified that the embodiment of a transducer 280 comprising a cylindrical transduction element 281, which was applied to a porcine tissue sample (muscle tissue), formed localized, linear thermal treatment zone (TTZ 550) in a targeted focal area 552. In the experiment, an embodiment of a transducer 280 comprising a cylindrical transduction element 281 was passed over the porcine muscle tissue with three passes in 20 seconds, operating at 4.5 MHz and a tissue depth of 6 mm. As shown in FIG. 17, the three passes (shown with the three spikes in temperature) increased the temperature of the porcine muscle. Two power levels are shown. The 40 W porcine muscle started at 30 degrees Celsius, and over the course of 20 seconds (between the 20 and 40 second marks) of heating through three passes of the cylindrical transduction element 281 over the target tissue region, the temperature spiked to a maximum of about 55 degrees Celsius, then gradually cooled to about 32 degrees Celsius 100 seconds after the start of the treatment. The 60 W porcine muscle started at about 24 degrees Celsius, and over the course of 20 seconds (between the 40 and 60 second marks) of heating through three passes of the cylindrical transduction element 281 over the target tissue region, the temperature spiked to a maximum of about 59 degrees Celsius, then gradually cooled to about 40 degrees Celsius about 80 seconds after the start of the treatment.



FIG. 18 is a photograph of the porcine muscle after treatment confirming line and plane heating. In one embodiment, the coagulation was dependent on time-off between lines, time-off between passes, and number of passes. Slower temperature rise than thermal coagulation points. FIG. 19 is a cross-section cut through the porcine muscle in FIG. 18 showing a linear thermal treatment zone. FIG. 20 is an orthogonal cross-section cut through the porcine muscle in FIG. 19 showing a planar thermal treatment zone.


EXAMPLE 2

The following example is intended to be a non-limiting embodiment of the invention.


As illustrated at FIGS. 28-30, it was experimentally verified that an embodiment of a partially coated transducer 600 comprising a cylindrical transduction element 281, which was applied to a simulated target tissue, formed a localized, linear thermal treatment zone (TTZ 550) in a targeted focal area 552. The partially coated transducer 600 includes a first coated region 287 that fully plates the concave surface 282 of the cylindrical transduction element and at least a second coated region 287 that partially plates the convex surface 283 of the cylindrical transduction element. Both the first and the second coated regions 287 of the partially coated transducer 600 are plated with silver. In the experiment, the single cylindrical transduction element 281 was constructed with a radius and focal depth of 15 mm. The size of the cylindrical transduction element 281 was 20 mm (azimuth) by 17 mm (elevation). The cylindrical transduction element 281 had an opening 285 in the center of 4 mm in diameter.


In FIGS. 28, 29 and 30, treatment profiles were plotted based on theoretical performance with a cylindrical transduction element 281. The theoretical performance is proportional the thermal heating at the specified depth. The software simulated experiment reflects the theoretical performance of the 15 mm partially coated transducer 600, showing a consistent linear thermal treatment zone 550 at the 15 mm depth.


EXAMPLE 3

The following example is intended to be a non-limiting embodiment of the invention.


Multiple in-vivo porcine studies and multiple cadaver studies were conducted to evaluate various embodiments of hardware to perform bulk heating treatments. Early studies focused on specifying and improving the instrumentation necessary to measure subdermal temperatures. In some embodiments, insulated wire thermocouples were placed at focal and subfocal depths by snaking the thermocouple through a needle-bored hole in the skin and verifying the depth with a Siemens s2000 ultrasound device. Temperature profiles were collected using a high sampling DAQ card. Once the measurement setup was defined, a replicated 3-factor 3-level design of experiments was performed in the in-vivo porcine model to determine energy settings that could safely reach isoeffective dosages without causing skin surface damage. In one embodiment, a mean temperature differential of 10 degrees Celsius was observed, with a mean focal heating rate of ˜1.2 degrees Celsius/pass. Safe heating rates appear to be similar across transducer.


A thermal dosage study was performed in the in-vivo porcine model after safe heating rates were determined. The study demonstrated an embodiment of the system is capable of reaching isoeffective dosages such as 47 degrees Celsius for 3 minutes, 48 degrees Celsius for 1 minute, and 50 degrees Celsius for 1 minute without exceeding 41 degrees Celsius on the skin surface. In some embodiments, use of higher temperature, shorter exposure time treatments may have the potential to overshoot the target temperature and could overheat the skin surface. In various embodiments, the longer it takes to perform an isoeffective dose, the more heat diffuses to the surrounding tissue and less selective the treatment becomes with depth. Additionally, the longer the isoeffective exposure time, the more impractical the treatment becomes from an operator and ergonomics point of view. For these reasons, in some embodiments, use of higher isoeffective temperatures and shorter exposure times were preferred.


In-vivo porcine tests were conducted to determine if the candidate treatment settings for submental could cause adverse surface skin effects. The animals procured for these studies were light skinned, 120-140 pound castrated male Yucatan miniature pigs, selected due to its skin characteristics being similar to that of human tissue. Skin surface data was evaluated by monitoring the animal for evidence of erythema, edema, and contusion on the skin surface after treatment. Photographs of each treatment area were taken prior to and following treatment (Cannon G9 and Cannon VIXIA HF 510). In one embodiment, a thermal dosage study using a cylindrical element transducer was performed on in-vivo porcine models. In several embodiments, test sites were able to achieve a significant temperature differential between the focus tissue site and the skin surface without causing damage to the skin surface. FIG. 46 shows the temperature profiles from an embodiment of an in-vivo porcine model treatment in which the temperature profile reached 50 degrees Celsius for several seconds without the skin surface exceeding 41 degrees Celsius, and shows a temperature differential of as much as 15 degrees Celsius between the focus tissue site and the skin surface. The temperature change accrued from a single pass of treatment is sufficiently small (approximately 0.9 degrees Celsius/pass or 0.13 degrees Celsius/sec) to perform corrective action and maintain a target temperature within +/−1 degrees Celsius. A modified 3-factor 3-level design of experiments was performed in the in-vivo porcine model to determine a range of energy settings that could safely reach the isoeffective dosages temperatures shown in FIG. 42. The settings, according to various embodiments, are tabulated in the table at FIG. 47. The Design of Experiments (DOE) tests an acoustic power range of 10-20 W, exposure times of 20-40 ms, and spacings in the range of 0.1-0.3 mm. FIG. 48 shows an embodiment of a treatment setting that was able to achieve a relatively high thermal dosage at the focus with little to no dose or temperature increase at the skin surface. The focus achieves a thermal dose of 100 equivalent minutes (red-dashed line) at T=43 degrees Celsius on the 24th pass, which corresponds to a theoretical survival fraction of 1% according to FIG. 42. In various embodiments, similar temperature rises and heating rates were achieved at the focus and surface across various embodiments of transducers for treatments that did not cause significant skin surface damage. A mean temperature differential of 10 degrees Celsius was observed, with a mean focal heating rate of ˜1.2 degrees Celsius/pass. The largest temperature differential between the focus and the skin was achieved by the 3.5 MHz, 22 mm width, 6.0 depth design which had an average difference of 12 degrees Celsius across treatments. Since the heating rates that produce little to no surface effects are similar across transducer, the 3.5 MHz, 22 mm width, 6.0 mm depth transducer was selected to be assessed in a thermal dosage study.


In various embodiments, thermal dosage studies were performed on in-vivo porcine and cadaver models to determine safe isoeffective dosages, and the geometry of adipocyte death through histological evaluation. The Table at FIG. 49 tabulates the target time-temperature exposures to achieve different levels of adipocyte death. According to the empirical data in FIG. 42, Site 2 and 5 should achieve little to no adipocyte death. Sites 3, 6 and 7 should achieve a high degree of adipocyte death. Sites 1 and 4 are within the transition region and should achieve a moderate amount of adipocyte death. The table at FIG. 50 lists the energy settings used to approach each isoeffective dose using a 3.5 MHz, 22 mm width, 6.0 mm depth transducer. In various embodiments, treatments were active for 2-3 minutes with 20-30 pulses to reach the target temperature with a 1 degrees Celsius/pass ramp followed by maintenance pulses ever 3-5 seconds. A few test sites showed mild surface effects the day of treatment, only to become more pronounced as the injury rose to the skin surface. FIG. 51 shows one site that was treated aggressively for the purpose of coagulating tissue for histological control through overdosing. In the embodiment in FIG. 51, the dimension of the lesion represents a an example of the spread of thermal energy, measuring 12.6×19.9 mm on the skin surface with a depth of edema that can be detected up to 12 mm from the skin surface. A visual representation of the time-temperature goals listed in the table at FIG. 49 is shown in FIG. 52 (triangle marks), with six isoeffective dosages achieved in the lab are overlayed in FIG. 52 (square marks). Two of these isoeffective dosages fall in the coagulative region, two fall in the transition region, and two in the hyperthermia region.


Some embodiments and the examples described herein are examples and not intended to be limiting in describing the full scope of compositions and methods of these invention(s). Equivalent changes, modifications and variations of some embodiments, materials, compositions and methods can be made within the scope of the embodiments herein. In various embodiments, a device or method can combine features or characteristics of any of the embodiments disclosed herein.


While the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as “coupling an ultrasound probe to a skin surface” include “instructing the coupling of an ultrasound probe to a skin surface.” The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “about” or “approximately” include the recited numbers. For example, “about 25 mm” includes “25 mm.” The terms “approximately”, “about”, and “substantially” as used herein represent an amount or characteristic close to the stated amount or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount or characteristic.

Claims
  • 1. A method of heating tissue with a cylindrically focused ultrasound transducer, comprising: applying a current to a cylindrical transduction element,moving the cylindrical transduction element with a motion mechanism along a path to produce a planar band treatment area, andreducing an edge noise to reduce a peak such that a variance around a focal depth is reduced by 75%-200% at a focal zone at the focal depth by applying an electrical signal to a portion of the cylindrical transduction element, the cylindrical transduction element comprising a first surface, a second surface, a plurality of coated regions, and an uncoated region,wherein the plurality of coated regions comprises an electrical conductor,wherein the first surface comprises at least one coated region of the plurality of the coated regions,wherein the second surface comprises the uncoated region and a subset of the plurality of coated regions,wherein the subset of the plurality of coated regions on the second surface cover at least 60% of the second surface,wherein the applying the signal to the subset of the plurality of coated regions directs uniform ultrasound energy with a reduced edge noise to the focal zone at the focal depth.
  • 2. The method of claim 1, wherein the reducing the edge noise facilitates the efficient and consistent treatment of tissue, wherein the cylindrical transduction element applies ultrasonic therapy to a thermal treatment zone at the focal depth.
  • 3. The method of claim 1, wherein the reducing the edge noise reduces the peak such that a variance around the focal depth is reduced by 75%.
  • 4. The method of claim 1, wherein the reducing the edge noise reduces the peak such that a variance of an intensity around the focal depth is 5 mm or less.
  • 5. The method of claim 1, wherein the reducing the edge noise reduces a variance in focal gain in a range of 0.01-10.
  • 6. The method according to claim 1, wherein the cylindrical transduction element is housed within an ultrasonic hand-held probe, wherein the ultrasonic probe comprises: a housing,the cylindrical transduction element, andthe motion mechanism;wherein the ultrasound transducer is movable within the housing,wherein the motion mechanism is attached to the ultrasound transducer, and further comprising stopping the ultrasound transducer along the path within the housing.
  • 7. A method of heating tissue with a cylindrically focused ultrasound transducer, comprising: using a cylindrical transduction element to reduce edge noise at a focal zone at a focal depth by reducing a variance in a focal gain by driving the cylindrical transduction element for applying ultrasonic energy to the focal zone at the focal depth,wherein the driving the cylindrical transduction element comprises applying an electric signal to a plurality of electrically conductive coated regions on the cylindrical transduction element, andmoving the cylindrical transduction element with a motion mechanism along a path perpendicular to the focal zone to produce a uniform, planar heating area.
  • 8. The method of claim 7, wherein the cylindrical transduction element comprises a first surface and a second surface,wherein the first surface comprises an electrically conductive coating fully covering the first surface,wherein the second surface comprises two electrically conductive coated regions and at least one region that is not coated with an electrically conductive coating,wherein the two coated regions on the second surface comprises a conductive material that forms an electrode,wherein the coated regions on the second surface cover at least 80% of the second surface;wherein the driving the cylindrical transduction element comprises applying an electric signal to the coated regions on the second surface.
  • 9. The method of claim 7, wherein the first surface is a concave surface and the second surface is a convex surface.
  • 10. The method of claim 7, wherein the cylindrical transduction element is housed within an ultrasonic hand-held probe, wherein the ultrasonic probe comprises: a housing,the cylindrical transduction element, anda motion mechanism;wherein the ultrasound transducer is movable within the housing,wherein the motion mechanism is attached to the ultrasound transducer, and further comprising moving the ultrasound transducer along a path within the housing.
  • 11. The method of claim 10, further comprising moving the cylindrical transduction element with the motion mechanism to heat a treatment area at the focal depth to a temperature in a range between 40-65 degrees Celsius.
  • 12. The method of claim 7, further comprising producing a uniform temperature in a treatment area with the cylindrical transduction element in a range of 42-55 degrees Celsius in the material at the focal depth.
  • 13. The method of claim 7, further comprising imaging the material with one or more imaging elements, wherein the cylindrical transduction element further comprises an opening for placement of the one or more imaging elements.
  • 14. A method of heating tissue with a cylindrically focused ultrasound transducer, comprising: using a cylindrical transduction element to reduce edge noise at a focal zone at a focal depth with the cylindrical transduction element by reducing a variance of an intensity around the focal depth by driving the cylindrical transduction element for applying ultrasonic energy to the focal zone at the focal depth, wherein the driving the cylindrical transduction element comprises applying an electric signal to a plurality of coated regions on the cylindrical transduction element, andmoving the cylindrical transduction element with a motion mechanism along a path perpendicular to the focal zone to produce a uniform, planar heating area.
  • 15. The method of claim 14, wherein the cylindrical transduction element comprises a first surface and a second surface,wherein the first surface comprises an electrically conductive coating,wherein the second surface comprises at least two electrically conductive coated regions and at least one region that is not coated with an electrically conductive coating,wherein the at least two coated regions on the second surface comprises a conductive material that forms an electrode,wherein the coated regions on the second surface cover at least 70% of the second surface,wherein the driving the cylindrical transduction element comprises applying an electric signal f to the at least two electrically conductive coated regions on the second surface.
  • 16. The method of claim 14, wherein the cylindrical transduction element is housed within an ultrasonic hand-held probe, wherein the ultrasonic probe comprises: a housing,the cylindrical transduction element, anda motion mechanism;wherein the ultrasound transducer is movable within the housing,wherein the motion mechanism is attached to the ultrasound transducer, and further comprising moving the ultrasound transducer along a path within the housing.
  • 17. The method of claim 14, further comprising moving the cylindrical transduction element with the motion mechanism to heat a treatment area at the focal depth to a temperature in a range between 40-65 degrees Celsius.
  • 18. The method of claim 14, wherein the reducing edge noise facilitates the production of a uniform temperature in a treatment area in a tissue.
  • 19. The method of claim 14, wherein the cylindrical transduction element produces a temperature in a range of 42-55 degrees Celsius in a tissue at the focal depth.
  • 20. The method of claim 14, further comprising one or more imaging elements, wherein the cylindrical transduction element has an opening for placement of the one or more imaging elements.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/855,949 filed Dec. 27, 2017 now issued as U.S. Pat. No. 10,603,521, which is a continuation from U.S. application Ser. No. 15/302,436 filed Oct. 6, 2016, a National Phase from International App. No. PCT/US2015/025581 filed Apr. 13, 2015, published in English as WO 2015/160708, which claims the benefit of priority from U.S. Provisional Application No. 61/981,660 filed Apr. 18, 2014, each of which is incorporated in its entirety by reference, herein.

US Referenced Citations (1232)
Number Name Date Kind
2427348 Bond et al. Sep 1947 A
2792829 Calosi Feb 1952 A
3913386 Saglio Oct 1975 A
3965455 Hurwitz Jun 1976 A
3992925 Perilhou Nov 1976 A
4039312 Patru Aug 1977 A
4059098 Murdock Nov 1977 A
4101795 Fukumoto Jul 1978 A
4151834 Sato et al. May 1979 A
4166967 Benes et al. Sep 1979 A
4211948 Smith et al. Jul 1980 A
4211949 Brisken et al. Jul 1980 A
4213344 Rose Jul 1980 A
4276491 Daniel Jun 1981 A
4315514 Drewes et al. Feb 1982 A
4325381 Glenn Apr 1982 A
4343301 Indech Aug 1982 A
4372296 Fahim Feb 1983 A
4379145 Masuho et al. Apr 1983 A
4381007 Doss Apr 1983 A
4381787 Hottinger May 1983 A
4397314 Vaguine Aug 1983 A
4409839 Taenzer Oct 1983 A
4417170 Benisncasa Nov 1983 A
4431008 Wanner et al. Feb 1984 A
4441486 Pounds Apr 1984 A
4452084 Taenzer Jun 1984 A
4484569 Driller Nov 1984 A
4507582 Glenn Mar 1985 A
4513749 Kino Apr 1985 A
4513750 Heyman et al. Apr 1985 A
4527550 Ruggera et al. Jul 1985 A
4528979 Marchenko Jul 1985 A
4534221 Fife et al. Aug 1985 A
4566459 Umemura et al. Jan 1986 A
4567895 Putzke Feb 1986 A
4586512 Do-Huu May 1986 A
4587971 Stolfi May 1986 A
4601296 Yerushalmi Jul 1986 A
4620546 Aida et al. Nov 1986 A
4637256 Sugiyama et al. Jan 1987 A
4646756 Watmough Mar 1987 A
4663358 Hyon May 1987 A
4668516 Duraffourd et al. May 1987 A
4672591 Breimesser et al. Jun 1987 A
4680499 Umemura et al. Jul 1987 A
4697588 Reichenberger Oct 1987 A
4754760 Fukukita et al. Jul 1988 A
4757820 Itoh Jul 1988 A
4771205 Mequio Sep 1988 A
4801459 Liburdy Jan 1989 A
4803625 Fu et al. Feb 1989 A
4807633 Fry Feb 1989 A
4817615 Fukukita et al. Apr 1989 A
4858613 Fry Aug 1989 A
4860732 Hasegawa et al. Aug 1989 A
4865041 Hassler Sep 1989 A
4865042 Umemura Sep 1989 A
4867169 Machida Sep 1989 A
4874562 Hyon Oct 1989 A
4875487 Seppi Oct 1989 A
4881212 Takeuchi Nov 1989 A
4891043 Zeimer et al. Jan 1990 A
4893624 Lele Jan 1990 A
4896673 Rose Jan 1990 A
4900540 Ryan et al. Feb 1990 A
4901729 Saitoh Feb 1990 A
4917096 Englehart Apr 1990 A
4932414 Coleman et al. Jun 1990 A
4938216 Lele Jul 1990 A
4938217 Lele Jul 1990 A
4947046 Kawabata et al. Aug 1990 A
4951653 Fry Aug 1990 A
4955365 Fry Sep 1990 A
4958626 Nambu Sep 1990 A
4976709 Sand Dec 1990 A
4979501 Valchanov Dec 1990 A
4992989 Watanabe et al. Feb 1991 A
5012797 Liang May 1991 A
5018508 Fry et al. May 1991 A
5030874 Saito et al. Jul 1991 A
5036855 Fry Aug 1991 A
5040537 Katakura Aug 1991 A
5054310 Flynn Oct 1991 A
5054470 Fry Oct 1991 A
5054491 Saito et al. Oct 1991 A
5070879 Herres Dec 1991 A
5088495 Miyagawa Feb 1992 A
5115814 Griffith May 1992 A
5117832 Sanghvi Jun 1992 A
5123418 Saurel Jun 1992 A
5142511 Kanai et al. Aug 1992 A
5143063 Fellner Sep 1992 A
5143074 Dory Sep 1992 A
5149319 Unger Sep 1992 A
5150711 Dory Sep 1992 A
5150714 Green Sep 1992 A
5152294 Mochizuki et al. Oct 1992 A
5156144 Iwasaki Oct 1992 A
5158536 Sekins Oct 1992 A
5159931 Pini Nov 1992 A
5163421 Bernstein Nov 1992 A
5163436 Saitoh et al. Nov 1992 A
5178135 Uchiyama et al. Jan 1993 A
5190518 Takasu Mar 1993 A
5190766 Ishihara Mar 1993 A
5191880 McLeod Mar 1993 A
5205287 Erbel et al. Apr 1993 A
5209720 Unger May 1993 A
5212671 Fujii et al. May 1993 A
5215680 D'Arrigo Jun 1993 A
5224467 Oku Jul 1993 A
5230334 Klopotek Jul 1993 A
5230338 Allen et al. Jul 1993 A
5247924 Suzuki et al. Sep 1993 A
5255681 Ishimura et al. Oct 1993 A
5257970 Dougherty Nov 1993 A
5265614 Hayakawa Nov 1993 A
5267985 Shimada Dec 1993 A
5269297 Weng Dec 1993 A
5282797 Chess Feb 1994 A
5295484 Marcus Mar 1994 A
5295486 Wollschlager et al. Mar 1994 A
5304169 Sand Apr 1994 A
5305756 Entrekin et al. Apr 1994 A
5321520 Inga et al. Jun 1994 A
5323779 Hardy et al. Jun 1994 A
5327895 Hashimoto et al. Jul 1994 A
5329202 Garlick et al. Jul 1994 A
5348016 Unger et al. Sep 1994 A
5358466 Aida et al. Oct 1994 A
5360268 Hayashi Nov 1994 A
5370121 Reichenberger Dec 1994 A
5370122 Kunig Dec 1994 A
5371483 Bhardwaj Dec 1994 A
5375602 Lancee et al. Dec 1994 A
5379773 Hornsby Jan 1995 A
5380280 Peterson Jan 1995 A
5380519 Schneider et al. Jan 1995 A
5383917 Desai et al. Jan 1995 A
5391140 Schaetzle et al. Feb 1995 A
5391197 Burdette et al. Feb 1995 A
5392259 Bolorforosh Feb 1995 A
5396143 Seyed-Bolorforosh et al. Mar 1995 A
5398689 Connor et al. Mar 1995 A
5406503 Williams Apr 1995 A
5413550 Castel May 1995 A
5417216 Tanaka May 1995 A
5423220 Finsterwald et al. Jun 1995 A
5435311 Umemura Jul 1995 A
5438998 Hanafy Aug 1995 A
5443068 Cline et al. Aug 1995 A
5445611 Eppstein et al. Aug 1995 A
5458596 Lax Oct 1995 A
5460179 Okunuki et al. Oct 1995 A
5460595 Hall et al. Oct 1995 A
5419327 Rohwedder Nov 1995 A
5469854 Unger et al. Nov 1995 A
5471488 Fujio Dec 1995 A
5472405 Buchholtz et al. Dec 1995 A
5487388 Rello et al. Jan 1996 A
5492126 Hennige Feb 1996 A
5496256 Bock Mar 1996 A
5501655 Rolt Mar 1996 A
5503152 Oakley et al. Apr 1996 A
5503320 Webster et al. Apr 1996 A
5507790 Weiss Apr 1996 A
5511296 Dias et al. Apr 1996 A
5520188 Hennige May 1996 A
5522869 Burdette Jun 1996 A
5523058 Umemura et al. Jun 1996 A
5524620 Rosenchein Jun 1996 A
5524624 Tepper Jun 1996 A
5524625 Okazaki Jun 1996 A
5526624 Berg Jun 1996 A
5526812 Dumoulin et al. Jun 1996 A
5526814 Cline et al. Jun 1996 A
5526815 Granz Jun 1996 A
5529070 Augustine et al. Jun 1996 A
5540235 Wilson Jul 1996 A
5558092 Unger Sep 1996 A
5560362 Sliwa et al. Oct 1996 A
5573497 Chapelon Nov 1996 A
5575291 Hayakawa Nov 1996 A
5575807 Faller Nov 1996 A
5577502 Darrow et al. Nov 1996 A
5577507 Snyder et al. Nov 1996 A
5577991 Akui et al. Nov 1996 A
5580575 Unger et al. Dec 1996 A
5643179 Fujimoto Jan 1997 A
5601526 Chapelon Feb 1997 A
5603323 Pflugrath et al. Feb 1997 A
5605154 Ries et al. Feb 1997 A
5609562 Kaali Mar 1997 A
5615091 Palatnik Mar 1997 A
5618275 Bock Apr 1997 A
5620479 Diederich Apr 1997 A
5622175 Sudol et al. Apr 1997 A
5617858 Taverna et al. May 1997 A
5638819 Manwaring et al. Jun 1997 A
5644085 Lorraine et al. Jul 1997 A
5647373 Paltieli Jul 1997 A
5655535 Frlemel et al. Aug 1997 A
5655538 Lorraine Aug 1997 A
5657760 Ying Aug 1997 A
5658328 Johnson Aug 1997 A
5660836 Knowlton Aug 1997 A
5662116 Kondo Sep 1997 A
5665053 Jacobs Sep 1997 A
5665141 Vago Sep 1997 A
5671746 Dreschel et al. Sep 1997 A
5673699 Trahey et al. Oct 1997 A
5676692 Sanghvi Oct 1997 A
5685820 Riek et al. Nov 1997 A
5690608 Watanabe Nov 1997 A
5694936 Fujimoto Dec 1997 A
5697897 Buchholtz Dec 1997 A
5701900 Shehada et al. Dec 1997 A
5704361 Seward et al. Jan 1998 A
5706252 Le Verrier et al. Jan 1998 A
5706564 Rhyne Jan 1998 A
5715823 Wood et al. Feb 1998 A
5720287 Chapelon et al. Feb 1998 A
5722411 Suzuki Mar 1998 A
5727554 Kalend et al. Mar 1998 A
5735280 Sherman et al. Apr 1998 A
5740804 Cerofolini Apr 1998 A
5743863 Chapelon Apr 1998 A
5746005 Steinberg May 1998 A
5746762 Bass May 1998 A
5748767 Raab May 1998 A
5749364 Sliwa et al. May 1998 A
5755228 Wilson et al. May 1998 A
5755753 Knowlton May 1998 A
5762066 Law Jun 1998 A
5763886 Schulte Jun 1998 A
5769790 Watkins Jun 1998 A
5779644 Eberle et al. Jul 1998 A
5792058 Lee Aug 1998 A
5795297 Daigle Aug 1998 A
5795311 Wess Aug 1998 A
5810009 Mine et al. Sep 1998 A
5810888 Fenn Sep 1998 A
5814599 Mitragotri et al. Sep 1998 A
5817013 Ginn et al. Oct 1998 A
5817021 Reichenberger Oct 1998 A
5820564 Slayton Oct 1998 A
5823962 Schaetzle Oct 1998 A
5827204 Grandia et al. Oct 1998 A
5840032 Hatfield et al. Nov 1998 A
5844140 Seale Dec 1998 A
5853367 Chalek et al. Dec 1998 A
5866024 de Villeneuve Feb 1999 A
5869751 Bonin Feb 1999 A
5871524 Knowlton Feb 1999 A
5873902 Sanghvi Feb 1999 A
5876341 Wang et al. Mar 1999 A
5879303 Averkiou et al. Mar 1999 A
5882557 Hayakawa Mar 1999 A
5891034 Bucholz Apr 1999 A
5895356 Andrus et al. Apr 1999 A
5899861 Friemel et al. May 1999 A
5904659 Duarte May 1999 A
5919219 Knowlton Jul 1999 A
5923099 Bilir Jul 1999 A
5924989 Polz Jul 1999 A
5928169 Schatzle et al. Jul 1999 A
5931805 Brisken Aug 1999 A
5938606 Bonnefous Aug 1999 A
5938612 Kline-Schoder Aug 1999 A
5948011 Knowlton Sep 1999 A
5957844 Dekel Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957941 Ream Sep 1999 A
5964707 Fenster et al. Oct 1999 A
5967980 Ferre et al. Oct 1999 A
5968034 Fullmer Oct 1999 A
5971949 Levin Oct 1999 A
5977538 Unger et al. Nov 1999 A
5984881 Ishibashi et al. Nov 1999 A
5984882 Rosenchein Nov 1999 A
5990598 Sudol et al. Nov 1999 A
5997471 Gumb et al. Dec 1999 A
5997497 Nita et al. Dec 1999 A
5999843 Anbar Dec 1999 A
6004262 Putz et al. Dec 1999 A
6007499 Martin et al. Dec 1999 A
6013032 Rd Jan 2000 A
6014473 Hossack et al. Jan 2000 A
6016255 Bolan et al. Jan 2000 A
6019724 Gronningsaeter et al. Feb 2000 A
6022308 Williams Feb 2000 A
6022317 Cruanas et al. Feb 2000 A
6022327 Chang Feb 2000 A
6030374 McDaniel Feb 2000 A
6036646 Barthe Mar 2000 A
6039048 Silberg Mar 2000 A
6039689 Lizzi Mar 2000 A
6042556 Beach Mar 2000 A
6049159 Barthe Apr 2000 A
6050943 Slayton Apr 2000 A
6059727 Fowlkes May 2000 A
6071239 Cribbs Jun 2000 A
6080108 Dunham Jun 2000 A
6083148 Williams Jul 2000 A
6086535 Ishibashi Jul 2000 A
6086580 Morden et al. Jul 2000 A
6090054 Tagishi Jul 2000 A
6093148 Fujimoto Jul 2000 A
6093883 Sanghvi Jul 2000 A
6100626 Frey et al. Aug 2000 A
6101407 Groezinger Aug 2000 A
6106469 Suzuki et al. Aug 2000 A
6113558 Rosenchein Sep 2000 A
6113559 Klopotek Sep 2000 A
6120452 Barthe Sep 2000 A
6123081 Durette Sep 2000 A
6126619 Peterson et al. Oct 2000 A
6135971 Hutchinson Oct 2000 A
6139499 Wilk Oct 2000 A
6159150 Yale et al. Dec 2000 A
6171244 Finger et al. Jan 2001 B1
6176840 Nishimura Jan 2001 B1
6183426 Akisada Feb 2001 B1
6183502 Takeuchi Feb 2001 B1
6183773 Anderson Feb 2001 B1
6190323 Dias Feb 2001 B1
6190336 Duarte Feb 2001 B1
6193658 Wendelken Feb 2001 B1
6198956 Dunne Mar 2001 B1
6210327 Brackett et al. Apr 2001 B1
6213948 Barthe Apr 2001 B1
6216029 Paltieli Apr 2001 B1
6233476 Strommer et al. May 2001 B1
6234990 Rowe et al. May 2001 B1
6241753 Knowlton Jun 2001 B1
6246898 Vesely et al. Jun 2001 B1
6251074 Averkiou et al. Jun 2001 B1
6251088 Kaufman et al. Jun 2001 B1
6268405 Yao Jul 2001 B1
6273864 Duarte Aug 2001 B1
6280402 Ishibashi et al. Aug 2001 B1
6287257 Matichuk Sep 2001 B1
6287304 Eggers et al. Sep 2001 B1
6296619 Brisker Oct 2001 B1
6301989 Brown et al. Oct 2001 B1
6307302 Toda Oct 2001 B1
6309355 Cain et al. Oct 2001 B1
6311090 Knowlton Oct 2001 B1
6315741 Martin Nov 2001 B1
6322509 Pan et al. Nov 2001 B1
6322532 D'Sa Nov 2001 B1
6325540 Lounsberry et al. Dec 2001 B1
6325758 Carol et al. Dec 2001 B1
6325769 Klopotek Dec 2001 B1
6325798 Edwards et al. Dec 2001 B1
6338716 Hossack et al. Jan 2002 B1
6350276 Knowlton Feb 2002 B1
6356780 Licato et al. Mar 2002 B1
6361531 Hissong Mar 2002 B1
6370411 Osadchy et al. Apr 2002 B1
6375672 Aksan Apr 2002 B1
6377854 Knowlton Apr 2002 B1
6377855 Knowlton Apr 2002 B1
6381497 Knowlton Apr 2002 B1
6381498 Knowlton Apr 2002 B1
6387380 Knowlton May 2002 B1
6390982 Bova et al. May 2002 B1
6405090 Knowlton Jun 2002 B1
6409720 Hissong Jun 2002 B1
6413216 Cain et al. Jul 2002 B1
6413253 Koop Jul 2002 B1
6413254 Hissong Jul 2002 B1
6419648 Vitek Jul 2002 B1
6423007 Lizzi et al. Jul 2002 B2
6425865 Salcudean Jul 2002 B1
6425867 Vaezy Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6428477 Mason Aug 2002 B1
6428532 Doukas Aug 2002 B1
6430446 Knowlton Aug 2002 B1
6432057 Mazess et al. Aug 2002 B1
6432067 Martin Aug 2002 B1
6432101 Weber Aug 2002 B1
6436061 Costantino Aug 2002 B1
6438424 Knowlton Aug 2002 B1
6440071 Slayton Aug 2002 B1
6440121 Weber Aug 2002 B1
6443914 Costantino Sep 2002 B1
6447443 Keogh et al. Sep 2002 B1
6450979 Miwa et al. Sep 2002 B1
6451013 Bays et al. Sep 2002 B1
6453202 Knowlton Sep 2002 B1
6461304 Tanaka et al. Oct 2002 B1
6461378 Knowlton Oct 2002 B1
6470216 Knowlton Oct 2002 B1
6485420 Bullis Nov 2002 B1
6488626 Lizzi Dec 2002 B1
6491657 Rowe Dec 2002 B2
6500121 Slayton Dec 2002 B1
6500141 Irion Dec 2002 B1
6506171 Vitek et al. Jan 2003 B1
6508774 Acker Jan 2003 B1
6511427 Sliwa, Jr. et al. Jan 2003 B1
6511428 Azuma Jan 2003 B1
6514244 Pope Feb 2003 B2
6517484 Wilk Feb 2003 B1
6524250 Weber Feb 2003 B1
6666835 Martin Mar 2003 B2
6540679 Slayton Apr 2003 B2
6540685 Rhoads et al. Apr 2003 B1
6540700 Fujimoto et al. Apr 2003 B1
6547788 Maguire et al. Apr 2003 B1
6554771 Buil et al. Apr 2003 B1
6569099 Babaev May 2003 B1
6569108 Sarvazyan et al. May 2003 B2
6572552 Fukukita Jun 2003 B2
6575956 Brisken et al. Jun 2003 B1
6595934 Hissong Jul 2003 B1
6599256 Acker Jul 2003 B1
6605043 Dreschel Aug 2003 B1
6605080 Altshuler et al. Aug 2003 B1
6607498 Eshel Aug 2003 B2
6618620 Freundlich et al. Sep 2003 B1
6623430 Slayton Sep 2003 B1
6626854 Friedman Sep 2003 B2
6626855 Weng Sep 2003 B1
6638226 He et al. Oct 2003 B2
6645145 Dreschel et al. Nov 2003 B1
6645150 Angelsen et al. Nov 2003 B2
6645162 Friedman Nov 2003 B2
6662054 Kreindel Dec 2003 B2
6663627 Francischelli Dec 2003 B2
6665806 Shimizu Dec 2003 B1
6669638 Miller Dec 2003 B1
6685639 Wang et al. Feb 2004 B1
6685640 Fry Feb 2004 B1
6692450 Coleman Feb 2004 B1
6699237 Weber Mar 2004 B2
6716184 Vaezy et al. Apr 2004 B2
6719449 Laughlin Apr 2004 B1
6719694 Weng Apr 2004 B2
6726627 Lizzi et al. Apr 2004 B1
6733449 Krishnamurthy et al. May 2004 B1
6749624 Knowlton Jun 2004 B2
6772490 Toda Aug 2004 B2
6773409 Truckai et al. Aug 2004 B2
6775404 Pagoulatos et al. Aug 2004 B1
6790187 Thompson et al. Sep 2004 B2
6824516 Batten et al. Nov 2004 B2
6825176 White et al. Nov 2004 B2
6835940 Morikawa et al. Dec 2004 B2
6846290 Lizzi et al. Jan 2005 B2
6875176 Mourad et al. Apr 2005 B2
6882884 Mosk et al. Apr 2005 B1
6887239 Elstrom May 2005 B2
6887260 McDaniel May 2005 B1
6889089 Behl May 2005 B2
6896657 Willis May 2005 B2
6902536 Manna Jun 2005 B2
6905466 Saigo Jun 2005 B2
6918907 Kelly Jul 2005 B2
6920883 Bessette Jul 2005 B2
6921371 Wilson Jul 2005 B2
6932771 Whitmore Aug 2005 B2
6932814 Wood Aug 2005 B2
6936044 McDaniel Aug 2005 B2
6936046 Hissong Aug 2005 B2
6945937 Culp et al. Sep 2005 B2
6948843 Laugharn et al. Sep 2005 B2
6953941 Nakano et al. Oct 2005 B2
6958043 Hissong Oct 2005 B2
6971994 Young et al. Dec 2005 B1
6974417 Lockwood Dec 2005 B2
6976492 Ingle Dec 2005 B2
6992305 Maezawa et al. Jan 2006 B2
6997923 Anderson Feb 2006 B2
7006874 Knowlton Feb 2006 B2
7020528 Neev Mar 2006 B2
7022089 Ooba Apr 2006 B2
7058440 Heuscher et al. Jun 2006 B2
7063666 Weng Jun 2006 B2
7070565 Vaezy et al. Jul 2006 B2
7074218 Washington et al. Jul 2006 B2
7094252 Koop Aug 2006 B2
7108663 Talish et al. Sep 2006 B2
7115123 Knowlton Oct 2006 B2
7122029 Koop et al. Oct 2006 B2
7142905 Slayton Nov 2006 B2
7165451 Brooks et al. Jan 2007 B1
7179238 Hissong Feb 2007 B2
7189230 Knowlton Mar 2007 B2
7229411 Slayton Jun 2007 B2
7235592 Muratoglu Jun 2007 B2
7258674 Cribbs Aug 2007 B2
7273459 Desilets Sep 2007 B2
7294125 Phalen et al. Nov 2007 B2
7297117 Trucco Nov 2007 B2
7303555 Makin et al. Dec 2007 B2
7311679 Desilets et al. Dec 2007 B2
7327071 Nishiyama et al. Feb 2008 B2
7331951 Eshel et al. Feb 2008 B2
7332985 Larson et al. Feb 2008 B2
7338434 Haarstad et al. Mar 2008 B1
7347855 Eshel Mar 2008 B2
RE40403 Cho et al. Jun 2008 E
7393325 Barthe Jul 2008 B2
7398116 Edwards Jul 2008 B2
7399279 Abend et al. Jul 2008 B2
7491171 Barthe et al. Feb 2009 B2
7507235 Keogh et al. Mar 2009 B2
7510536 Foley et al. Mar 2009 B2
7517315 Willis Apr 2009 B2
7530356 Slayton May 2009 B2
7530958 Slayton May 2009 B2
7532201 Quistgaard et al. May 2009 B2
7571336 Barthe Aug 2009 B2
7601120 Moilanen et al. Oct 2009 B2
7615015 Coleman Nov 2009 B2
7615016 Barthe Nov 2009 B2
7652411 Crunkilton et al. Jan 2010 B2
7662114 Seip et al. Feb 2010 B2
7674257 Pless et al. Mar 2010 B2
7686763 Vaezy et al. Mar 2010 B2
7713203 Lacoste et al. Mar 2010 B2
7694406 Wildes et al. Apr 2010 B2
7695437 Quistgaard et al. Apr 2010 B2
7727156 Angelsen et al. Jun 2010 B2
7758524 Barthe Jul 2010 B2
7766848 Desilets et al. Aug 2010 B2
7789841 Huckle et al. Sep 2010 B2
7806839 Mast et al. Oct 2010 B2
7815570 Eshel et al. Oct 2010 B2
7819826 Diederich et al. Oct 2010 B2
7828734 Azhari et al. Oct 2010 B2
7824348 Barthe Nov 2010 B2
7833162 Hasegawa et al. Nov 2010 B2
7841984 Cribbs et al. Nov 2010 B2
7846096 Mast et al. Dec 2010 B2
7857773 Desilets et al. Dec 2010 B2
7875023 Eshel et al. Jan 2011 B2
7901359 Mandrusov et al. Mar 2011 B2
7905007 Calisti et al. Mar 2011 B2
7905844 Desilets et al. Mar 2011 B2
7914453 Slayton et al. Mar 2011 B2
7914469 Torbati Mar 2011 B2
7955281 Pedersen et al. Jun 2011 B2
7967764 Lidgren et al. Jun 2011 B2
7967839 Flock et al. Jun 2011 B2
7955262 Rosenberg Jul 2011 B2
7993289 Quistgaard et al. Aug 2011 B2
8057465 Sliwa, Jr. et al. Sep 2011 B2
8057389 Barthe et al. Nov 2011 B2
8066641 Barthe et al. Nov 2011 B2
8123707 Huckle et al. Feb 2012 B2
8128618 Gliklich et al. Mar 2012 B2
8133180 Slayton et al. Mar 2012 B2
8133191 Rosenberg et al. Mar 2012 B2
8142200 Crunkilton et al. Mar 2012 B2
8152904 Slobodzian et al. Apr 2012 B2
8162858 Manna et al. Apr 2012 B2
8166332 Barthe et al. Apr 2012 B2
8182428 Angelsen et al. May 2012 B2
8197409 Foley et al. Jun 2012 B2
8206299 Foley et al. Jun 2012 B2
8208346 Crunkilton Jun 2012 B2
8211017 Foley et al. Jul 2012 B2
8262591 Pedersen et al. Sep 2012 B2
8262650 Zanelli et al. Sep 2012 B2
8264126 Toda et al. Sep 2012 B2
8273037 Kreindel et al. Sep 2012 B2
8282554 Makin et al. Oct 2012 B2
8292835 Cimino Oct 2012 B1
8298163 Cimino Oct 2012 B1
8333700 Barthe et al. Dec 2012 B1
8334637 Crunkilton et al. Dec 2012 B2
8337407 Quistgaard et al. Dec 2012 B2
8343051 Desilets et al. Jan 2013 B2
8454540 Eshel et al. Jan 2013 B2
8366622 Slayton et al. Feb 2013 B2
8398549 Palmeri et al. Mar 2013 B2
8409097 Slayton et al. Apr 2013 B2
8425435 Wing et al. Apr 2013 B2
8388535 Weng et al. May 2013 B2
8444562 Barthe et al. May 2013 B2
8460193 Barthe et al. Jun 2013 B2
8480585 Slayton et al. Jul 2013 B2
8486001 Weyant Jul 2013 B2
8506486 Slayton et al. Aug 2013 B2
8512250 Quistgaard et al. Aug 2013 B2
8523775 Barthe et al. Sep 2013 B2
8523849 Liu et al. Sep 2013 B2
8535228 Slayton et al. Sep 2013 B2
8570837 Toda et al. Oct 2013 B2
8573392 Bennett et al. Nov 2013 B2
8583211 Salomir et al. Nov 2013 B2
8585618 Hunziker et al. Nov 2013 B2
8604672 Toda et al. Dec 2013 B2
8622937 Weng et al. Jan 2014 B2
8636665 Slayton et al. Jan 2014 B2
8641622 Barthe et al. Feb 2014 B2
8663112 Slayton et al. Mar 2014 B2
8672848 Slayton et al. Mar 2014 B2
8690778 Slayton et al. Apr 2014 B2
8690779 Slayton et al. Apr 2014 B2
8690780 Slayton et al. Apr 2014 B2
8708935 Barthe et al. Apr 2014 B2
8715186 Slayton et al. May 2014 B2
8726781 Eckhoff et al. May 2014 B2
8728071 Lischinsky et al. May 2014 B2
8753295 Thierman Jun 2014 B2
8758253 Sano et al. Jun 2014 B2
8836203 Nobles et al. Sep 2014 B2
8857438 Barthe et al. Oct 2014 B2
8858471 Barthe et al. Oct 2014 B2
8915853 Barthe et al. Dec 2014 B2
8915854 Slayton et al. Dec 2014 B2
8915870 Barthe et al. Dec 2014 B2
8920320 Stecco et al. Dec 2014 B2
8920324 Slayton et al. Dec 2014 B2
8926533 Bockenstedt et al. Jan 2015 B2
8932224 Barthe et al. Jan 2015 B2
8932238 Wing et al. Jan 2015 B2
8968205 Zeng et al. Mar 2015 B2
9011336 Slayton et al. Apr 2015 B2
9039617 Slayton et al. May 2015 B2
9039619 Barthe et al. May 2015 B2
9050116 Homer Jun 2015 B2
9095697 Barthe et al. Aug 2015 B2
9107798 Azhari et al. Aug 2015 B2
9114247 Barthe et al. Aug 2015 B2
9180314 Desilets et al. Nov 2015 B2
9216276 Slayton et al. Dec 2015 B2
9220915 Liu et al. Dec 2015 B2
9272162 Slayton et al. Mar 2016 B2
9283409 Slayton et al. Mar 2016 B2
9283410 Slayton et al. Mar 2016 B2
9295607 Rosenberg Mar 2016 B2
9308390 Youngquist Apr 2016 B2
9308391 Liu et al. Apr 2016 B2
9314650 Rosenberg et al. Apr 2016 B2
9320537 Slayton et al. Apr 2016 B2
9345910 Slayton et al. May 2016 B2
9421029 Barthe et al. Aug 2016 B2
9427600 Barthe et al. Aug 2016 B2
9427601 Barthe et al. Aug 2016 B2
9433803 Lin et al. Sep 2016 B2
9440093 Homer Sep 2016 B2
9440096 Barthe et al. Sep 2016 B2
9492645 Zhou et al. Nov 2016 B2
9492686 Da Silva Nov 2016 B2
9498651 Sapozhnikov et al. Nov 2016 B2
9510802 Barthe et al. Dec 2016 B2
9522290 Slayton et al. Dec 2016 B2
9532832 Ron Edoute et al. Jan 2017 B2
9533174 Barthe et al. Jan 2017 B2
9533175 Slayton et al. Jan 2017 B2
9545529 Britva et al. Jan 2017 B2
9566454 Barthe et al. Feb 2017 B2
9623267 Ulric et al. Apr 2017 B2
9694211 Barthe et al. Jul 2017 B2
9694212 Barthe et al. Jul 2017 B2
9700340 Barthe et al. Jul 2017 B2
9707412 Slayton et al. Jul 2017 B2
9710607 Ramdas et al. Jul 2017 B2
9713731 Slayton et al. Jul 2017 B2
9802063 Barthe et al. Oct 2017 B2
9827449 Barthe et al. Nov 2017 B2
9827450 Slayton et al. Nov 2017 B2
9833639 Slayton et al. Dec 2017 B2
9833640 Barthe et al. Dec 2017 B2
9895560 Barthe et al. Feb 2018 B2
9907535 Barthe et al. Mar 2018 B2
9919167 Domankevitz Mar 2018 B2
9974982 Slayton et al. May 2018 B2
9993664 Aviad et al. Jun 2018 B2
10010721 Slayton et al. Jul 2018 B2
10010724 Barthe et al. Jul 2018 B2
10010725 Slayton et al. Jul 2018 B2
10010726 Barthe et al. Jul 2018 B2
10016626 Zovrin et al. Jul 2018 B2
10046181 Barthe et al. Aug 2018 B2
10046182 Barthe et al. Aug 2018 B2
10070883 Barthe et al. Sep 2018 B2
10183183 Burdette Jan 2019 B2
10226645 Barthe Mar 2019 B2
10238894 Slayton et al. Mar 2019 B2
10245450 Slayton et al. Apr 2019 B2
10252086 Barthe et al. Apr 2019 B2
10265550 Barthe et al. Apr 2019 B2
10272272 Lee et al. Apr 2019 B2
10300308 Seip et al. May 2019 B2
10328289 Barthe et al. Jun 2019 B2
10406383 Luebcke Sep 2019 B2
10420960 Emery Sep 2019 B2
10420961 Lacoste Sep 2019 B2
10485573 Clark, III et al. Nov 2019 B2
10492862 Domankevitz Dec 2019 B2
10525288 Slayton et al. Jan 2020 B2
10532230 Barthe et al. Jan 2020 B2
10537304 Barthe et al. Jan 2020 B2
10556123 Altshuler et al. Feb 2020 B2
10583287 Schwarz Mar 2020 B2
10603519 Slayton et al. Mar 2020 B2
10603521 Emery Mar 2020 B2
10603523 Slayton et al. Mar 2020 B2
10610705 Barthe et al. Apr 2020 B2
10610706 Barthe et al. Apr 2020 B2
10639006 Choi et al. May 2020 B2
10639504 Kim May 2020 B2
10751246 Kaila Aug 2020 B2
10772646 Lu et al. Sep 2020 B2
10780298 Cain et al. Sep 2020 B2
10888716 Slayton et al. Jan 2021 B2
10888717 Slayton et al. Jan 2021 B2
10888718 Barthe et al. Jan 2021 B2
10960235 Barthe et al. Mar 2021 B2
10960236 Slayton et al. Mar 2021 B2
11123039 Barthe et al. Sep 2021 B2
11167155 Barthe et al. Nov 2021 B2
11179580 Slayton et al. Nov 2021 B2
11207547 Slayton et al. Dec 2021 B2
11207548 Barthe et al. Dec 2021 B2
11224895 Brown et al. Jan 2022 B2
11235179 Barthe et al. Feb 2022 B2
11235180 Slayton et al. Feb 2022 B2
11241218 Emery et al. Feb 2022 B2
20010009997 Pope Jul 2001 A1
20010009999 Kaufman et al. Jul 2001 A1
20010014780 Martin Aug 2001 A1
20010014819 Ingle Aug 2001 A1
20010031922 Weng Oct 2001 A1
20010039380 Larson et al. Nov 2001 A1
20010041880 Brisken Nov 2001 A1
20020000763 Jones Jan 2002 A1
20020002345 Marlinghaus Jan 2002 A1
20020040199 Klopotek Apr 2002 A1
20020040442 Ishidera Apr 2002 A1
20020055702 Atala May 2002 A1
20020062077 Emmenegger May 2002 A1
20020062142 Knowlton May 2002 A1
20020072691 Thompson et al. Jun 2002 A1
20020082528 Friedman Jun 2002 A1
20020082529 Suorsa et al. Jun 2002 A1
20020082589 Friedman Jun 2002 A1
20020087080 Slayton Jul 2002 A1
20020095143 Key Jul 2002 A1
20020099094 Anderson Jul 2002 A1
20020111569 Rosenschien et al. Aug 2002 A1
20020115917 Honda et al. Aug 2002 A1
20020128639 Pless et al. Aug 2002 A1
20020128648 Weber Sep 2002 A1
20020143252 Dunne et al. Oct 2002 A1
20020156400 Babaev Oct 2002 A1
20020161357 Anderson Oct 2002 A1
20020165529 Danek Nov 2002 A1
20020168049 Schriever Nov 2002 A1
20020169394 Eppstein et al. Nov 2002 A1
20020169442 Neev Nov 2002 A1
20020173721 Grunwald et al. Nov 2002 A1
20020193784 McHale et al. Dec 2002 A1
20020193831 Smith Dec 2002 A1
20030009153 Brisken et al. Jan 2003 A1
20030014039 Barzell et al. Jan 2003 A1
20030018255 Martin Jan 2003 A1
20030018270 Makin et al. Jan 2003 A1
20030023283 McDaniel Jan 2003 A1
20030028111 Vaezy et al. Feb 2003 A1
20030028113 Gilbert et al. Feb 2003 A1
20030032900 Ella Feb 2003 A1
20030036706 Slayton et al. Feb 2003 A1
20030040739 Koop Feb 2003 A1
20030050678 Sierra Mar 2003 A1
20030055308 Friemel et al. Mar 2003 A1
20030055417 Truckai et al. Mar 2003 A1
20030060736 Martin et al. Mar 2003 A1
20030065313 Koop Apr 2003 A1
20030066708 Allison et al. Apr 2003 A1
20030073907 Taylor Apr 2003 A1
20030074023 Kaplan Apr 2003 A1
20030083536 Eshel May 2003 A1
20030092988 Makin May 2003 A1
20030097071 Halmann et al. May 2003 A1
20030099383 Lefebvre May 2003 A1
20030125629 Ustuner Jul 2003 A1
20030135135 Miwa et al. Jul 2003 A1
20030139790 Ingle et al. Jul 2003 A1
20030149366 Stringer et al. Aug 2003 A1
20030153961 Babaev Aug 2003 A1
20030171678 Batten et al. Sep 2003 A1
20030171701 Babaev Sep 2003 A1
20030176790 Slayton Sep 2003 A1
20030191396 Sanghvi Oct 2003 A1
20030199794 Sakurai et al. Oct 2003 A1
20030200481 Stanley Oct 2003 A1
20030212129 Liu et al. Nov 2003 A1
20030212351 Hissong Nov 2003 A1
20030212393 Knowlton Nov 2003 A1
20030216648 Lizzi et al. Nov 2003 A1
20030216795 Harth Nov 2003 A1
20030220536 Hissong Nov 2003 A1
20030220585 Hissong Nov 2003 A1
20030229331 Brisken et al. Dec 2003 A1
20030233085 Giammarusti Dec 2003 A1
20030236487 Knowlton Dec 2003 A1
20040000316 Knowlton Jan 2004 A1
20040001809 Brisken Jan 2004 A1
20040002658 Marian, Jr. Jan 2004 A1
20040002705 Knowlton Jan 2004 A1
20040010222 Nunomura et al. Jan 2004 A1
20040015079 Berger et al. Jan 2004 A1
20040015106 Coleman Jan 2004 A1
20040030227 Littrup Feb 2004 A1
20040030268 Weng et al. Feb 2004 A1
20040039312 Hillstead Feb 2004 A1
20040039418 Elstrom Feb 2004 A1
20040041563 Lewin et al. Mar 2004 A1
20040041880 Ikeda et al. Mar 2004 A1
20040042168 Yang et al. Mar 2004 A1
20040044375 Diederich et al. Mar 2004 A1
20040049134 Tosaya et al. Mar 2004 A1
20040049734 Tosaya et al. Mar 2004 A1
20040059266 Fry Mar 2004 A1
20040068186 Ishida et al. Apr 2004 A1
20040073079 Altshuler et al. Apr 2004 A1
20040073113 Salgo Apr 2004 A1
20040073115 Horzewski et al. Apr 2004 A1
20040073116 Smith Apr 2004 A1
20040073204 Ryan et al. Apr 2004 A1
20040077977 Ella et al. Apr 2004 A1
20040082857 Schonenberger Apr 2004 A1
20040082859 Schaer Apr 2004 A1
20040102697 Evron May 2004 A1
20040105559 Aylward et al. Jun 2004 A1
20040106867 Eshel et al. Jun 2004 A1
20040122323 Vortman et al. Jun 2004 A1
20040122493 Ishibashi et al. Jun 2004 A1
20040143297 Ramsey Jul 2004 A1
20040152982 Hwang et al. Aug 2004 A1
20040158150 Rabiner et al. Aug 2004 A1
20040186535 Knowlton Sep 2004 A1
20040189155 Funakubo Sep 2004 A1
20040206365 Knowlton Oct 2004 A1
20040210214 Knowlton Oct 2004 A1
20040217675 Desilets Nov 2004 A1
20040249318 Tanaka Dec 2004 A1
20040254620 Lacoste Dec 2004 A1
20040267252 Washington et al. Dec 2004 A1
20050007879 Nishida Jan 2005 A1
20050033201 Takahashi Feb 2005 A1
20050033316 Kertz Feb 2005 A1
20050038340 Vaezy et al. Feb 2005 A1
20050055018 Kreindel Mar 2005 A1
20050055073 Weber Mar 2005 A1
20050061834 Garcia et al. Mar 2005 A1
20050070961 Maki Mar 2005 A1
20050074407 Smith Apr 2005 A1
20050080469 Larson Apr 2005 A1
20050085731 Miller et al. Apr 2005 A1
20050091770 Mourad et al. May 2005 A1
20050096542 Weng et al. May 2005 A1
20050104690 Larson et al. May 2005 A1
20050113689 Gritzky May 2005 A1
20050131302 Poland Jun 2005 A1
20050137656 Malak Jun 2005 A1
20050143677 Young et al. Jun 2005 A1
20050154313 Desilets Jul 2005 A1
20050154314 Quistgaard Jul 2005 A1
20050154332 Zanelli Jul 2005 A1
20050154431 Quistgaard Jul 2005 A1
20050187495 Quistgaard Aug 2005 A1
20050191252 Mitsui Sep 2005 A1
20050193451 Quistgaard Sep 2005 A1
20050193820 Sheljaskow et al. Sep 2005 A1
20050197681 Barolet et al. Sep 2005 A1
20050228281 Nefos Oct 2005 A1
20050240127 Seip et al. Oct 2005 A1
20050240170 Zhang et al. Oct 2005 A1
20050251120 Anderson et al. Nov 2005 A1
20050251125 Pless et al. Nov 2005 A1
20050256406 Barthe Nov 2005 A1
20050261584 Eshel Nov 2005 A1
20050261585 Makin et al. Nov 2005 A1
20050267454 Hissong Dec 2005 A1
20050288748 Li et al. Dec 2005 A1
20060004306 Altshuler Jan 2006 A1
20060020260 Dover et al. Jan 2006 A1
20060025756 Francischelli Feb 2006 A1
20060042201 Curry Mar 2006 A1
20060058664 Barthe Mar 2006 A1
20060058671 Vitek et al. Mar 2006 A1
20060058707 Barthe Mar 2006 A1
20060058712 Altshuler et al. Mar 2006 A1
20060074309 Bonnefous Apr 2006 A1
20060074313 Slayton et al. Apr 2006 A1
20060074314 Slayton Apr 2006 A1
20060074355 Slayton Apr 2006 A1
20060079816 Barthe Apr 2006 A1
20060079868 Makin Apr 2006 A1
20060084891 Barthe Apr 2006 A1
20060089632 Barthe Apr 2006 A1
20060089688 Panescu Apr 2006 A1
20060094988 Tosaya May 2006 A1
20060106325 Perrier May 2006 A1
20060111744 Makin May 2006 A1
20060116583 Ogasawara et al. Jun 2006 A1
20060116671 Slayton Jun 2006 A1
20060122508 Slayton Jun 2006 A1
20060122509 Desilets Jun 2006 A1
20060161062 Arditi et al. Jul 2006 A1
20060184069 Vaitekunas Aug 2006 A1
20060184071 Klopotek Aug 2006 A1
20060189972 Grossman Aug 2006 A1
20060206105 Chopra Sep 2006 A1
20060224090 Ostrovsky et al. Oct 2006 A1
20060229514 Wiener Oct 2006 A1
20060238068 May et al. Oct 2006 A1
20060241440 Eshel Oct 2006 A1
20060241442 Barthe Oct 2006 A1
20060241470 Novak et al. Oct 2006 A1
20060241576 Diederich et al. Oct 2006 A1
20060250046 Koizumi et al. Nov 2006 A1
20060282691 Barthe Dec 2006 A1
20060291710 Wang et al. Dec 2006 A1
20070016039 Vortman et al. Jan 2007 A1
20070032784 Gilklich et al. Feb 2007 A1
20070035201 Desilets Feb 2007 A1
20070055154 Torbati Mar 2007 A1
20070055155 Owen et al. Mar 2007 A1
20070055156 Desilets et al. Mar 2007 A1
20070065420 Johnson Mar 2007 A1
20070083120 Cain et al. Apr 2007 A1
20070087060 Dietrich Apr 2007 A1
20070088245 Babaev et al. Apr 2007 A1
20070088346 Mirizzi et al. Apr 2007 A1
20070161902 Dan Jul 2007 A1
20070166357 Shaffer et al. Jul 2007 A1
20070167709 Slayton Jul 2007 A1
20070018553 Kennedy Aug 2007 A1
20070208253 Slayton Sep 2007 A1
20070219448 Seip et al. Sep 2007 A1
20070219604 Yaroslavsky et al. Sep 2007 A1
20070219605 Yaroslavsky et al. Sep 2007 A1
20070238994 Stecco et al. Oct 2007 A1
20070239075 Rosenberg Oct 2007 A1
20070239077 Azhari et al. Oct 2007 A1
20070239079 Manstein et al. Oct 2007 A1
20070239142 Altshuler Oct 2007 A1
20080015435 Cribbs et al. Jan 2008 A1
20080027328 Klopotek Jan 2008 A1
20080033458 McLean et al. Feb 2008 A1
20080039724 Seip et al. Feb 2008 A1
20080071255 Barthe Mar 2008 A1
20080086054 Slayton Apr 2008 A1
20080086056 Chang et al. Apr 2008 A1
20080097214 Meyers et al. Apr 2008 A1
20080097253 Pedersen et al. Apr 2008 A1
20080114251 Weymer May 2008 A1
20080139943 Deng et al. Jun 2008 A1
20080139974 Da Silva Jun 2008 A1
20080146970 Litman et al. Jun 2008 A1
20080167556 Thompson Jul 2008 A1
20080183077 Moreau-Gobard et al. Jul 2008 A1
20080183110 Davenport et al. Jul 2008 A1
20080188745 Chen et al. Aug 2008 A1
20080194964 Randall et al. Aug 2008 A1
20080195000 Spooner et al. Aug 2008 A1
20080200810 Buchalter Aug 2008 A1
20080200813 Quistgaard Aug 2008 A1
20080214966 Slayton Sep 2008 A1
20080214988 Altshuler et al. Sep 2008 A1
20080221491 Slayton Sep 2008 A1
20080223379 Stuker Sep 2008 A1
20080242991 Moon et al. Oct 2008 A1
20080243035 Crunkilton Oct 2008 A1
20080269608 Anderson et al. Oct 2008 A1
20080275342 Barthe Nov 2008 A1
20080281206 Bartlett et al. Nov 2008 A1
20080281236 Eshel et al. Nov 2008 A1
20080281237 Slayton Nov 2008 A1
20080281255 Slayton Nov 2008 A1
20080294072 Crutchfield, III Nov 2008 A1
20080294073 Barthe Nov 2008 A1
20080319356 Cain Dec 2008 A1
20090005680 Jones et al. Jan 2009 A1
20090012394 Hobelsberger et al. Jan 2009 A1
20090043198 Milner et al. Feb 2009 A1
20090043293 Pankratov et al. Feb 2009 A1
20090048514 Azhari et al. Feb 2009 A1
20090069677 Chen et al. Mar 2009 A1
20090093737 Chomas et al. Apr 2009 A1
20090156969 Santangelo Jun 2009 A1
20090163807 Sliwa Jun 2009 A1
20090171252 Bockenstedt et al. Jul 2009 A1
20090171266 Harris Jul 2009 A1
20090177122 Peterson Jul 2009 A1
20090177123 Peterson Jul 2009 A1
20090182231 Barthe et al. Jul 2009 A1
20090198157 Babaev et al. Aug 2009 A1
20090216159 Slayton et al. Aug 2009 A1
20090226424 Hsu Sep 2009 A1
20090227910 Pedersen et al. Sep 2009 A1
20090230823 Kushculey et al. Sep 2009 A1
20090253988 Slayton et al. Oct 2009 A1
20090281463 Chapelon et al. Nov 2009 A1
20090312693 Thapliyal et al. Dec 2009 A1
20090318909 Debenedictis et al. Dec 2009 A1
20090326420 Moonen et al. Dec 2009 A1
20100011236 Barthe et al. Jan 2010 A1
20100022919 Peterson Jan 2010 A1
20100022921 Seip et al. Jan 2010 A1
20100022922 Barthe et al. Jan 2010 A1
20100030076 Vortman et al. Feb 2010 A1
20100042020 Ben-Ezra Feb 2010 A1
20100049178 Deem et al. Feb 2010 A1
20100056925 Zhang et al. Mar 2010 A1
20100056962 Vortman et al. Mar 2010 A1
20100100014 Eshel et al. Apr 2010 A1
20100113983 Heckerman et al. May 2010 A1
20100130891 Taggart et al. May 2010 A1
20100160782 Slayton et al. Jun 2010 A1
20100160837 Hunziker et al. Jun 2010 A1
20100168576 Poland et al. Jul 2010 A1
20100191120 Kraus et al. Jul 2010 A1
20100241035 Barthe et al. Sep 2010 A1
20100249602 Buckley et al. Sep 2010 A1
20100249669 Ulric et al. Sep 2010 A1
20100256489 Pedersen et al. Oct 2010 A1
20100274161 Azhari et al. Oct 2010 A1
20100280420 Barthe et al. Nov 2010 A1
20100286518 Lee et al. Nov 2010 A1
20100312150 Douglas et al. Dec 2010 A1
20110040171 Foley et al. Feb 2011 A1
20110040190 Jahnke et al. Feb 2011 A1
20110040213 Dietz et al. Feb 2011 A1
20110040214 Foley et al. Feb 2011 A1
20110066084 Desilets et al. Mar 2011 A1
20110072970 Slobodzian et al. Mar 2011 A1
20110077514 Ulric et al. Mar 2011 A1
20110079083 Yoo et al. Apr 2011 A1
20110087099 Eshel et al. Apr 2011 A1
20110087255 McCormack et al. Apr 2011 A1
20110112405 Barthe et al. May 2011 A1
20110144490 Davis et al. Jun 2011 A1
20110178444 Slayton et al. Jul 2011 A1
20110178541 Azhari Jul 2011 A1
20110190745 Uebelhoer et al. Aug 2011 A1
20110201976 Sanghvi et al. Aug 2011 A1
20110251524 Azhari et al. Oct 2011 A1
20110251527 Kushculey et al. Oct 2011 A1
20110270137 Goren et al. Nov 2011 A1
20110319793 Henrik et al. Dec 2011 A1
20110319794 Gertner Dec 2011 A1
20120004549 Barthe et al. Jan 2012 A1
20120016239 Barthe et al. Jan 2012 A1
20120029353 Slayton et al. Feb 2012 A1
20120035473 Sanghvi et al. Feb 2012 A1
20120035475 Barthe et al. Feb 2012 A1
20120035476 Barthe et al. Feb 2012 A1
20120046547 Barthe et al. Feb 2012 A1
20120053458 Barthe et al. Mar 2012 A1
20120059288 Barthe et al. Mar 2012 A1
20120111339 Barthe et al. May 2012 A1
20120123304 Rybyanets et al. May 2012 A1
20120136280 Rosenberg et al. May 2012 A1
20120136282 Rosenberg et al. May 2012 A1
20120143056 Slayton et al. Jun 2012 A1
20120143100 Jeong et al. Jun 2012 A1
20120165668 Slayton et al. Jun 2012 A1
20120165848 Slayton et al. Jun 2012 A1
20120191019 Desilets et al. Jul 2012 A1
20120191020 Vitek et al. Jul 2012 A1
20120197120 Makin et al. Aug 2012 A1
20120197121 Slayton et al. Aug 2012 A1
20120209150 Zeng et al. Aug 2012 A1
20120215105 Slayton et al. Aug 2012 A1
20120271202 Wisdom Oct 2012 A1
20120271294 Barthe et al. Oct 2012 A1
20120277639 Pollock et al. Nov 2012 A1
20120296240 Azhari et al. Nov 2012 A1
20120302883 Kong et al. Nov 2012 A1
20120316426 Foley et al. Dec 2012 A1
20120330197 Makin et al. Dec 2012 A1
20120330222 Makin et al. Dec 2012 A1
20120330223 Makin et al. Dec 2012 A1
20120330283 Hyde et al. Dec 2012 A1
20120330284 Hyde et al. Dec 2012 A1
20130012755 Slayton Jan 2013 A1
20130012816 Slayton et al. Jan 2013 A1
20130012838 Jaeger et al. Jan 2013 A1
20130012842 Barthe Jan 2013 A1
20130018285 Park et al. Jan 2013 A1
20130018286 Slayton et al. Jan 2013 A1
20130046209 Slayton et al. Feb 2013 A1
20130051178 Rybyanets Feb 2013 A1
20130060170 Lee et al. Mar 2013 A1
20130066208 Barthe et al. Mar 2013 A1
20130066237 Smotrich et al. Mar 2013 A1
20130072826 Slayton et al. Mar 2013 A1
20130073001 Campbell Mar 2013 A1
20130096471 Slayton et al. Apr 2013 A1
20130096596 Schafer Apr 2013 A1
20130190659 Slayton et al. Jul 2013 A1
20130211293 Auboiroux et al. Aug 2013 A1
20130225994 Hsu et al. Aug 2013 A1
20130268032 Neev Oct 2013 A1
20130274603 Barthe et al. Oct 2013 A1
20130278111 Sammoura Oct 2013 A1
20130281853 Slayton et al. Oct 2013 A1
20130281891 Slayton et al. Oct 2013 A1
20130296697 Slayton et al. Nov 2013 A1
20130296700 Slayton et al. Nov 2013 A1
20130296743 Lee et al. Nov 2013 A1
20130303904 Barthe et al. Nov 2013 A1
20130303905 Barthe et al. Nov 2013 A1
20130310714 Eshel et al. Nov 2013 A1
20130310863 Makin et al. Nov 2013 A1
20130345562 Barthe et al. Dec 2013 A1
20140024974 Slayton et al. Jan 2014 A1
20140050054 Toda et al. Feb 2014 A1
20140081300 Melodelima et al. Mar 2014 A1
20140082907 Barthe et al. Mar 2014 A1
20140117814 Toda et al. May 2014 A1
20140142430 Slayton et al. May 2014 A1
20140148834 Barthe et al. May 2014 A1
20140155747 Bennett Jun 2014 A1
20140180174 Slayton et al. Jun 2014 A1
20140187944 Slayton et al. Jul 2014 A1
20140188015 Slayton et al. Jul 2014 A1
20140188145 Slayton et al. Jul 2014 A1
20140194723 Herzog et al. Jul 2014 A1
20140208856 Schmid Jul 2014 A1
20140221823 Keogh et al. Aug 2014 A1
20140236049 Barthe et al. Aug 2014 A1
20140236061 Lee et al. Aug 2014 A1
20140243713 Slayton et al. Aug 2014 A1
20140257145 Emery Sep 2014 A1
20140276055 Barthe et al. Sep 2014 A1
20150000674 Barthe et al. Jan 2015 A1
20150025420 Slayton et al. Jan 2015 A1
20150064165 Perry et al. Mar 2015 A1
20150080723 Barthe et al. Mar 2015 A1
20150080771 Barthe et al. Mar 2015 A1
20150080874 Slayton et al. Mar 2015 A1
20150088182 Slayton et al. Mar 2015 A1
20150141734 Chapelon et al. May 2015 A1
20150164734 Slayton et al. Jun 2015 A1
20150165238 Slayton et al. Jun 2015 A1
20150165243 Slayton et al. Jun 2015 A1
20150174388 Slayton Jun 2015 A1
20150202468 Slayton et al. Jul 2015 A1
20150217141 Barthe et al. Aug 2015 A1
20150238258 Palero et al. Aug 2015 A1
20150297188 Konofagou Oct 2015 A1
20150321026 Branson et al. Nov 2015 A1
20150360058 Barthe et al. Dec 2015 A1
20150374333 Barthe et al. Dec 2015 A1
20150375014 Slayton et al. Dec 2015 A1
20160001097 Cho et al. Jan 2016 A1
20160016015 Slayton et al. Jan 2016 A1
20160027994 Toda et al. Jan 2016 A1
20160151618 Powers et al. Jun 2016 A1
20160158580 Slayton et al. Jun 2016 A1
20160175619 Lee et al. Jun 2016 A1
20160206335 Slayton Jul 2016 A1
20160206341 Slayton Jul 2016 A1
20160256675 Slayton Sep 2016 A1
20160296769 Barthe et al. Oct 2016 A1
20160310444 Dobak, III Oct 2016 A1
20160361571 Bernabei Dec 2016 A1
20160361572 Slayton Dec 2016 A1
20170028227 Emery et al. Feb 2017 A1
20170043190 Barthe et al. Feb 2017 A1
20170050019 Ron Edoute et al. Feb 2017 A1
20170080257 Paunescu et al. Mar 2017 A1
20170100585 Hall et al. Apr 2017 A1
20170119345 Levien et al. May 2017 A1
20170136263 Reil May 2017 A1
20170209201 Slayton et al. Jul 2017 A1
20170209202 Friedrichs et al. Jul 2017 A1
20170304654 Blanche et al. Oct 2017 A1
20170368574 Sammoura Dec 2017 A1
20180001113 Streeter Jan 2018 A1
20180015308 Reed et al. Jan 2018 A1
20180043147 Slayton Feb 2018 A1
20180099162 Bernabei Apr 2018 A1
20180099163 Bernabei Apr 2018 A1
20180126190 Aviad et al. May 2018 A1
20180154184 Kong et al. Jun 2018 A1
20180207450 Sanchez et al. Jul 2018 A1
20180272156 Slayton et al. Sep 2018 A1
20180272157 Barthe et al. Sep 2018 A1
20180272158 Barthe et al. Sep 2018 A1
20180272159 Slayton et al. Sep 2018 A1
20180317884 Chapelon et al. Nov 2018 A1
20180333595 Barthe et al. Nov 2018 A1
20180360420 Vortman et al. Dec 2018 A1
20190000498 Barthe et al. Jan 2019 A1
20190009110 Gross et al. Jan 2019 A1
20190009111 Myhr et al. Jan 2019 A1
20190022405 Greenbaum et al. Jan 2019 A1
20190038921 Domankevitz Feb 2019 A1
20190060675 Krone et al. Feb 2019 A1
20190091490 Alexander et al. Mar 2019 A1
20190142380 Emery et al. May 2019 A1
20190143148 Slayton May 2019 A1
20190184202 Zereshkian et al. Jun 2019 A1
20190184203 Slayton et al. Jun 2019 A1
20190184205 Slayton et al. Jun 2019 A1
20190184207 Barthe et al. Jun 2019 A1
20190184208 Barthe et al. Jun 2019 A1
20190224501 Burdette Jul 2019 A1
20190262634 Barthe et al. Aug 2019 A1
20190282834 Zawada et al. Sep 2019 A1
20190290939 Watson et al. Sep 2019 A1
20190350562 Slayton et al. Nov 2019 A1
20190366126 Pahk et al. Dec 2019 A1
20190366127 Emery Dec 2019 A1
20190366128 Slayton et al. Dec 2019 A1
20200094083 Slayton et al. Mar 2020 A1
20200100762 Barthe et al. Apr 2020 A1
20200129759 Schwarz Apr 2020 A1
20200171330 Barthe et al. Jun 2020 A1
20200179727 Slayton et al. Jun 2020 A1
20200179729 Slayton et al. Jun 2020 A1
20200188703 Barthe et al. Jun 2020 A1
20200188704 Barthe et al. Jun 2020 A1
20200188705 Emery et al. Jun 2020 A1
20200206072 Capelli et al. Jul 2020 A1
20200222728 Khokhlova et al. Jul 2020 A1
20210038925 Emery Feb 2021 A1
20210378630 Slayton et al. Dec 2021 A1
Foreign Referenced Citations (198)
Number Date Country
2460061 Nov 2001 CN
1734284 Dec 2009 CN
104027893 Sep 2014 CN
4029175 Mar 1992 DE
10140064 Mar 2003 DE
10219297 Nov 2003 DE
10219217 Dec 2004 DE
20314479 Dec 2004 DE
0142215 May 1984 EP
0344773 Dec 1989 EP
1479412 Nov 1991 EP
0473553 Apr 1992 EP
670147 Feb 1995 EP
0661029 Jul 1995 EP
724894 Feb 1996 EP
763371 Nov 1996 EP
1044038 Oct 2000 EP
1050322 Nov 2000 EP
1234566 Aug 2002 EP
1262160 Dec 2002 EP
0659387 Apr 2003 EP
1374944 Jan 2004 EP
1028660 Jan 2008 EP
1874241 Jan 2008 EP
1362223 May 2008 EP
1750804 Jul 2008 EP
1283690 Nov 2008 EP
1811901 Apr 2009 EP
1785164 Aug 2009 EP
2230904 Sep 2010 EP
1501331 Jun 2011 EP
2066405 Nov 2011 EP
2474050 Jul 2012 EP
2527828 Nov 2012 EP
2709726 Nov 2015 EP
1538980 Jan 2017 EP
3124047 Jan 2017 EP
2897547 Nov 2017 EP
2173261 Aug 2018 EP
3417911 Dec 2018 EP
2532851 Sep 1983 FR
2685872 Jan 1992 FR
2672486 Aug 1992 FR
2703254 Mar 1994 FR
2113099 Aug 1983 GB
102516 Jan 1996 IL
112369 Aug 1999 IL
120079 Mar 2001 IL
63036171 Feb 1988 JP
03048299 Mar 1991 JP
3123559 May 1991 JP
03136642 Jun 1991 JP
4089058 Mar 1992 JP
04150847 May 1992 JP
7080087 Mar 1995 JP
07505793 Jun 1995 JP
7184907 Jul 1995 JP
7222782 Aug 1995 JP
09047458 Feb 1997 JP
9108288 Apr 1997 JP
9503926 Apr 1997 JP
3053069 Oct 1998 JP
11123226 May 1999 JP
11505440 May 1999 JP
11506636 Jun 1999 JP
10248850 Sep 1999 JP
2000126310 May 2000 JP
2000166940 Jun 2000 JP
2000233009 Aug 2000 JP
2001-46387 Feb 2001 JP
2001136599 May 2001 JP
2001170068 Jun 2001 JP
2002505596 Feb 2002 JP
2002078764 Mar 2002 JP
2002515786 May 2002 JP
2002537013 May 2002 JP
2002521118 Jul 2002 JP
2002537939 Nov 2002 JP
2003050298 Jul 2003 JP
2003204982 Jul 2003 JP
2004-504898 Feb 2004 JP
2004-507280 Mar 2004 JP
2004154256 Mar 2004 JP
2004-509671 Apr 2004 JP
2004-512856 Apr 2004 JP
2004147719 May 2004 JP
2005503388 Feb 2005 JP
2005527336 Sep 2005 JP
2005323213 Nov 2005 JP
2006520247 Sep 2006 JP
2008515559 May 2008 JP
2009518126 May 2009 JP
2010517695 May 2010 JP
2001-0019317 Mar 2001 KR
1020010024871 Mar 2001 KR
2002-0038547 May 2002 KR
100400870 Oct 2003 KR
20060121267 Nov 2006 KR
1020060113930 Nov 2006 KR
1020070065332 Jun 2007 KR
1020070070161 Jul 2007 KR
1020070098856 Oct 2007 KR
1020070104878 Oct 2007 KR
1020070114105 Nov 2007 KR
1020000059516 Apr 2012 KR
10-2013-0124598 Nov 2013 KR
10-1365946 Feb 2014 KR
386883 Sep 2000 TW
201208734 Mar 2012 TW
WO9312742 Jul 1993 WO
WO9524159 Sep 1995 WO
WO9625888 Aug 1996 WO
WO9634568 Nov 1996 WO
WO9639079 Dec 1996 WO
WO9735518 Oct 1997 WO
WO9832379 Jul 1998 WO
WO9852465 Nov 1998 WO
WO9933520 Jul 1999 WO
WO9939677 Aug 1999 WO
WO9949788 Oct 1999 WO
WO200006032 Feb 2000 WO
WO0015300 Mar 2000 WO
WO0021612 Apr 2000 WO
WO0048518 Aug 2000 WO
WO0053113 Sep 2000 WO
WO200071021 Nov 2000 WO
WO0128623 Apr 2001 WO
WO01045550 Jun 2001 WO
WO0182777 Nov 2001 WO
WO0182778 Nov 2001 WO
WO0187161 Nov 2001 WO
WO01080709 Nov 2001 WO
WO2001087161 Nov 2001 WO
WO0209812 Feb 2002 WO
WO0209813 Feb 2002 WO
WO02015768 Feb 2002 WO
WO0224050 Mar 2002 WO
WO200149194 Jul 2002 WO
WO2002054018 Jul 2002 WO
WO02092168 Nov 2002 WO
WO03053266 Jul 2003 WO
WO03065347 Aug 2003 WO
WO03070105 Aug 2003 WO
WO03077833 Sep 2003 WO
WO03086215 Oct 2003 WO
WO03096883 Nov 2003 WO
WO03099177 Dec 2003 WO
WO03099382 Dec 2003 WO
WO03101530 Dec 2003 WO
WO2004000116 Dec 2003 WO
WO2004080147 Sep 2004 WO
WO2004110558 Dec 2004 WO
WO2005011804 Feb 2005 WO
WO2005065408 Jul 2005 WO
WO2005065409 Jul 2005 WO
WO2005090978 Sep 2005 WO
WO2005113068 Dec 2005 WO
WO2006042163 Apr 2006 WO
WO2006036870 Apr 2006 WO
WO2006042168 Apr 2006 WO
WO2006042201 Apr 2006 WO
WO2006065671 Jun 2006 WO
WO2006082573 Aug 2006 WO
WO2006104568 Oct 2006 WO
WO2006110388 Oct 2006 WO
WO2007067563 Jun 2007 WO
WO2008036479 Mar 2008 WO
WO2008036622 Mar 2008 WO
WO2008144274 Nov 2008 WO
WO2009013729 Jan 2009 WO
WO2009149390 Oct 2009 WO
WO2010102128 Sep 2010 WO
WO2012134645 Oct 2012 WO
WO2013048912 Apr 2013 WO
WO2013178830 Dec 2013 WO
WO2014045216 Mar 2014 WO
WO2014055708 Apr 2014 WO
WO2014057388 Apr 2014 WO
WO2014127091 Aug 2014 WO
WO2015160708 Oct 2015 WO
WO2016054155 Apr 2016 WO
WO2016115363 Jul 2016 WO
WO2017127328 Jul 2017 WO
WO2017149506 Sep 2017 WO
WO2017165595 Sep 2017 WO
WO 2017212489 Dec 2017 WO
WO2017212489 Dec 2017 WO
WO2017223312 Dec 2017 WO
WO2018035012 Feb 2018 WO
WO2018158355 Sep 2018 WO
WO2019008573 Jan 2019 WO
WO2019147596 Aug 2019 WO
WO 2019147596 Aug 2019 WO
WO2019164836 Aug 2019 WO
WO2020009324 Jan 2020 WO
WO2020075906 Apr 2020 WO
WO2020080730 Apr 2020 WO
WO2020121307 Jun 2020 WO
Non-Patent Literature Citations (368)
Entry
US 10,398,895 B2, 09/2019, Schwarz (withdrawn)
U.S. Appl. No. 12/996,616, filed Jan. 12, 2011, Hand Wand for Ultrasonic Cosmetic Treatment and Imaging.
U.S. Appl. No. 16/703,019, filed Dec. 6, 2019, System and Method for Ultrasound Treatment.
U.S. Appl. No. 13/245,822, filed Sep. 26, 2011, System and Method for Cosmetic Treatment.
U.S. Appl. No. 13/245,852, filed Sep. 26, 2011, Systems for Cosmetic Treatment.
U.S. Appl. No. 13/245,864, filed Sep. 27, 2011, Methods for Non-Invasive Cosmetic Treatment of the Eye Region.
U.S. Appl. No. 13/246,117, filed Sep. 27, 2011, Methods for Non-Invasive Lifting and Tightening of the Lower Face and Neck.
U.S. Appl. No. 13/246,112, filed Sep. 27, 2011, Tissue Imaging and Treatment Method.
U.S. Appl. No. 14/193,234, filed Feb. 28, 2014, Devices and Methods for Multi-Focus Ultrasound Therapy.
U.S. Appl. No. 16/541,476, filed Aug. 15, 2019, Devices and Methods for Multi-Focus Ultrasound Therapy.
U.S. Appl. No. 15/302,436, filed Oct. 6, 2016, Band Transducer Ultrasound Therapy.
U.S. Appl. No. 15/855,949, filed Dec. 27, 2017, Band Transducer Ultrasound Therapy.
U.S. Appl. No. 15/562,384, filed Oct. 27, 2017, Systems and Methods for Cosmetic Ultrasound Treatment of Skin.
U.S. Appl. No. 16/069,319, filed Jul. 11, 2018, Compact ultrasound device having annular ultrasound array peripherally electrically connected to flexible printed circuit board and method of assembly thereof.
U.S. Appl. No. 08/950,353, filed Oct. 14, 1997, Imaging, Therapy and Temperature Monitoring Ultrasonic System.
U.S. Appl. No. 09/502,174, filed Feb. 10, 2000, Imaging, Therapy and Temperature Monitoring Ultrasonic System.
U.S. Appl. No. 10/193,419, filed Jul. 10, 2002, Imaging, Therapy and Temperature Monitoring Ultrasonic System.
U.S. Appl. No. 10/944,499, filed Sep. 16, 2004, Method and System for Ultrasound Treatment With a Multi-Directional Transducer.
U.S. Appl. No. 11/163,177, filed Oct. 7, 2005, Method and System for Treating Acne and Sebaceous Glands.
U.S. Appl. No. 10/950,112, filed Sep. 24, 2004, Method and System for Combined Ultrasound Treatment.
U.S. Appl. No. 11/163,178, filed Oct. 7, 2005, Method and System for Treating Stretch Marks.
U.S. Appl. No. 11/245,999, filed Oct. 6, 2005, System and Method for Ultra-High Frequency Ultrasound Treatment.
U.S. Appl. No. 10/944,500, filed Sep. 16, 2004, System and Method for Variable Depth Ultrasound Treatment.
U.S. Appl. No. 11/744,655, filed May 4, 2007, Imaging, Therapy and Temperature Monitoring Ultrasonic System.
U.S. Appl. No. 13/937,190, filed Jul. 8, 2013, Imaging, Therapy and Temperature Monitoring Ultrasonic System.
U.S. Appl. No. 12/135,962, filed Jun. 9, 2008, Method and System for Ultrasound Treatment With a Multi-Directional Transducer.
U.S. Appl. No. 12/792,934, filed Jun. 3, 2010, System and Method for Ultra-High Frequency Ultrasound Treatment.
U.S. Appl. No. 13/914,945, filed Jun. 11, 2013, System and Method for Ultra-High Frequency Ultrasound Treatment.
U.S. Appl. No. 12/834,754, filed Jul. 12, 2010, System and Method for Variable Depth Ultrasound Treatment.
U.S. Appl. No. 14/264,732, filed Apr. 29, 2014, System and Method for Variable Depth Ultrasound Treatment.
U.S. Appl. No. 11/126,760, filed May 11, 2005, Method and System for Three-Dimensional Scanning and Imaging.
U.S. Appl. No. 13/564,552, filed Aug. 1, 2012, Method and System for Controlled Scanning, Imaging and/or Therapy.
U.S. Appl. No. 12/437,726, filed May 8, 2009, Method and System for Combined Ultrasound Treatment.
U.S. Appl. No. 11/163,148, filed Oct. 6, 2005, Method and System for Controlled Thermal Injury of Human Superficial Tissue.
U.S. Appl. No. 13/444,688, filed Apr. 11, 2012, Customized Cosmetic Treatment.
U.S. Appl. No. 16/427,969, filed May 31, 2019, Customized Cosmetic Treatment.
U.S. Appl. No. 11/163,152, filed Oct. 6, 2005, Method and System for Treatment of Sweat Glands.
U.S. Appl. No. 13/444,485, filed Apr. 11, 2012, Methods for Treatment of Sweat Glands.
U.S. Appl. No. 13/603,159, filed Sep. 4, 2012, Methods for Treatment of Hyperhidrosis.
U.S. Appl. No. 13/603,279, filed Sep. 4, 2012, Energy Based Hyperhidrosis Treatment.
U.S. Appl. No. 13/950,728, filed Jul. 25, 2013, Energy Based Hyperhidrosis Treatment.
U.S. Appl. No. 14/571,835, filed Dec. 16, 2014, Energy Based Hyperhidrosis Treatment.
U.S. Appl. No. 15/243,081, filed Aug. 22, 2016, Energy Based Hyperhidrosis Treatment.
U.S. Appl. No. 16/049,365, filed Jul. 30, 2018, Energy Based Hyperhidrosis Treatment.
U.S. Appl. No. 11/163,151, filed Oct. 6, 2005, Method and System for Noninvasive Face Lifts and Deep Tissue Tightening.
U.S. Appl. No. 13/444,336, filed Apr. 11, 2012, Treatment of Sub-Dermal Regions for Cosmetic Effects.
U.S. Appl. No. 13/679,430, filed Nov. 16, 2012, Ultrasound Treatment of Sub-Dermal Tissue for Cosmetic Effects.
U.S. Appl. No. 13/924,376, filed Jun. 21, 2013, Noninvasive Tissue Tightening for Cosmetic Effects.
U.S. Appl. No. 13/924,355, filed Jun. 21, 2013, Noninvasive Aesthetic Treatment for Tightening Tissue.
U.S. Appl. No. 13/924,323, filed Jun. 21, 2013, Energy-Based Tissue Tightening.
U.S. Appl. No. 14/200,852, filed Mar. 7, 2014, Noninvasive Tissue Tightening System.
U.S. Appl. No. 14/200,961, filed Mar. 7, 2014, Energy-Based Tissue Tightening System.
U.S. Appl. No. 16/543,137, filed Aug. 16, 2019, Noninvasive Tissue Tightening System.
U.S. Appl. No. 12/028,636, filed Feb. 8, 2008, Method and System for Noninvasive Face Lifts and Deep Tissue Tightening.
U.S. Appl. No. 13/964,820, filed Aug. 12, 2013, Methods for Noninvasive Skin Tightening.
U.S. Appl. No. 14/201,256, filed Mar. 7, 2014, System for Noninvasive Skin Tightening.
U.S. Appl. No. 15/098,139, filed Apr. 13, 2016, System and Method for Noninvasive Skin Tightening.
U.S. Appl. No. 15/958,939, filed Apr. 20, 2018, System and Method for Noninvasive Skin Tightening.
U.S. Appl. No. 16/698,122, filed Nov. 27, 2019, System and Method for Noninvasive Skin Tightening.
U.S. Appl. No. 14/685,390, filed Apr. 13, 2015, Energy-Based Tissue Tightening System.
U.S. Appl. No. 11/163,150, filed Oct. 6, 2005, Method and System for Photoaged Tissue.
U.S. Appl. No. 13/230,498, filed Sep. 12, 2011, Method and System for Photoaged Tissue.
U.S. Appl. No. 14/169,709, filed Jan. 31, 2014, Methods for Treating Skin Laxity.
U.S. Appl. No. 14/692,114, filed Apr. 21, 2015, Systems for Treating Skin Laxity.
U.S. Appl. No. 15/248,407, filed Aug. 26, 2016, Systems for Treating Skin Laxity.
U.S. Appl. No. 15/625,700, filed Jun. 16, 2017, Systems for Treating Skin Laxity.
U.S. Appl. No. 15/821,070, filed Nov. 22, 2017, Ultrasound Probe for Treating Skin Laxity.
U.S. Appl. No. 15/996,255, filed Jun. 1, 2018, Ultrasound Probe for Treating Skin Laxity.
U.S. Appl. No. 16/284,907, filed Feb. 25, 2019, Ultrasound Probe for Treating Skin Laxity.
U.S. Appl. No. 11/163,176, filed Oct. 7, 2005, Method and System for Treating Blood Vessel Disorders.
U.S. Appl. No. 13/601,742, filed Aug. 31, 2012, Method and System for Treating Blood Vessel Disorders.
U.S. Appl. No. 12/574,512, filed Oct. 6, 2009, Method and System for Treating Stretch Marks.
U.S. Appl. No. 14/554,668, filed Nov. 26, 2014, Method and System for Treating Stretch Marks.
U.S. Appl. No. 15/260,825, filed Sep. 12, 2016, Method and System for Ultrasound Treatment of Skin.
U.S. Appl. No. 15/625,818, filed Jun. 16, 2017, Method and System for Ultrasound Treatment of Skin.
U.S. Appl. No. 15/829,182, filed Dec. 1, 2017, Ultrasound Probe for Treatment of Skin.
U.S. Appl. No. 15/996,263, filed Jun. 1, 2018, Ultrasound Probe for Treatment of Skin.
U.S. Appl. No. 16/284,920, filed Feb. 25, 2019, Ultrasound Probe for Treatment of Skin.
U.S. Appl. No. 11/857,989, filed Sep. 19, 2007, Method and System for Treating Muscle, Tendon, Ligament and Cartilage Tissue.
U.S. Appl. No. 13/494,856, filed Jun. 12, 2012, Method and System for Treating Muscle, Tendon, Ligament and Cartilage Tissue.
U.S. Appl. No. 16/835,635, filed Mar. 15, 2013, Methods for Face and Neck Lifts.
U.S. Appl. No. 13/965,471, filed Aug. 13, 2013, Methods for Preheating Tissue for Cosmetic Treatment of the Face and Body.
U.S. Appl. No. 14/740,092, filed Jun. 15, 2015, Methods for Rejuvenating Skin by Heating Tissue for Cosmetic Treatment of the Face and Body.
U.S. Appl. No. 15/862,400, filed Jan. 4, 2018, Rejuvenating Skin by Heating Tissue for Cosmetic Treatment of the Face and Body.
U.S. Appl. No. 16/409,678, filed May 10, 2019, Rejuvenating Skin by Heating Tissue for Cosmetic Treatment of the Face and Body.
U.S. Appl. No. 14/628,198, filed Feb. 20, 2015, System and Method for Treating Cartilage and Injuries to Joints and Connective Tissue.
U.S. Appl. No. 14/554,571, filed Nov. 26, 2014, Methods for Face and Neck Lifts.
U.S. Appl. No. 15/248,454, filed Aug. 26, 2016, Methods for Face and Neck Lifts.
U.S. Appl. No. 16/049,293, filed Jul. 30, 2018, Methods for Face and Neck Lifts.
U.S. Appl. No. 16/697,970, filed Nov. 27, 2019, Methods for Lifting Skin Tissue.
U.S. Appl. No. 12/954,484, filed Nov. 24, 2010, Methods and Systems for Generating Thermal Bubbles for Improved Ultrasound Imaging and Therapy.
U.S. Appl. No. 12/350,383, filed Jan. 8, 2009, Method and System for Treating Acne and Sebaceous Glands.
U.S. Appl. No. 12/116,845, filed May 7, 2008, Method and System for Combined Energy Profile.
U.S. Appl. No. 14/643,749, filed Mar. 10, 2015, Method and System for Combined Energy Profile.
U.S. Appl. No. 08/766,083, filed Dec. 16, 1996, Method and Apparatus for Surface Ultrasound Imaging.
U.S. Appl. No. 09/113,227, filed Jul. 10, 1998, Method and Apparatus for Three Dimensional Ultrasound Imaging.
U.S. Appl. No. 08/944,261, filed Oct. 6, 1997, Wideband Acoustic Transducer.
U.S. Appl. No. 09/434,078, filed Nov. 5, 1999, Method and Apparatus for Three Dimensional Ultrasound Imaging.
U.S. Appl. No. 09/523,890, filed Mar. 13, 2000, Method and Apparatus for Three Dimensional Ultrasound Imaging.
U.S. Appl. No. 09/419,543, filed Oct. 18, 1999, Peripheral Ultrasound Imaging System.
U.S. Appl. No. 09/750,816, filed Dec. 28, 2000, Visual Imaging System for Ultrasonic Probe.
U.S. Appl. No. 10/358,110, filed Feb. 4, 2003, Visual Imaging System for Ultrasonic Probe.
U.S. Appl. No. 11/380,161, filed Apr. 25, 2006, Method and System for Enhancing Computer Peripheral Safety.
U.S. Appl. No. 11/554,272, filed Oct. 30, 2006, Visual Imaging System for Ultrasonic Probe.
U.S. Appl. No. 13/071,298, filed Mar. 24, 2011, Visual Imaging System for Ultrasonic Probe.
U.S. Appl. No. 13/854,936, filed Mar. 25, 2013, Visual Imaging System for Ultrasonic Probe.
U.S. Appl. No. 12/509,254, filed Jul. 24, 2009, Method and System for Enhancing Computer Peripheral Safety.
U.S. Appl. No. 13/453,847, filed Apr. 23, 2012, Method and System for Enhancing Computer Peripheral Safety.
U.S. Appl. No. 11/538,794, filed Oct. 4, 2006, Ultrasound System and Method for Imaging and/or Measuring Displacement of Moving Tissue and Fluid.
U.S. Appl. No. 09/502,175, filed Feb. 10, 2000, Method and Apparatus for Safely Delivering Medicants to a Region of Tissue, Using Imaging, Therapy and Temperature Monitoring.
U.S. Appl. No. 08/943,728, filed Oct. 3, 1997, Method and Apparatus for Safely Delivering Medicants to a Region of Tissue Using Ultrasound.
U.S. Appl. No. 12/415,945, filed Mar. 31, 2009, Method and System for Noninvasive Mastopexy.
U.S. Appl. No. 11/163,155, filed Oct. 6, 2005, Method and System for Noninvasive Mastopexy.
U.S. Appl. No. 11/163,154, filed Oct. 6, 2005, Method and System for Treatment of Cellulite.
U.S. Appl. No. 13/356,405, filed Jan. 23, 2012, Method and System for Treatment of Cellulite.
U.S. Appl. No. 13/789,562, filed Mar. 7, 2013, Method and System for Ultrasound Treatment of Fat.
U.S. Appl. No. 14/164,598, filed Jan. 27, 2013, Method for Fat and Cellulite Reduction.
U.S. Appl. No. 14/550,720, filed Nov. 21, 2014, System and Method for Fat and Cellulite Reduction.
U.S. Appl. No. 15/041,829, filed Feb. 11, 2016, System and Method for Fat and Cellulite Reduction.
U.S. Appl. No. 15/374,918, filed Dec. 9, 2016, System and Method for Fat and Cellulite Reduction.
U.S. Appl. No. 15/650,246, filed Jul. 14, 2017, System and Method for Fat and Cellulite Reduction.
U.S. Appl. No. 15/821,281, filed Nov. 22, 2017, Ultrasound Probe for Fat and Cellulite Reduction.
U.S. Appl. No. 15/996,295, filed Jun. 1, 2018, Ultrasound Probe for Fat and Cellulite Reduction.
U.S. Appl. No. 16/272,453, filed Feb. 11, 2019, Ultrasound Probe for Tissue Treatment.
U.S. Appl. No. 16/794,717, filed Feb. 19, 2020, Ultrasound Probe for Tissue Treatment.
U.S. Appl. No. 11/738,682, filed Apr. 23, 2007, Method and System for Non-Ablative Acne Treatment and Prevention.
U.S. Appl. No. 12/116,810, filed May 7, 2008, Methods and Systems for Modulating Medicants Using Acoustic Energy.
U.S. Appl. No. 12/116,828, filed May 7, 2008, Methods and Systems for Coupling and Focusing Acoustic Energy Using a Coupler Member.
U.S. Appl. No. 12/646,609, filed Dec. 23, 2009, Methods and System for Fat Reduction and/or Cellulite Treatment.
U.S. Appl. No. 14/192,520, filed Feb. 27, 2014, Energy Based Fat Reduction.
U.S. Appl. No. 14/550,772, filed Nov. 21, 2014, Energy Based Fat Reduction.
U.S. Appl. No. 15/401,804, filed Feb. 11, 2016, Energy Based Fat Reduction.
U.S. Appl. No. 15/380,267, filed Dec. 15, 2016, Energy Based Fat Reduction.
U.S. Appl. No. 15/650,525, filed Jul. 18, 2017, Energy Based Fat Reduction.
U.S. Appl. No. 15/829,175, filed Dec. 1, 2017, Energy Based Fat Reduction.
U.S. Appl. No. 15/996,249, filed Jun. 1, 2018, Energy Based Fat Reduction.
U.S. Appl. No. 16/272,427, filed Feb. 11, 2019, Energy Based Fat Reduction.
U.S. Appl. No. 13/291,312, filed Nov. 11, 2011, Devices and Methods for Acoustic Shielding.
U.S. Appl. No. 14/487,504, filed Sep. 16, 2014, Devices and Methods for Acoustic Shielding.
U.S. Appl. No. 13/136,538, filed Aug. 2, 2011, Systems and Methods for Treating Acute and/or Chronic Injuries in Soft Tissue.
U.S. Appl. No. 13/136,542, filed Aug. 2, 2011, System and Method for Treating Cartilage.
U.S. Appl. No. 13/163,541, filed Aug. 2, 2011, Methods and Systems for Treating Plantar Fascia.
U.S. Appl. No. 13/136,544, filed Aug. 2, 2011, Systems and Methods for Ultrasound Treatment.
U.S. Appl. No. 13/547,023, filed Jul. 11, 2012, Systems and Methods for Coupling an Ultrasound Source to Tissue.
U.S. Appl. No. 13/545,931, filed Jul. 10, 2012, Methods and Systems for Controlling Acoustic Energy Deposition Into a Medium.
U.S. Appl. No. 13/545,953, filed Jul. 10, 2012, Systems and Methods for Accelerating Healing of Implanted Material and/or Native Tissue.
U.S. Appl. No. 13/547,011, filed Jul. 11, 2012, Systems and Methods for Monitoring and Controlling Ultrasound Power Output and Stability.
U.S. Appl. No. 13/545,954, filed Jul. 10, 2012, Systems and Methods for Improving an Outside Appearance of Skin Using Ultrasound as an Energy Source.
U.S. Appl. No. 13/545,945, filed Jul. 10, 2012, Systems and Methods for Treating Injuries to Joints and Connective Tissue.
U.S. Appl. No. 13/545,929, filed Jul. 10, 2012, Methods and Systems for Ultrasound Treatment.
U.S. Appl. No. 13/863,249, filed Apr. 15, 2013, Systems for Cosmetic Treatment.
U.S. Appl. No. 13/863,281, filed Apr. 15, 2013, Methods for Non-invasive Cosmetic Treatment.
U.S. Appl. No. 14/847,626, filed Sep. 8, 2015, Systems for Cosmetic Treatment.
U.S. Appl. No. 13/863,362, filed Apr. 15, 2013, Thick Film Transducer Arrays.
U.S. Appl. No. 14/217,110, filed Mar. 17, 2014, Ultrasound Treatment Device and Method of Use.
U.S. Appl. No. 14/217,382, filed Mar. 17, 2014, Ultrasound Treatment Device and Method of Use.
U.S. Appl. No. 14/225,189, filed Mar. 25, 2014, Reflective Ultrasound Technology for Dermatological Treatments.
U.S. Appl. No. 15/345,908, filed Nov. 8, 2016, Reflective Ultrasound Technology for Dermatological Treatments.
U.S. Appl. No. 15/719,377, filed Sep. 28, 2017, Reflective Ultrasound Technology for Dermatological Treatments.
U.S. Appl. No. 14/270,859, filed May 6, 2014, Methods and Systems for Generating Thermal Bubbles for Improved Ultrasound Imaging and Therapy.
U.S. Appl. No. 14/679,494, filed Apr. 6, 2015, Methods and Systems for Generating Thermal Bubbles for Improved Ultrasound Imaging and Therapy.
U.S. Appl. No. 14/405,368, filed Dec. 3, 2014, Devices and Methods for Ultrasound Focal Depth Control.
U.S. Appl. No. 14/568,954, filed Dec. 12, 2014, System and Method for Cosmetic Enhancement of Lips.
U.S. Appl. No. 14/569,001, filed Dec. 12, 2014, System and Method for Non-Invasive Treatment With Improved Efficiency.
U.S. Appl. No. 14/600,782, filed Jan. 20, 2015, Methods and Systems for Controlling and Acoustic Energy Deposition in Various Media.
U.S. Appl. No. 14/738,420, filed Jun. 12, 2015, Systems and Methods for Fast Ultrasound Treatment.
U.S. Appl. No. 14/751,349, filed Jun. 26, 2015, Methods and Systems for Tattoo Removal.
U.S. Appl. No. 15/001,712, filed Jan. 20, 2016, Methods and Systems for Removal of a Targeted Tissue from a Body.
U.S. Appl. No. 15/001,621, filed Jan. 20, 2016, Methods and Systems for Removal of a Foreign Object from Tissue.
U.S. Appl. No. 15/059,773, filed Mar. 3, 2016, Methods and Systems for Material Transport Across an Impermeable or Semi-Permeable Membrane via Artificially Created Microchannels.
U.S. Appl. No. 15/094,774, filed Apr. 8, 2016, System and Method for Increased Control of Ultrasound Treatments.
Adams et al., “High Intensity Focused Ultrasound Ablation of Rabbit Kidney Tumors” Sonablate High-Intensity Focused Ultrasound device; Journal of Endourology vol. 10, No. 1, (Feb. 1996).
Agren, Magnus S. et al., Collagenase in Wound Healing: Effect of Wound Age and Type. The Journal of Investigative Dermatology, vol. 99/No. 6, (Dec. 1992).
Alam, M., “The future of noninvasive procedural dermatology”. Semin Cutan Med Surg. Mar. 2013; 32(1):59-61.
Alam, M., et al., “Ultrasound tightening of facial and neck skin: a rater-blinded prospective cohort study”. J Am Acad Dermatol, 2010. 62(2): p. 262-9.
Alexiades-Armenakas, M., “Ultrasound Technologies for Dermatologic Techniques”. J Drugs Derm. 2014. 12 (11): p. 1305.
Alster, T.S., et. al., “Noninvasive lifting of arm, thigh, and knee skin with transcutaneousintense focused ultrasound”. Dermatol Surg, 2012. 38(5): p. 754-9.
Alster, Tinas S., Tanzi, Elizabeth L., “Cellulite Treatment using a Novel Combination Radiofrequency, Infrared Light, and Mechanical Tissue Manipulation Device,” Journal of Cosmetic & Laser Therapy, Jun. 2005, vol. 7, Issue 2, pp. 81-85.
Arosarena, O., “Options and Challenges for Facial Rejuvenation in Patients With Higher Fitzpatrick Skin Phototypes”. JAMA Facial Plastic Surgery, 2015.
Arthur et al., “Non-invasive estimation of hyperthermia temperatures with ultrasound,” Int. J. Hyperthermia, Sep. 2005, 21(6), pp. 589-600.
Barthe et al., “Ultrasound therapy system and ablation results utilizing miniature imaging/therapy arrays,” Ultrasonics Symposium, 2004 IEEE, Aug. 23, 2004, pp. 1792-1795, vol. 3.
Bozec, Laurent et al., Thermal Denaturation Studies of Collagen by Microthermal Analysis and Atomic Force Microscopy, Biophysical Journal, vol. 101, pp. 228-236. (Jul. 2001).
Brobst, R.W., et. al., “Noninvasive Treatment of the Neck”. Facial Plast Surg Clin North Am, 2014. 22(2): p. 191-202.
Brobst, R.W., et., al., “Ulthera: initial and six month results”. Facial Plast Surg Clin North Am, 2012. 20(2): p. 163-76.
Brown J A et al: “Fabrication and performance of 40-60 MHz annular arrays”, 2003 IEEE Ultrasonics Symposium Proceedings. Honolulu, Hawaii, Oct. 5-8, 2003; [IEEE Ultrasonics Symposium Proceedings], New York, NY : IEEE, US, vol. 1, Oct. 5, 2003 (Oct. 5, 2003), pp. 869-872.
Calderhead et al., “One Mechanism Behind LED Photo-Therapy for Wound Healing and Skin Rejuvenation: Key Role of the Mast Cell” Laser Therapy 17.3: 141-148 (2008).
Carruthers et al., “Consensus Recommendations for Combined Aesthetic Interventions in the Face Using Botulinum Toxin, Fillers,and Energy-Based Devices” Dermatol Surg 2016 (pp. 1-12).
Casabona, G., et. al., “Microfocused Ultrasound with Visualization and Calcium Hydroxylapatite for Improving Skin Laxity and Cellulite Appearance”; Plast Reconstr Surg Glob Open. Jul. 25, 2017;5(7):e1388, 8 pages.
Casabona, G., et. al., “Microfocused Ultrasound With Visualization and Fillers for Increased Neocollagenesis: Clinical and Histological Evaluation”. Dermatol Surg 2014;40:S194-S198.
Chan, N.P., et al., “Safety study of transcutaneous focused ultrasound for non-invasive skin tightening in Asians”. Lasers Surg Med, 2011. 43(5): p. 366-75.
Chapelon et al., “Effects of Cavitation In The High Intensity Therapeutic Ultrasound”, Ultrasonics Symposium—1357 (1991).
Chapelon, et al., “Thresholds for Tissue Ablation by Focused Ultrasound” (1990).
Chen, L. et al., “Effect of Blood Perfusion on the ablation of liver parenchyma with high intensity focused ultrasound,” Phys. Med. Biol; 38:1661-1673; 1993b.
Coon, Joshua et al., “Protein identification using sequential ion/ion reactions and tandem mass spectrometry” Proceedings of the National Academy of Sciences of the USA, vol. 102, No. 27, Jul. 27, 2005, pp. 9463-9468.
Corry, Peter M., et al., “Human Cancer Treatment with Ultrasound”, IEEE Transactions on Sonics and Ultrasonics, vol. SU-31, No. 5, Sep. 1984, pp. 444, 456.
Damianou et al., “Application of the Thermal Dose Concept for Predicting the Necrosed Tissue Volume During Ultrasound Surgery,” 1993 IEEE Ultrasound Symposium, pp. 1199-1202.
Daum et al., Design and Evaluation of a Feedback Based Phased Array System for Ultrasound Surgery, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 45, No. 2, Mar. 1998, pp. 431-438.
Davis, Brian J., et al., “An Acoustic Phase Shift Technique for the Non-lnvasive Measurement of Temperature Changes in Tissues”, 1985 Ultrasonics Symposium, pp. 921-924.
Dayan, S.H., et al., “Prospective, Multi-Center, Pivotal Trial Evaluating the Safety and Effectiveness of Micro-Focused Ultrasound with Visualization (MFU-V) for Improvement in Lines and Wrinkles of the Decolletage”. Plast Reconstr Surg. Oct. 2014; 134(4 Suppl 1):123-4.
Decision of the Korean Intellectual Property Tribunal dated Jun. 28, 2013 regarding Korean Patent No. 10-1142108, which is related to the pending application and/or an application identified in the Table on pp. 1-4 of the Information Disclosure Statement herein (English translation, English translation certification, and Korean decision included).
Delon Martin, C., et al., “Venous Thrombosis Generation by Means of High-Intensity Focused Ultrasound” Ultrasound in Med. & Biol., vol. 21, No. 1, pp. 113-119 (1995).
Dierickx, Christine C., “The Role of Deep Heating for Noninvasive Skin Rejuvenation” Lasers in Surgery and Medicine 38:799-807 (2006).
Dobke, M.K., et al., “Tissue restructuring by energy-based surgical tools”. Clin Plast Surg, 2012. 39(4): p. 399-408.
Dong, Yuan-Lin et al., “Effect of Ibuprofen on the Inflammatory Response to Surgical Wounds” The Journal of Trauma, vol. 35, No. 3. (1993).
Driller et al., “Therapeutic Applications of Ultrasound: A Review” IEEE Engineering in Medicine and Biology; (Dec. 1987) pp. 33-40.
Dvivedi, Sanjay, et al. “Effect of Ibuprofen and diclofenac sodium on experimental wound healing” Indian Journal of Experimental Biology, vol. 35, pp. 1243-1245. (Nov. 1997).
Fabi, S.G., “Microfocused Ultrasound With Visualization for Skin Tightening and Lifting: My Experience and a Review of the Literature”. Dermatol Surg. Dec. 2014; 40 Suppl 12:S164-7.
Fabi, S.G., “Noninvasive skin tightening: focus on new ultrasound techniques”. Clin Cosmet Investig Dermatol. Feb. 5, 2015; 8:47-52.
Fabi, S.G., et. al., “A prospective multicenter pilot study of the safety and efficacy of microfocused ultrasound with visualization for improving lines and wrinkles of the decollete”. Dermatol Surg. Mar. 2015; 41(3):327-35.
Fabi, S.G., et. al., “Evaluation of microfocused ultrasound with visualization for lifting, tightening, and wrinkle reduction of the decolletage”. J Am Acad Dermatol, 2013. 69(6): p. 965-71.
Fabi, S.G., et. al., “Future directions in cutaneous laser surgery”. Dermatol Clin, 2014. 32(1): p. 61-9.
Fabi, S.G., et. al., “Retrospective Evaluation of Micro-focused Ultrasound for Lifting and Tightening the Face and Neck”. Dermatol Surg, 2014.
Friedmann D.P., “Comments on evaluation of microfocused ultrasound system for improving skin laxity and tightening in the lower face”. Aesthet Surg J. Mar. 2015;35(3):NP81-2.
Friedmann, D.P., et. al., “Combination of intense pulsed light, Sculptra, and Ultherapy for treatment of the aging face”. J Cosmet Dermatol, 2014. 13(2): p. 109-18.
Fry, W.J et al., “Production of Focal Destructive Lesions in the Central Nervous System with Ultrasound,” J. Neurosurg., 11:471-478; 1954.
Fujimoto, et al., “A New Cavitation Suppression Technique for Local Ablation Using High-Intensity Focused Ultrasound” Ultrasonics Symposium—1629 (1995).
Gliklich et al., Clinical Pilot Study of Intense Ultrasound therapy to Deep Dermal Facial Skin and Subcutaneous Tissues, Arch Facial Plastic Surgery, Mar. 1, 2007, vol. 9, No. 1.
Gold, M.H., et. al., “Use of Micro-Focused Ultrasound with Visualization to Lift and Tighten Lax Knee Skin”. J Cosmet Laser Ther, 2014: p. 1-15.
Goldberg, D.J., et. al., “Safety and Efficacy of Microfocused Ultrasound to Lift, Tighten, and Smooth the Buttocks”. Dermatol Surg 2014; 40:1113-1117.
Greene, R.M., et al., “Skin tightening technologies”. Facial Plast Surg. Feb. 2014; 30(1):62-7.
Greenhalgh, David G., “Wound healing and diabetes mellitus” Clinics in Plastic Surgery 30; 37-45. (2003).
Guo, S et al., “Factors Affecting Wound Healing” Critical Reviews in Oral Biology & Medicine, J Dent Res 89(3), pp. 219-229. (2010).
Haar, G.R. et al., “Tissue Destruction with Focused Ultrasound in Vivo,” Eur. Urol. 23(suppl. 1):8-11; 1993.
Hantash, Basil M. et al., “Bipolar Fractional Radiofrequency Treatment Induces Neoelastogenesis and Neocollagenesis” Lasers in Surgery and Medicine 41:1-9 (2009).
Hantash, Basil M. et al., “In Vivo Histological Evaluation of a Novel Ablative Fractional Resurfacing Device” Lasers in Surgery and Medicine 39:96-107 (2007).
Harris, M.O., “Safety of Microfocused Ultrasound With Visualization in Patients With Fitzpatrick Skin Phototypes III to VI”. JAMA Facial Plast. Surg, 2015.
Hart, et. al., “Current Concepts in the Use of PLLA:Clinical Synergy Noted with Combined Use of Microfocused Ultrasound and Poly-l-Lactic Acid on the Face, Neck, and Decolletage”. Amer. Soc. Plast. Surg. 2015. 136; 180-187S.
Hassan et al., “Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods,” advanced in Polymer Science, 2000, pp. 37-65, vol. 153.
Hassan et al., “Structure and Morphology of Freeze/Thawed PVA Hydrogels,” Macromolecules, Mar. 11, 2000, pp. 2472-2479, vol. 33, No. 7.
Hexsel et al., “A Validated Photonumeric Cellulite Severity Scale”; J Eur Acad Dermatol Venereol. May 2009; 23(5):523-8, 6 pages.
Hitchcock, T.M et. al., “Review of the safety profile for microfocused ultrasound with Visualization”. Journal of Cosmetic Dermatology, 13, 329-335. (2014).
Husseini et al., “The Role of Cavitation in Acoustically Activated Drug Delivery,” J. Control Release, Oct. 3, 2005, pp. 253-261, vol. 107(2).
Husseini et al. “Investigating the mechanism of acoustically activated uptake of drugs from Pluronic micelles,” BMD Cancer 2002, 2:20k, Aug. 30, 2002, pp. 1-6.
Hynynen et al., Temperature Distributions During Local Ultrasound Induced Hyperthermia In Vivo, Ultrasonics Symposium—745 (1982).
Jeffers et al., “Evaluation of the Effect of Cavitation Activity on Drug-Ultrasound Synergisms,” 1993 IEEE Ultrasonics Symposium, pp. 925-928.
Jenne, J., et al., “Temperature Mapping for High Energy US-Therapy”, 1994 Ultrasonics Symposium, pp. 1879-1882.
Jeong, K.H., et al., “Neurologic complication associated with intense focused ultrasound”. J Cosmet Laser Ther, 2013.
Johnson, S.A., et al., “Non-Intrusive Measurement of Microwave and Ultrasound-Induced Hyperthermia by Acoustic Temperature Tomography”, Ultrasonics Symposium Proceedings, pp. 977-982. (1977).
Ketterling J. A. et al.: “Design and fabrication of a 40-MHz annular array transducer”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, IEEE, US, vol. 52, No. 4, Apr. 1, 2005 (Apr. 1, 2005), pp. 672-681.
Kim, H.J., et al., “Coagulation and ablation patterns of high-intensity focused ultrasound on a tissue mimicking phantom and cadaveric skin”. Laser Med Sci. Sep. 4, 2015.
Kornstein, A.N., “Ulthera for silicone lip correction”. Plast Reconstr Surg, 2012. 129(6): p. 1014e-1015e.
Kornstein, A.N., “Ultherapy shrinks nasal skin after rhinoplasty following failure of conservative measures”. Plast Reconstr Surg, 2013. 131(4): p. 664e-6e.
Krischak, G.D., et al., “The effects of non-steroidal anti-inflammatory drug application on incisional wound healing in rats” Journal of Wound Care, vol. 6, No. 2, (Feb. 2007).
Laubach, H.J., et. al., “Confined Thermal Damage with Intense Ultrasound (IUS)” [abstr.] American Society for Laser Medicine and Surgery Abstracts, p. 15 #43 (Apr. 2006).
Laubach, H.J., et. al., “Intense focused ultrasound: evaluation of a new treatment modality for precise microcoagulation within the skin”. Dermatol Surg, 2008. 34(5): p. 727-34.
Lee, H.J., et. al., “The efficacy and safety of intense focused ultrasound in the treatment of enlarged facial pores in Asian skin”. J Dermatolog Treat, 2014.
Lee, H.S., et. al., “Multiple Pass Ultrasound Tightening of Skin Laxity of the Lower Face and Neck”. Dermatol Surg, 2011.
Lin, Sung-Jan, et al., “Monitoring the thermally induced structural transitions of collagen by use of second-harmonic generation microscopy” Optics Letters, vol. 30, No. 6, (Mar. 15, 2005).
Macgregor J.L., et. al., “Microfocused Ultrasound for Skin Tightening”. Semin Cutan Med Surg 32:18-25. (2013).
Madersbacher, S. et al., “Tissue Ablation in Benign Prostatic Hyperplasia with High Intensity Focused Ultrasound,” Dur. Urol., 23 (suppl. 1):39-43; 1993.
Makin et al, “B-Scan Imaging and Thermal Lesion Monitoring Using Miniaturized Dual-Functionality Ultrasound Arrays,” Ultrasonics Symposium, 2004 IEEE, Aug. 23, 2004, pp. 1788-1791, vol. 3.
Makin et al., “Confirmed Bulk Ablation and Therapy Monitoring Using Intracorporeal Image-Treat Ultrasound Arrays,” 4th International Symposium on Therapeutic Ultrasound, Sep. 19, 2004.
Makin et al., “Miniaturized Ultrasound Arrays for Interstitial Ablation and Imaging,” UltraSound Med. Biol. 2005, Nov. 1, 2005, pp. 1539-1550, vol. 31(11).
Manohar et al., “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” Journal of Biomedical Optics, Nov./Dec. 2004, pp. 1172-1181, vol. 9, No. 6.
Mast et al, “Bulk Ablation of Soft Tissue with Intense Ultrasound; Modeling and Experiments,” J. Acoust. Soc. Am., Oct. 1, 2005, pp. 2715-2724, vol. 118(4).
Meshkinpour, Azin, et al., “Treatment of Hypertrophic Scars and Keloids With a Radiofrequency Device: A Study of Collagen Effects” Lasers in Surgery and Medicine 37:343-349 (2005).
Microchip microID 125 kHz EFID System Design Guide, Microchip Technology Inc. (2004).
Minkis, K., et. al., “Ultrasound skin tightening”. Dermatol Clin, 2014. 32(1): p. 71-7.
Mitragotri, S., “Healing sound: the use of ultrasound in drug delivery and other therapeutic applications,” Nature Reviews; Drug Delivery, pp. 255-260, vol. 4 (Mar. 2005).
Mosser, David M. et al., “Exploring the full spectrum of macrophage activation” Nat Rev Immunol; 8(12): 958-969. (Dec. 2008).
Murota, Sei-Itsu, et al., “Stimulatory Effect of Prostaglandins on the Production of Hexosamine-Containing Substances by Cultured Fibroblasts (3) Induction of Hyaluronic Acid Synthetase by Prostaglandin” Department of Pharmacology, Tokyo Metropolitan Institute of Gerontology, Itabashiku, Tokyo-173, Japan. (Nov. 1977, vol. 14, No. 5).
Murota, Sei-Itsu, et al., “The Stimulatory Effect of Prostaglandins on Production of Hexosamine-Containing Substances by Cultured Fibroblasts” Department of Pharmacology, Tokyo Metropolitan Institute of Gerontology, Itabashiku, Tokyo-173, Japan. (Aug. 1976, vol. 12, No. 2).
Nestor, M.S. et. al., “Safety and Efficacy of Micro-focused Ultrasound Plus Visualization for the Treatment of Axillary Hyperhidrosis”. J Clin Aesthet Dermatol, 2014. 7(4): p. 14-21.
Oni, G., et. al. “Response to ‘comments on evaluation of microfocused ultrasound system for improving skin laxity and tightening in the lower face’”. Aesthet Surg J. Mar. 2015;35(3):NP83-4.
Oni, G., et. al., “Evaluation of a Microfocused Ultrasound System for Improving Skin Laxity and Tightening in the Lower Face”. Aesthet Surg J, 2014. 38:861-868.
Pak, C.S., et. al., “Safety and Efficacy of Ulthera in the Rejuvenation of Aging Lower Eyelids: A Pivotal Clinical Trial”. Aesthetic Plast Surg, 2014.
Paradossi et al., “Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications,” Journal of Materials Science: Materials in Medicine, 2003, pp. 687-691, vol. 14.
Pritzker, R.N., et. al., “Updates in noninvasive and minimally invasive skin tightening”. Semin Cutan Med Surg. Dec. 2014;33(4):182-7.
Pritzker, R.N., et. al., “Comparison of different technologies for noninvasive skin tightening”. Journal of Cosmetic Dermatology, 13, 315-323. (2014).
Rappolee, Daniel A., et al., “Wound Macrophages Express TGF and Other Growth Factors in Vivo: Analysis by mRNA Phenotyping” Science, vol. 241, No. 4866 (Aug. 1988).
Reid, Gavin, et al., “Tandem Mass spectrometry of ribonuclease A and B: N-linked glycosylation site analysis of whole protein ions,” Analytical Chemistry. Feb. 1, 2002, vol. 74, No. 3, pp. 577-583.
Righetti et al, “Elastographic Characterization of HIFU-lnduced Lesions in Canine Livers,” 1999, Ultrasound in Med & Bio, vol. 25, No. 7, pp. 1099-1113.
Rokhsar, C., et. al., “Safety and efficacy of microfocused ultrasound in tightening of lax elbow skin”. Dermatol Surg. 2015; 41(7):821 -6.
Rosenberg, Carol S. “Wound Healing in the Patient with Diabetes Mellitus” Nursing Clinics of North America, vol. 25, No. 1, (Mar. 1990).
Saad et al., “Ultrasound-Enhanced Effects of Adriamycin Against Murine Tumors,” Ultrasound in Med. & Biol. vol. 18, No. 8, pp. 715-723 (1992).
Sabet-Peyman, E.J. et. al., “Complications Using Intense Ultrasound Therapy to TreatDeep Dermal Facial Skin and Subcutaneous Tissues”. Dermatol Surg 2014; 40:1108-1112.
Sandulache, Vlad C. et al., “Prostaglandin E2 inhibition of keloid fibroblast migration, contraction, and transforming growth factor (TGF)-B1-induced collagen synthesis” Wound Rep Reg 15 122-133, 2007. (2007).
Sanghvi, N.T., et al., “Transrectal Ablation of Prostate Tissue Using Focused Ultrasound,” 1993 Ultrasonics Symposium, IEEE, pp. 1207-1210.
Sasaki, G.H. et. al., “Clinical Efficacy and Safety of Focused-lmage Ultrasonography: A 2-Year Experience”. Aesthet Surg J, 2012.
Sasaki, G.H et al., “Microfocused Ultrasound for Nonablative Skin and Subdermal Tightening to the Periorbitum and Body Sites: Preliminary Report on Eighty-Two Patients”. Journal of Cosmetics, Dermatological Sciences and Applications, 2012, 2, 108-116.
Sassen, Sander, “ATI's R520 architecture, the new king of the hill?” http://www.hardwareanalysis.com/content/article/1813, Sep. 16, 2005, 2 pages.
Seip, Ralf, et al., “Noninvasive Detection of Thermal Effects Due to Highly Focused Ultrasonic Fields,” IEEE Symposium, pp. 1229-1232, vol. 2, Oct. 3-Nov. 1993.
Seip, Ralf, et al., “Noninvasive Estimation of Tissue Temperature Response to Heating Fields Using Diagnostic Ultrasound,” IEEE Transactions on Biomedical Engineering, vol. 42, No. 8, Aug. 1995, pp. 828-839.
Simon et al., “Applications of Lipid-Coated Microbubble Ultrasonic Contrast to Tumor Therapy,” Ultrasound in Med. & Biol. vol. 19, No. 2, pp. 123-125 (1993).
Sklar, L.R., et. al., “Use of transcutaneous ultrasound for lipolysis and skin tightening: a review”. Aesthetic Plast Surg, 2014. 38(2): p. 429-41.
Smith, Nadine Barrie, et al., “Non-invasive In Vivo Temperature Mapping of Ultrasound Heating Using Magnetic Resonance Techniques”, 1994 Ultrasonics Symposium, pp. 1829-1832, vol. 3.
Sonocare, Inc. Therapeutic Ultrasound System Model CST-100 Instruction Manual (1985).
Suh, D.H., et. al., “A intense-focused ultrasound tightening for the treatment of infraorbital laxity”. J Cosmet Laser Ther, 2012. 14(6): p. 290-5.
Suh, D.H., et. al., “Comparative histometric analysis of the effects of high-intensity focused ultrasound and radiofrequency on skin”. J Cosmet Laser Ther. Mar. 24, 2015:1 -7.
Suh, D.H., et. al., “Intense Focused Ultrasound Tightening in Asian Skin: Clinical and Pathologic Results” American Society for Dermatologic Surgery, Inc.; 37:1595-1602. (2011).
Surry et al., “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol., Dec. 6, 2004, pp. 5529-5546, vol. 49.
Syka J. E. P. et al., “Peptide and Protein Sequence Analysis by Electron Transfer Dissociation Mass Spectrometry,” Proceedings of the National Academy of Sciences of USA, National Academy of Science, Washington, DC, vol. 101, No. 26, Jun. 29, 2004, pp. 9528-9533.
Talbert, D. G., “An Add-On Modification for Linear Array Real-Time Ultrasound Scanners to Produce 3D Displays,” UTS Int'l 1977 Brighton, England (Jun. 28-30, 1977) pp. 57-67.
Tata et al., “Interaction of Ultrasound and Model Membrane Systems: Analyses and Predictions,” American Chemical Society, Phys. Chem. 1992, 96, pp. 3548-3555.
Ueno, S., et al., “Ultrasound Thermometry in Hyperthermia”, 1990 Ultrasonic Symposium, pp. 1645-1652.
Verhofstad, Michiel H.J. et al., “Collagen Synthesis in rat skin and ileum fibroblasts is affected differently by diabetes-related factors” Int. J. Exp. Path. (1998), 79, 321-328.
Wang, H., et al., “Limits on Focused Ultrasound for Deep Hyperthermia”, 1994 Ultrasonic Symposium, Nov. 1-4, 1994, pp. 1869-1872, vol. 3.
Wasson, Scott, “NVIDIA's GeForce 7800 GTX graphics processor Power MADD,” http://techreport.com/reviews/2005q2/geforce-7800gtx/index.x?pg=1, Jun. 22, 2005, 4 pages.
Webster et al. “The role of ultrasound-induced cavitation in the ‘in vitro’ stimulation of collagen synthesis in human fibroblasts”; Ultrasonics pp. 33-37(Jan. 1980).
Weiss, M., “Commentary: noninvasive skin tightening: ultrasound and other technologies: where are we in 2011?” Dermatol Surg, 2012. 38(1): p. 28-30.
White et al “Selective Creating of Thermal Injury Zones in the Superficial Musculoaponeurotic System Using Intense Ultrasound Therapy,” Arch Facial Plastic Surgery, Jan./Feb. 2007, vol. 9, No. 1 (pp. 22-29).
White, W. M., et al., “Selective Transcutaneous Delivery of Energy to Facial Subdermal Tissues Using the Ultrasound Therapy System” [abstr], American Society for Laser Medicine and Surgery Abstracts, p. 37 #113 (Apr. 2006).
White, W. Matthew, et al., “Selective Transcutaneous Delivery of Energy to Porcine Soft Tissues Using Intense Ultrasound (IUS)” Lasers in Surgery and Medicine 40:67-75 (2008).
Woodward, J.A., et. al. “Safety and Efficacy of Combining Microfocused Ultrasound With Fractional CO2 Laser Resurfacing for Lifting and Tightening the Face and Neck”. Dermatol Surg, Dec. 2014 40:S190-S193.
Zelickson, Brian D. et al., “Histological and Ultrastructural Evaluation of the Effects of a Radiofrequency-Based Nonablative Dermal Remodeling Device, A Pilot Study” Arch Dermatol, vol. 140, (Feb. 2004).
Ulthera, Inc., Petition for Inter Partes Review filed Jul. 19, 2016 in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 63 pages (Filed Jul. 19, 2016).
Ulthera Exhibit 1001, U.S. Pat. No. 6,113,559 to Klopotek, filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1002, Patent file history of U.S. Pat. No. 6,113,559 Klopotek filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1003, Declaration of Expert Witness Mark E. Schafer, Ph.D. filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1004, Curriculum Vitae of Mark E. Schafer, Ph.D. filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1005, International PCT Publication WO96/34568 Knowlton filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1006, French Patent No. 2,672,486, Technomed patent filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1007, English translation of French Patent No. 2,672,486, Technomed filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1008, International PCT Publication WO93/12742, Technomed PCT filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1009, English translation of International PCT Publication W093/12742, Technomed PCT filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1010, U.S. Pat. No. 5,601,526, which claims priority to Technomed PCT filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1011, Patent file history for European Patent Application No. 98964890.2, Klopotek filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1012, Translator Declaration filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1013, U.S. Pat. No. 5,230,334 to Klopotek filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1014, U.S. Pat. No. 5,755,753 to Knowlton filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1015, Excerpts from The American Medical Association Encyclopedia of Medicine (1989) filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1016, The Simultaneous Study of Light Emissions and Shock Waves Produced by Cavitation Bubbles, G. Gimenez, J. Acoust. Soc. Am. 71(4), Apr. 1982, pp. 839-847 (filed Jul. 19, 2016 in re IPR2016-01459).
Ulthera Exhibit 1017, Excerpts from Gray's Anatomy (1995) (filed Jul. 19, 2016 in re IPR2016-01459).
Ulthera Exhibit 1018, Anatomy of the Superficial Venous System, Comjen G.M., Dermatol. Surg., 1995; 21:35-45 (filed Jul. 19, 2016 in re IPR2016-01459).
Ulthera Exhibit 1019, Section 2.6 from Ultrasonics Theory and Application, by G.L. Gooberman (Hart Publishing Co., 1969) (filed Jul. 19, 2016 in re IPR2016-01459).
Ulthera Exhibit 1020, Deep Local Hyperthermia for Cancer Therapy: External Electromagnetic and Ultrasound Techniques, A.Y. Cheung and A. Neyzari, Cancer Research (Suppl.), vol. 44, pp. 4736-4744 (1984) (filed Jul. 19, 2016 in re IPR2016-01459).
Decision on Institution of Inter Partes Review in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 20 pages [011] (Dated Jan. 23, 2017).
DermaFocus Response to Institution of Inter Partes Review in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 73 pages [018] (Dated Apr. 26, 2017).
DermaFocus Exhibit List in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 5 pages [019] (Dated Apr. 26, 2017).
DermaFocus Exhibit 2002, Declaration of Mark Palmeri, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 136 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2003, Deposition of Dr. Mark Schafer, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 327 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2004, Amendment No. 4 to Ulthera Form S-1, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 308 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2005, Excerpt from Churchill Livingstone, Gray's Anatomy (38th ed. 1995), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 7 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2006, Bo Eklof et al., “Revision of the CEAP Classification for Chronic Venous Disorders: Consensus Statement,” ACTA FAC MED NAISS, vol. 25, No. 1 (2008), 3-10 in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 7 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2007, WebMD, “Varicose Veins and Spider Veins” downloaded from http://www.webmd.com/skin-problems-andtreatments/guide/varicose-spider-veins#1 in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 3 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2008, John M. Porter et al., “Reporting Standards in Venous Disease: An Update,” Journal of Vascular Surgery, vol. 21, No. 4 (1995), 635-645 in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 11 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2009, Kullervo Hynynen, “Review of Ultrasound Therapy,” 1997 Ultrasonics Symposium (1997), 1305-1313, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 9 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2010, A.G. Visioli et al., “Prelimiary Results of a Phase I Dose Escalation Clinical Trial Using Focused Ultrasound in the Treatment of Localised Tumours,” European Journal of Ultrasound, vol. 9 (1999), 11-18, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 8 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2011, U.S. Pat. No. 5,143,063, issued on Sep. 1, 1992, Fellner, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 6 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2012, Hugh G. Beebe et al., “Consensus Statement: Classification and Grading of Chronic Venous Disease in the Lower Limbs,” European Journal of Vascular and Endovascular Surgery, vol. 12 (1996), 487-492, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 6 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2013, Excerpt from Mosby's Medical Dictionary (3rd ed. 1990), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 4 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2014, Excerpt from Miller-Keane Encyclopedia & Dictionary of Medicine, Nursing, & Allied Health (5th ed. 1992), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 6 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2015, David J. Tibbs et al, Varicose Veins, Venous Disorders, and Lymphatic Problems in the Lower Limbs (1997), Chapter 4: Clinical Patterns of Venous Disorder I, 47-67, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 24 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2016, Mitchel P. Goldman et al., Varicose Veins and Telangiectasias (2nd ed. 1999), Chapter 22: Treatment of Leg Telangiectasias with Laser and High-Intensity Pulsed Light, 470-497, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 31 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2017, Email from Anderson to Klopotek dated May 25, 2004, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 1 page (Filed Apr. 26, 2017).
DermaFocus Exhibit 2018, List of Klopotek Patents, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 411 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2019, Declaration of Peter Klopotek Civil Action 15-cv-654-SLR, dated Nov. 2, 2016, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 1 page (Filed Apr. 26, 2017).
DermaFocus Exhibit 2020, “Our Technology,” downloaded from http://jobs.ulthera.com/about on Apr. 10, 2017, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 4 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2021, C. Damianou and K. Hynynen, “Focal Spacing and Near-Field Heating During Pulsed High Temperature Ultrasound Therapy,” Ultrasound in Medicine & Biology, vol. 19, No. 9 (1993), 777-787, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 11 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2022, Excerpt from Mosby's Medical Dictionary (5th ed. 1997), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 5 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2023, Excerpt from Miller-Keane Encyclopedia & Dictionary of Medicine, Nursing, & Allied Health (6th ed. 1997), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 7 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2024, Excerpt from Stedman's Concise Medical Dictionary (3 rd ed. 1997), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 4 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2025, Excerpt from Taber's Cyclopedic Medical Dictionary (18th ed. 1997), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 9 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2026, Bo Eklof et al., “Revision of the CEAP Classification for Chronic Venous Disorders: Consensus Statement,” Journal of Vascular Surgery, vol. 40, No. 6 (2004), 1248-1252.el, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 6 pages (Filed Apr. 26, 2017).
Ulthera, Inc., Reply in Support of Petition for Inter Partes Review in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 33 pages (Filed Aug. 2, 2017).
Ulthera Exhibit 1022, Use of the Argon and Carbon Dioxide Lasers for Treatment of Superficial Venous Varicosities of the Lower Extremity, D. Apfelberg et al., Lasers in Surgery and Medicine, vol. 4.3, pp. 221-231 (1984) (filed Aug. 2, 2017 in re IPR2016-01459).
Ulthera Exhibit 1023, 532-Nanometer Green Laser Beam Treatment of Superficial Varicosities of the Lower Extremities, T. Smith et al., Lasers in Surgery and Medicine, vol. 8.2, pp. 130-134 (1988) (filed Aug. 2, 2017 in re IPR2016-01459).
Ulthera Exhibit 1024, Deposition Transcript of Dr. Mark Palmeri on Jul. 11, 2017 (filed Aug. 2, 2017 in re IPR2016-01459).
Ulthera Exhibit 1025, Ulthera Oral Proceeding Demonstrative Slides (filed Oct. 2, 2017 in re IPR2016-01459).
DermaFocus Exhibit 2027, DermaFocus Oral Proceeding Demonstrative Slides (filed Oct. 2, 2017 in re IPR2016-01459).
PTAB Record of Oral Hearing held Oct. 4, 2017 in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 67 pages (PTAB Document sent to Ulthera on Nov. 1, 2017).
Final Written Decision of Inter Partes Review in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 37 pages [030] (Entered Jan. 19, 2018).
Ulthera, Inc., Petitioner Notice of Appeal to Federal Circuit 2018-1542 re: IPR2016-01459; 4 pages from [001] (No. appendices) (Filed Feb. 9, 2018).
Federal Circuit Order Granting Ulthera Motion to Remand, re: 2018-1542; 4 pages [022] (Dated May 25, 2018).
Ulthera Brief (Corrected), Fed. Cir. Appeal Case 19-1006 from re: IPR2016-01459; 136 pages [030] (Dated Apr. 3, 2019).
DermaFocus Brief (Corrected), Fed. Cir. Appeal Case 19-1006 from re: IPR2016-01459; 73 pages [032] (Dated Apr. 4, 2019).
PCT/US2015/025581 International Search Report dated Jul. 14, 2015.
Supplemental European Search Report in EP15780378 dated Nov. 21, 2017.
Related Publications (1)
Number Date Country
20200188705 A1 Jun 2020 US
Provisional Applications (1)
Number Date Country
61981660 Apr 2014 US
Continuations (2)
Number Date Country
Parent 15855949 Dec 2017 US
Child 16797393 US
Parent 15302436 US
Child 15855949 US