Several embodiments of the present invention generally relate to noninvasive, semi-invasive, and/or invasive energy-based treatments to achieve cosmetic and/or medical effects. For example, some embodiments generally relate to devices, systems and methods with linear, curved, planar, and/or three-dimensional ultrasound treatment focus zones for performing various treatment procedures safely and effectively. Various embodiments of a treatment system can improve cosmetic results and patient outcomes through reduced treatment time and/or reduced treatment energy, which can increase comfort and cosmetic outcomes. In various embodiments, ultrasound transducers have treatment focus zones in the form of one or more lines, belts, bands, and/or planes.
Many cosmetic procedures involve invasive procedures that may require invasive surgery, which can places more requirements on biocompatibility and sterility. Patients not only have to endure weeks of recovery time, but also are frequently required to undergo risky anesthetic procedures for aesthetic treatments. Traditional cosmetic procedures involving piercing or cutting the skin surface to access target tissue under the skin surface tend to involve higher requirements on biocompatibility and sterility. Certain traditional energy based treatments, such as with radio-frequency (RF) and laser treatments must heat or treat tissue starting from the skin surface affecting all the intermediary tissue between the skin surface and a target tissue at a depth under the skin surface.
Although energy-based treatments have been disclosed for cosmetic and medical purposes, no procedures are known to Applicant, other that Applicant's own work, that successfully achieve an aesthetic tissue heating and/or treatment effect using targeted and precise ultrasound to cause a visible and effective cosmetic results via a thermal pathway by using band shaped treatment focus zone techniques to expand the area and volume of tissue treated at a specific, targeted area. Treatment can include heating, coagulation, and/or ablation (including, for example, hyperthermia, thermal dosimetry, apoptosis, and lysis). In various embodiments, band treatment provides improved thermal heating and treatment of tissue compared to diathermy or general bulk heating techniques. In various embodiments, band treatment provides the capability of heating and/or treating tissue at specific depth ranges without affecting proximal tissues. In general, diathermy and bulk heating techniques usually involve heating a skin surface and conducting the heat through the skin surface and all underlying tissue to reach a tissue at a target depth below the skin surface. In various embodiments, band treatment provides targeted heating and treatment at a specific, prescribed depth range below the skin surface without heating the skin surface and/or intermediary tissue between the skin surface and the target tissue. This offset band treatment reduces damage and associated pain at the skin surface, and treats tissue only at the prescribed, targeted tissue depth. Thus, embodiments of the present invention can be used to treat tissue in a specific range of depths below the skin surface without heating the skin surface. In some embodiments, band treatment can also be used to prepare tissue at target depths for a second, ultrasound treatment by pre-heating the target tissue to an elevated temperature so the secondary treatment can be performed with reduced time and/or energy and increased comfort.
In accordance with various embodiments, a cosmetic ultrasound treatment system and/or method can non-invasively produce single or multiple cosmetic treatment zones and/or thermal treatment points, lines, bands, belts, planes, areas, volumes, and/or shapes, where ultrasound is focused in one or more locations in a region of treatment in tissue at one or more depths under a skin surface. Some systems and methods provide cosmetic treatment at different locations in tissue, with treatment areas at various depths, heights, widths, and/or positions. In one embodiment, a method and system comprise a transducer system configured for providing ultrasound treatment to more than one region of interest, such as between at least two treatment positions and/or regions of interest. In one embodiment, a method and system comprise a transducer system configured for providing ultrasound treatment to more than one region of interest, such as between at least two lines in various locations (e.g. at a fixed or variable depth, height, width, orientation, etc.) in a region of interest in tissue. In various embodiments, lines can be straight, curved, continuous, and/or non-continuous. In some embodiments, the energy beam is split to focus at two, three, four, or more focal zones (e.g., multiple focal lines, multi-focal lines) for cosmetic treatment zones and/or for imaging in a region of interest in tissue. Position of the focal zones can be positioned axially, laterally, or otherwise within the tissue. Some embodiments can be configured for spatial control, such as by the location of a focus line, changing the distance or angle between a transducer and an optional motion mechanism, and/or changing the angles of energy focused or unfocused to the region of interest, and/or configured for temporal control, such as by controlling changes in the frequency, drive amplitude and timing of the transducer. In some embodiments the position of multiple treatment zones can be enabled through poling, phasic poling, biphasic poling, and/or multi-phasic poling. As a result, changes in the location of the treatment region, the number, shape, size and/or volume of treatment zones, heating zones, and/or lesions in a region of interest, as well as the thermal conditions, can be dynamically controlled over time. Additional details regarding poling and modulation are disclosed in U.S. application Ser. No. 14/193,234 filed on Feb. 28, 2014 and published as U.S. Publication No. 2014-0257145, which is incorporated in its entirety by reference herein.
In one embodiment, an aesthetic imaging and treatment system includes a hand held probe with a housing that encloses an ultrasound transducer configured to apply ultrasound therapy to tissue at a focal zone. In one embodiment, the focal zone is a line. In one embodiment, the focal zone is a two dimensional region or plane. In one embodiment, the focal zone is a volume. In various embodiments, the focal zone treats a treatment area that is linear, curved, rectangular, and/or planar. In various embodiments, the size of the treatment area depends on the size of the transducer. The treatment can be performed in lines and/or planes. In various embodiments, the width of the treatment focal zone is 5-50 mm, 5-30 mm, 5-25 mm, 10-25 mm, 10 mm-15 mm, 15 mm-20 mm, 10 mm, 15 mm, 20 mm, 25 mm, or any range therein (including but not limited to 12 mm-22 mm). In various embodiments, a focal zone can be moved to sweep a volume between a first position and a second position. In various embodiments, one or more a focal zone locations are positioned in a substantially linear sequence within a cosmetic treatment zone. In various embodiments, one or more a focal zone locations are positioned with one, two, or more motion mechanisms to form any shape for a treatment area within a cosmetic treatment zone. In one embodiment, a first set of locations is positioned within a first cosmetic treatment zone and a second set of locations is positioned within a second cosmetic treatment zone, the first zone being different from the second zone. In one embodiment, the first cosmetic treatment zone includes a substantially linear sequence of the first set of locations and the second cosmetic treatment zone includes a substantially linear sequence of the second set of locations. In some non-limiting embodiments transducers can be configured for a treatment zone at a tissue depth below a skin surface of 1.5 mm, 3 mm, 4.5 mm, 6 mm, less than 3 mm, between 1.5 mm and 3 mm, between 1.5 mm and 4.5 mm, more than more than 4.5 mm, more than 6 mm, and anywhere in the ranges of 0.1 mm-3 mm, 0.1 mm-4.5 mm, 3 mm-7 mm, 3 mm-9 mm, 0.1 mm-25 mm, 0.1 mm-100 mm, and any depths therein (including, for example, 4.5 mm-6 mm, 1 mm-20 mm, 1 mm-15 mm, 1 mm-10 mm, 5 mm-25 mm, and any depths therein). In one embodiment, cosmetic treatment zones are continuous. In one embodiment, cosmetic treatment zones have no spacing. In one embodiment, a sequence of individual cosmetic treatment zones with a treatment spacing in a range from about 0.05 mm to about 25 mm (e.g., 0.05-0.1 mm, 0.05-1 mm, 0.2-0.5 mm, 0.5-2 mm, 1-10 mm, 0.5-3 mm, 5-12 mm). In various embodiments, the treatment spacing has a constant pitch, a variable pitch, an overlapping pitch, and/or a non-overlapping pitch.
In one embodiment, the ultrasonic transducer is configured to provide therapeutic intensity on the transducer surface in a range of between about 1 W/cm2 to 100 W/cm2 (e.g., 1-50, 10-90, 25-75, 10-40, 50-80 W/cm2 and any ranges and values therein). In one embodiment, the ultrasonic transducer is configured to provide an acoustic power of the ultrasonic therapy in a range of between about 1 W to about 100 W and a frequency of about 1 MHz to about 10 MHz to thermally heat the tissue. In various embodiments, the transducer module is configured to provide an acoustic power of the ultrasonic therapy in a range of between about 1 W to about 100 W (e.g., 5-40 W, 10-50 W, 25-35 W, 35-60 W, 35 W, 40 W, 50 W, 60 W) and a frequency of about 1 MHz to about 10 MHz to thermally heat the tissue. In one embodiment, the acoustic power can be from a range of 1 W to about 100 W in a frequency range from about 1 MHz to about 12 MHz (e.g., 3.5 MHz, 4 MHz, 4.5 MHz, 7 MHz, 10 MHz, 3-5 MHz), or from about 10 W to about 50 W at a frequency range from about 3 MHz to about 8 MHz. In one embodiment, the acoustic power and frequencies are about 40 W at about 4.3 MHz and about 30 W at about 7.5 MHz. In various embodiments, the transducer module is configured to deliver energy with no pitch or a pitch of 0.1-2 mm (e.g., 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5 mm). In various embodiments, the pitch is constant or variable. In various embodiments, the transducer module is configured to deliver energy with an on-time of 10-500 ms (e.g., 30-100, 90-200, 30, 32, 35, 40, 50, 60, 64, 75, 90, 100, 112, 200, 300, 400 ms and any range therein). In various embodiments, the transducer module is configured to deliver energy with an off-time of 1-200 ms (e.g., 4, 10, 22, 45, 60, 90, 100, 150 ms and any range therein). In one embodiment, an acoustic energy produced by this acoustic power can be between about 0.01 joule (“J”) to about 10 J or about 2 J to about 5 J. In one embodiment, the acoustic energy is in a range less than about 3 J. In various embodiments, an acoustic energy produced by this acoustic power in a single dose pass can be between about 1-500 J (e.g., 20-310, 70, 100, 120, 140, 150, 160, 200, 250, 300, 350, 400, 450 J and any range therein). In various embodiments, a treatment can involve 1, 2, 3, 4, 5, 10 or more dose passes.
In several embodiments disclosed herein, non-invasive ultrasound is used to achieve one or more of the following effects: tissue heating, tissue pre-heating, a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a fat or adipose and/or cellulite reduction, a sun spot removal, an acne treatment, a pimple reduction. Treatment of the décolletage is provided in several embodiments. In another embodiment the system, device and/or method may be applied in the genital area (e.g., vaginal rejuvenation and/or vaginal tightening, such as for tightening the supportive tissue of the vagina). In several of the embodiments described herein, the procedure is entirely cosmetic and not a medical act. For example, in one embodiment, the methods described herein need not be performed by a doctor, but at a spa or other aesthetic institute. In some embodiments, a system can be used for the non-invasive cosmetic treatment of skin.
In one embodiment, a method of reducing variance in focal gain of a cylindrical ultrasound transducer includes providing a cylindrical transduction element comprising a convex surface and a concave surface, wherein one of the surfaces (e.g., the concave surface) comprises a plurality of electrodes (or e.g., electrical conductor or electrical material), and subsequently applying a current to the electrode, thereby directing ultrasound energy to a linear focal zone at a focal depth. The ultrasound energy produces a reduced variance in focal gain at the linear focal zone. The concave surface can be plated with silver. The convex surface can include an uncoated region and a plurality of coated regions. The plurality of coated regions can include fired silver to form the plurality of electrodes. The features on the convex surface can instead be on the concave surface.
In one embodiment, the reduction of edge noise facilitates the efficient and consistent treatment of tissue, wherein the cylindrical transduction element is configured to apply ultrasonic therapy to a linear tissue thermal treatment zone at a focal depth.
In one embodiment, the reduction of edge noise facilitates the efficient and consistent heating of a material, wherein the material is any one of the group consisting of a compound, an adhesive, and food.
In one embodiment, an ultrasound transduction system for reducing edge noise at a focal line includes a cylindrical transduction element and a power source configured to drive the cylindrical transduction element. The cylindrical transduction element is configured to apply ultrasonic energy to a linear focal zone at a focal depth. The cylindrical transduction element includes a convex surface and a concave surface. The concave surface is plated with an electrical conductor, such as silver. The convex surface includes an uncoated region and one or more coated regions, wherein the one or more coated regions includes silver to form an electrode. The power source is in electric communication with the electrode. The coated regions are configured to reduce variance in focal gain at the linear focal zone at the focal depth.
In one embodiment, an ultrasound transduction system for reducing edge noise at a focal line includes a cylindrical transduction element and a power source configured to drive the cylindrical transduction element. The cylindrical transduction element is configured to apply ultrasonic energy to a linear focal zone at a focal depth. The cylindrical transduction element includes a convex surface and a concave surface. The convex surface plated with silver. The concave surface includes an uncoated region and one or more coated regions, wherein the one or more coated regions includes silver to form an electrode. The power source is in electric communication with the electrode. The coated regions are configured to reduce variance in focal gain at the linear focal zone at the focal depth.
In one embodiment, a coated transducer for reducing variance in focal gain at a focal zone includes a cylindrical transduction element comprising a convex surface and a concave surface. The concave surface is plated with silver. The convex surface includes an uncoated region and a plurality of coated regions. The plurality of coated regions includes silver to form a plurality of electrodes. The cylindrical transduction element is configured to apply ultrasonic therapy to a linear focal zone at a focal depth. The coated regions are configured to reduce variance in focal gain at the linear focal zone.
In one embodiment, a coated transducer for reducing variance in focal gain at a focal zone includes a cylindrical transduction element comprising a convex surface and a concave surface. In one embodiment the convex surface is plated. In one embodiment the concave surface is plated. In one embodiment the concave surface includes an uncoated region and a plurality of coated regions. In one embodiment the convex surface includes an uncoated region and a plurality of coated regions. The plurality of coated regions includes a conductor to form a plurality of electrodes. The cylindrical transduction element is configured to apply ultrasonic therapy to a linear focal zone at a focal depth. The coated regions are configured to reduce variance in focal gain at the linear focal zone.
In one embodiment, an aesthetic treatment system includes a cylindrical transduction element comprising a convex surface and a concave surface. In one embodiment the concave surface is plated with silver to form an electrode. In one embodiment the convex surface is plated with silver to form an electrode. In one embodiment the convex surface includes an uncoated region and one or more coated regions, wherein the one or more coated regions includes silver to form an electrode. In one embodiment the concave surface includes an uncoated region and one or more coated regions, wherein the one or more coated regions includes silver to form an electrode. The cylindrical transduction element is configured to apply ultrasonic therapy to a linear tissue thermal treatment zone at a focal depth. The coated regions are configured to reduce variance in focal gain at the thermal treatment zone. The cylindrical transduction element is housed within an ultrasonic hand-held probe. In one embodiment, the ultrasonic probe includes a housing, the cylindrical transduction element, and a motion mechanism. The ultrasound transducer is movable within the housing. The motion mechanism is attached to the ultrasound transducer and configured to move the ultrasound transducer along a linear path within the housing.
In one embodiment, an aesthetic imaging and treatment system includes an ultrasonic probe that includes a housing, a coated ultrasound transducer, and a motion mechanism. The ultrasound transducer is movable within the housing, the ultrasound transducer including a cylindrical transduction element and an imaging element. The cylindrical transduction element is configured to apply ultrasonic therapy to a linear tissue thermal treatment zone at a focal depth. The cylindrical transduction element has an opening configured for placement of the imaging element. The cylindrical transduction element includes a convex surface and a concave surface. In one embodiment, the entire concave surface is plated with silver. In one embodiment, the entire convex surface is plated with silver. In one embodiment, the convex surface includes an uncoated portion and one or more coated regions. In one embodiment, the concave surface includes an uncoated portion and one or more coated regions. The coated region includes silver to form an electrode. The coated regions are configured to reduce variance in focal gain at the thermal treatment zone. The motion mechanism is attached to the ultrasound transducer and configured to move the ultrasound transducer along a linear path within the housing.
As provided herein, one of the surfaces of the transduction element (either the convex or the concave surface) is fully coated (or at least 90% coated) with an electrically conductive material (including but not limited to silver or another metal or alloy) and the other surface (either the convex or the concave surface) has regions (or a pattern or patchwork) of coated and uncoated portions that are coated with an electrically conductive material (including but not limited to silver or another metal or alloy). This, in several embodiments, can be advantageous because it facilitates uniform heating (e.g., reducing temperature spikes or fluctuations). In some embodiments, both surfaces (convex and concave surfaces) contain regions (or a pattern or patchwork) of coated and uncoated portions. Although convex and concave surfaces are described herein, one or both of these surfaces may be planar in some embodiments. Additionally, convex or concave surfaces as described herein may be multi-faceted (e.g., with multiple convexities and/or concavities) and also include surfaces with a curvature (e.g., one or more angles less than 180 degrees). In several embodiments, the pattern of coated and uncoated regions can include one, two or more coated regions and one, two or more uncoated regions, wherein the coated regions cover at least 60%, 70%, 80%, or 90% of the surfaces. Further, the uncoated region may be considered uncoated to the extent it does not have an electrically conductive coating—the uncoated region may have other types of surface coatings in certain embodiments.
In various embodiments, an ultrasound system includes a transducer with a transduction element (e.g., a flat, round, circular, cylindrical, annular, have rings, concave, convex, contoured or other shaped transduction element).
In various embodiments, an ultrasound transduction system, includes a transduction element (e.g., a cylindrical transduction element), and a power source configured to drive the transduction element, wherein the transduction element is configured to apply ultrasonic energy to a linear focal zone at a focal depth, wherein the transduction element comprises a first surface and a second surface, wherein the first surface comprises an electrically conductive coating, wherein the second surface comprises at least one electrically conductive coated region and at least one uncoated region that is not coated with an electrically conductive coating, wherein the at least one coated region on the second surface comprises a conductive material that forms an electrode when the power source is in electric communication with the at least one coated region, wherein the at least one coated region on the second surface is configured to reduce edge noise at the linear focal zone at the focal depth.
In various embodiments, an ultrasound transduction system includes a cylindrical transduction element and a power source configured to drive the cylindrical transduction element, wherein the cylindrical transduction element is configured to apply ultrasonic energy to a linear focal zone at a focal depth. In some embodiments, the cylindrical transduction element comprises a first surface and a second surface, wherein the first surface comprises a coating, wherein the second surface comprises at least one coated region and at least one uncoated region, wherein the at least one coated region on the second surface comprises a conductive material that forms an electrode when the power source is in electric communication with the at least one coated region, wherein the at least one coated region on the second surface is configured to reduce edge noise at the linear focal zone at the focal depth.
In an embodiment, the uncoated region does not comprise a conductive material. In an embodiment, the conductive material is a metal (e.g., silver, gold, platinum, mercury, and/or copper, or an alloy). In an embodiment, the first surface is a concave surface and the second surface is a convex surface. In an embodiment, the first surface is a convex surface and the second surface is a concave surface. In an embodiment, the cylindrical transduction element is housed within an ultrasonic hand-held probe, wherein the ultrasonic probe includes a housing, the cylindrical transduction element, and a motion mechanism, wherein the ultrasound transducer is movable within the housing, wherein the motion mechanism is attached to the ultrasound transducer and configured to move the ultrasound transducer along a linear path within the housing. In an embodiment, the motion mechanism automatically moves the cylindrical transduction element to heat a treatment area at the focal depth to a temperature in a range between 40-65 degrees Celsius (e.g., 40-45, 40-50, 40-55, 45-60, 45-55, 45-50 degrees Celsius, and any values therein). In an embodiment, the reduction of edge noise facilitates the production of a uniform (e.g., completely uniform, substantially uniform, about uniform) temperature in a treatment area. In an embodiment, the reduction of edge noise facilitates the efficient and consistent treatment of a tissue, wherein the cylindrical transduction element is configured to apply ultrasonic therapy to a treatment zone at the focal depth in the tissue. In an embodiment, the reduction of edge noise reduces a peak such that a variance around the focal depth is reduced by 75-200% (e.g., 75-100, 80-150, 100-150, 95-175%, and any values therein). In an embodiment, the reduction of edge noise reduces a peak such that a variance of an intensity around the focal depth is 5 mm or less (e.g., 4.5, 4, 3.5, 3, 2.5, 2, 1.5, 1, 0.5 or less). In an embodiment, the reduction of edge noise reduces a variance in focal gain in a range of 0.01-10 (e.g., 1-5, 2-8, 0.5-3, and any any values therein). In an embodiment, the power source is configured to drive the cylindrical transduction element to produce a temperature in a range of 42-55 degrees Celsius (e.g., 43-48, 45-53, 45-50 degrees Celsius, and any values therein) in a tissue at the focal depth. In an embodiment, a temperature sensor is located on the housing proximate an acoustic window in the housing configured to measure a temperature at a skin surface. In an embodiment, a system includes one or more imaging elements, wherein the cylindrical transduction element has an opening configured for placement of the one or more imaging elements. In an embodiment, the imaging element is configured to confirm a level of acoustic coupling between the system and a skin surface. In an embodiment, the imaging element is configured to confirm a level of acoustic coupling between the system and a skin surface via any one of the group consisting of: defocused imaging and Voltage Standing Wave Ratio (VSWR). In an embodiment, the imaging element is configured to measure a temperature at a target tissue at the focal depth below a skin surface. In an embodiment, the imaging element is configured to measure a temperature at a target tissue at the focal depth below a skin surface with any one of the group of Acoustic Radiation Force Impulse (ARFI), Shear Wave Elasticity Imaging (SWEI), and measurement of attenuation.
In several embodiments, a method of heating tissue with a cylindrical ultrasound transducer includes providing a cylindrical transduction element comprising a first surface, a second surface, a coated region, and an uncoated region. In some embodiments, the coated region comprises an electrical conductor. In some embodiments, the uncoated region does not comprise an electrical conductor. In some embodiments, the first surface comprises at least one coated region, wherein the second surface comprises the uncoated region and a plurality of coated regions, applying a current to the coated region, thereby directing ultrasound energy to a linear focal zone at a focal depth, wherein the ultrasound energy produces a reduction in focal gain at the linear focal zone.
In several embodiments, a cosmetic method of non-invasively and non-ablatively heating tissue with a heating source (e.g., a cylindrical ultrasound transducer) to heat the region under a subject's skin by between 5-25 degrees Celsius) while causing the temperature at the skin surface to stay the same or increases to a temperature that does not causing discomfort (e.g., by 1-5, 1-10, 1-15 degrees Celsius). This differential aids in the comfort of the subject. The heating, in one embodiment, occurs in increments over a period of 5-120 minutes with a graded or gradual increase in temperature. The heating can be performed by the cylindrical ultrasound transducer systems described herein. Optionally, an ablative or coagulative energy can subsequently be applied by increasing the temperature by another 5-25 degrees Celsius. The initial pre-heating step or bulk heating is advantageous because it allows less energy to be applied to achieve the coagulative/ablative state. In one embodiment, the initial pre-heating step is performed with a heating source other than an ultrasound transducer. For example, radiofrequency, microwave, light, convective, conversion, and/or conductive heat sources can be used instead of or in addition to ultrasound.
In several embodiments, a non-invasive, cosmetic method of heating tissue includes applying a cosmetic heating system to a skin surface, wherein the cosmetic heating system comprises a hand-held probe. In some embodiments, the hand-held probe comprises a housing that encloses an ultrasound transducer configured to heat tissue below the skin surface to a tissue temperature in the range of 40-50 degrees Celsius (e.g., 44-47, 41-49, 45-50 degrees Celsius, and any values therein). In some embodiments, the ultrasound transducer comprises a cylindrical transduction element comprising a first surface, a second surface, a coated region, and an uncoated region, wherein the coated region comprises an electrical conductor, wherein the first surface comprises at least one coated region, wherein the second surface comprises the uncoated region and a plurality of coated regions. In some embodiments, the method includes applying a current to the plurality of coated regions, thereby directing ultrasound energy to a linear focal zone at a focal depth, wherein the ultrasound energy produces a reduction in focal gain at the linear focal zone, thereby heating the tissue at the focal depth in the linear focal zone to the tissue temperature in the range of 40-50 degrees Celsius for a cosmetic treatment duration of less than 1 hour (e.g., 1-55, 10-30, 5-45, 15-35, 20-40 minutes and any values therein), thereby reducing a volume of an adipose tissue in the tissue.
In an embodiment, the reduction of focal gain facilitates the efficient and consistent treatment of tissue, wherein the cylindrical transduction element is configured to apply ultrasonic therapy to a thermal treatment zone at a focal depth. In an embodiment, the reduction of focal gain reduces a peak such that a variance around the focal depth is reduced by 25-100% (e.g., 30-50, 45-75, 50-90%, and any values therein). In an embodiment, the reduction of focal gain reduces a peak such that a variance of an intensity around the focal depth is 5 mm or less (e.g., 1, 2, 3, 4 mm or less). In an embodiment, the reduction of focal gain reduces a variance in focal gain in a range of 0.01-10 (e.g., 0.06, 3, 4.5, 8, or any values therein). In an embodiment, the electrical conductor is a metal. In an embodiment, the first surface is a concave surface and the second surface is a convex surface. In an embodiment, the first surface is a convex surface and the second surface is a concave surface. In an embodiment, the cylindrical transduction element is housed within an ultrasonic hand-held probe, wherein the ultrasonic probe includes a housing, the cylindrical transduction element, and a motion mechanism, wherein the ultrasound transducer is movable within the housing, wherein the motion mechanism is attached to the ultrasound transducer and configured to move the ultrasound transducer along a linear path within the housing. In an embodiment, the motion mechanism automatically moves the cylindrical transduction element to heat a treatment area at the focal depth to a temperature in a range between 40-65 degrees Celsius. In an embodiment, the cylindrical transduction element produces a temperature in a range of 42-55 degrees Celsius in a tissue at the focal depth. In an embodiment, the method also includes imaging tissue with one or more imaging elements, wherein the cylindrical transduction element has an opening configured for placement of the one or more imaging elements. In an embodiment, the method also includes confirming a level of acoustic coupling between the system and a skin surface with an image from the imaging element. In an embodiment, the method also includes confirming a level of acoustic coupling between the system and a skin surface with the imaging element using any one of the group consisting of: defocused imaging and Voltage Standing Wave Ratio (VSWR). In an embodiment, the method also includes measuring a temperature at a target tissue at the focal depth below a skin surface with the imaging element. In an embodiment, the method also includes measuring a temperature with the imaging element at a target tissue at the focal depth below a skin surface with any one of the group of Acoustic Radiation Force Impulse (ARFI), Shear Wave Elasticity Imaging (SWEI), and measurement of attenuation.
The methods summarized above and set forth in further detail below describe certain actions taken by a practitioner; however, it should be understood that they can also include the instruction of those actions by another party. Thus, actions such as “applying an ultrasound energy” include “instructing the application of ultrasound energy.”
Further, areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the embodiments disclosed herein.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way. Embodiments of the present invention will become more fully understood from the detailed description and the accompanying drawings wherein:
The following description sets forth examples of embodiments, and is not intended to limit the present invention or its teachings, applications, or uses thereof. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features. The description of specific examples indicated in various embodiments of the present invention are intended for purposes of illustration only and are not intended to limit the scope of the invention disclosed herein. Moreover, recitation of multiple embodiments having stated features is not intended to exclude other embodiments having additional features or other embodiments incorporating different combinations of the stated features. Further, features in one embodiment (such as in one figure) may be combined with descriptions (and figures) of other embodiments.
In various embodiments, systems and methods for ultrasound treatment of tissue are configured to provide cosmetic treatment. Various embodiments of the present invention address potential challenges posed by administration of ultrasound therapy. In various embodiments, the amount of time and/or energy to create a thermal treatment zone (also referred to herein “TTZ”) for a desired cosmetic and/or therapeutic treatment for a desired clinical approach at a target tissue is reduced. In various embodiments, tissue below or at a skin surface such as epidermis, dermis, platysma, lymph node, nerve, fascia, muscle, fat, and/or superficial muscular aponeurotic system (“SMAS”), are treated non-invasively with ultrasound energy. In various embodiments, tissue below or at a skin surface such as epidermis, dermis, platysma, lymph node, nerve, fascia, muscle, fat, and/or SMAS are not treated. The ultrasound energy can be focused at one or more treatment zones, can be unfocused and/or defocused, and can be applied to a region of interest to achieve a cosmetic and/or therapeutic effect. In various embodiments, systems and/or methods provide non-invasive dermatological treatment to tissue through heating, thermal treatment, coagulation, ablation, and/or tissue tightening (including, for example, hyperthermia, thermal dosimetry, apoptosis, and lysis). In one embodiment, dermal tissue volume is increased. In one embodiment, fat tissue volume is reduced, or decreased.
In various embodiments, target tissue is, but is not limited to, any of skin, eyelids, eye lash, eye brow, caruncula lacrimalis, crow's feet, wrinkles, eye, nose, mouth, tongue, teeth, gums, ears, brain, chest, back, buttocks, legs, arms, hands, arm pits, heart, lungs, ribs, abdomen, stomach, liver, kidneys, uterus, breast, vagina, penis, prostate, testicles, glands, thyroid glands, internal organs, hair, muscle, bone, ligaments, cartilage, fat, fat lobuli, adipose tissue, cellulite, subcutaneous tissue, implanted tissue, an implanted organ, lymphoid, a tumor, a cyst, an abscess, or a portion of a nerve, or any combination thereof. In several embodiments disclosed herein, non-invasive ultrasound is used to achieve one or more of the following effects: a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a fat reduction, a reduction in the appearance of cellulite, a décolletage treatment, a burn treatment, a tattoo removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, sun spot removal, an acne treatment, and a pimple removal. In some embodiments, two, three or more beneficial effects are achieved during the same treatment session, and may be achieved simultaneously.
Various embodiments of the present invention relate to devices or methods of controlling the delivery of energy to tissue. In various embodiments, various forms of energy can include acoustic, ultrasound, light, laser, radio-frequency (RF), microwave, electromagnetic, radiation, thermal, cryogenic, electron beam, photon-based, magnetic, magnetic resonance, and/or other energy forms. Various embodiments of the present invention relate to devices or methods of splitting an ultrasonic energy beam into multiple beams. In various embodiments, devices or methods can be used to alter the delivery of ultrasound acoustic energy in any procedures such as, but not limited to, therapeutic ultrasound, diagnostic ultrasound, non-destructive testing (NDT) using ultrasound, ultrasonic welding, any application that involves coupling mechanical waves to an object, and other procedures. Generally, with therapeutic ultrasound, a tissue effect is achieved by concentrating the acoustic energy using focusing techniques from the aperture. In some instances, high intensity focused ultrasound (HIFU) is used for therapeutic purposes in this manner. In one embodiment, a tissue effect created by application of therapeutic ultrasound at a particular location (e.g., depth, width) to can be referred to as creation of a thermal treatment zone. It is through creation of thermal treatment zones at particular positions that thermal and/or mechanical heating, coagulation, and/or ablation of tissue can occur non-invasively or remotely offset from the skin surface.
Various embodiments of ultrasound treatment and/or imaging devices are described in U.S. Publication No. 2011-0112405, which is a national phase publication from International Publication WO 2009/149390, each of which is incorporated in its entirety by reference herein.
With reference to the illustration in
As is illustrated in
In one embodiment, the module 200 can be coupled to the hand wand 100. The module 200 can emit and receive energy, such as ultrasonic energy. The module 200 can be electronically coupled to the hand wand 100 and such coupling may include an interface which is in communication with the controller 300. In one embodiment, the interface guide 235 can be configured to provide electronic communication between the module 200 and the hand wand 100. The module 200 can comprise various probe and/or transducer configurations. For example, the module 200 can be configured for a combined dual-mode imaging/therapy transducer, coupled or co-housed imaging/therapy transducers, separate therapy and imaging probes, and the like. In one embodiment, when the module 200 is inserted into or connected to the hand wand 100, the controller 300 automatically detects it and updates the interactive graphical display 310.
In various embodiments, tissue below or even at a skin surface such as epidermis, dermis, hypodermis, fascia, and SMAS, and/or muscle are treated non-invasively with ultrasound energy. Tissue may also include blood vessels and/or nerves. The ultrasound energy can be focused, unfocused or defocused and applied to a region of interest containing at least one of epidermis, dermis, hypodermis, fascia, and SMAS to achieve a therapeutic effect.
In various embodiments, a transducer 280 can comprise one or more therapy elements 281 that can have various shapes that correspond to various focal zone geometries. In one embodiment, the transducer 280 comprises a single therapy element 281. In one embodiment, the transducer 280 does not have a plurality of elements. In one embodiment, the transducer 280 does not have an array of elements. In several embodiments, the transducers 280 and/or therapy elements 281 described herein can be flat, round, circular, cylindrical, annular, have rings, concave, convex, contoured, and/or have any shape. In some embodiments, the transducers 280 and/or therapy elements 281 described herein are not flat, round, circular, cylindrical, annular, have rings, concave, convex, and/or contoured. In one embodiment, the transducers 280 and/or therapy elements 281 have a mechanical focus. In one embodiment, the transducers 280 and/or therapy elements 281 do not have a mechanical focus. In one embodiment, the transducers 280 and/or therapy elements 281 have an electrical focus. In one embodiment, the transducers 280 and/or therapy elements 281 do not have an electrical focus. Although a cylinder transducer and/or a cylindrical element is discussed here, the transducer and/or element need not be cylindrical. In several embodiments, the transducer and/or element has one or more shapes or configurations that cause edge effects, such as variance, spikes or other inconsistencies in the delivery of ultrasound. For example, the transducer and/or element may have one or more non-linear (e.g., curved) portions. A transducer may be comprised of one or more individual transducers and/or elements in any combination of focused, planar, or unfocused single-element, multi-element, or array transducers, including 1-D, 2-D, and annular arrays; linear, curvilinear, sector, or spherical arrays; spherically, cylindrically, and/or electronically focused, defocused, and/or lensed sources. In one embodiment, the transducer is not a multi-element transducer. In one embodiment, a transducer 280 can include a spherically shaped bowl with a diameter and one or more concave surfaces (with respective radii or diameters) geometrically focused to a single point TTZ 550 at a focal depth 278 below a tissue surface, such as skin surface 501. In one embodiment, a transducer 280 may be radially symmetrical in three dimensions. For example, in one embodiment, transducer 280 may be a radially symmetrical bowl that is configured to produce a focus point in a single point in space. In some embodiments, the transducer is not spherically shaped. In some embodiments, the element is not spherically shaped.
In various embodiments, increasing the size (e.g. width, depth, area) and/or number of focus zone locations for an ultrasonic procedure can be advantageous because it permits treatment of a patient at varied tissue widths, heights and/or depths even if the focal depth 278 of a transducer 280 is fixed. This can provide synergistic results and maximizing the clinical results of a single treatment session. For example, treatment at larger treatment areas under a single surface region permits a larger overall volume of tissue treatment, which can heat larger tissue volumes, and which can result in enhanced collagen formation and tightening. Additionally, larger treatment areas, such as at different depths, affects different types of tissue, thereby producing different clinical effects that together provide an enhanced overall cosmetic result. For example, superficial treatment may reduce the visibility of wrinkles and deeper treatment may induce skin tightening and/or collagen growth. Likewise, treatment at various locations at the same or different depths can improve a treatment. In various embodiments, a larger treatment area can be accomplished using a transducer with a larger focus zones (e.g., such as a linear focus zone compared to a point focus zone).
In one embodiment, as illustrated in
In various embodiments, transducers 280 can comprise one or more transduction elements 281. The transduction elements 281 can comprise a piezoelectrically active material, such as lead zirconante titanate (PZT), or any other piezoelectrically active material, such as a piezoelectric ceramic, crystal, plastic, and/or composite materials, as well as lithium niobate, lead titanate, barium titanate, and/or lead metaniobate. In various embodiments, in addition to, or instead of, a piezoelectrically active material, transducers can comprise any other materials configured for generating radiation and/or acoustical energy. In one embodiment, when cylindrical transduction element 281 comprises a piezoelectric ceramic material that is excited by an electrical stimulus, the material may expand or contract. The amount of expansion or contraction is related to boundary conditions in the ceramic as well as the magnitude of the electric field created in the ceramic. In some embodiments of conventional HIFU design, the front surface (e.g. subject side) is coupled to water and the back surface of a transducer 280 is coupled to a low impedance medium which is typically air. In some embodiments, although the ceramic is free to expand at the back interface, essentially no mechanical energy is coupled from the ceramic to the air because of the significant acoustic impedance disparity. This results in this energy at the back of the ceramic reflecting and exiting the front (or subject side) surface. As illustrated in an embodiment in
In one embodiment, a transducer can be configured to have a focal depth 278 of 6 mm, 2-12 mm, 3-10 mm, 4-8 mm, 5-7 mm. In other embodiments, other suitable values of focal depth 278 can be used, such as focal depth 278 of less than about 15 mm, greater than about 15 mm, 5-25 mm, 10-20 mm, etc. Transducer modules can be configured to apply ultrasonic energy at different target tissue depths. In one embodiment, a therapy of 20 mm or less (e.g., 0.1 mm-20 mm, 5-17 mm, 10-15 mm). In one embodiment, a devices that goes to 6 mm or less has a radius of curvature (ROC) of 13.6 mm, with a ratio of treatment depth to ROC at approximately 44%. In one embodiment, the height of the element is 22 mm. In one embodiment, using an aspect ratio for a treatment depth of 20 mm, the aperture height would be 74.5 mm with a ROC of 45 mm.
As illustrated in
As indicated in
In various embodiments, a motion mechanism 285 can be any mechanism that may be found to be useful for movement of the transducer. In one embodiment, the motion mechanism 285 comprises a stepper motor. In one embodiment, the motion mechanism 285 comprises a worm gear. In various embodiments, the motion mechanism 285 is located in a module 200. In various embodiments, the motion mechanism 285 is located in the hand wand 100. In various embodiments, the motion mechanism 285 can provide for linear, rotational, multi-dimensional motion or actuation, and the motion can include any collection of points, lines and/or orientations in space. Various embodiments for motion can be used in accordance with several embodiments, including but not limited to rectilinear, circular, elliptical, arc-like, spiral, a collection of one or more points in space, or any other 1-D, 2-D, or 3-D positional and attitudinal motional embodiments. The speed of the motion mechanism 285 may be fixed or may be adjustably controlled by a user. One embodiment, a speed of the motion mechanism 285 for an image sequence may be different than that for a treatment sequence. In one embodiment, the speed of the motion mechanism 285 is controllable by a controller.
In some embodiments, the energy transmitted from the transducer is turned on and off, forming a non-continuous treatment area 552 such that the TTZ 550 moves with a treatment spacing between individual TTZ 550 positions. For example, treatment spacing can be about 1 mm, 1.5 mm, 2 mm, 5 mm, 10 mm, etc. In several embodiments, a probe can further comprise a movement mechanism configured to direct ultrasonic treatment in a sequence so that TTZs 550 are formed in linear or substantially linear sequences. For example, a transducer module can be configured to form TTZs 550 along a first linear sequence and a second linear sequence separated by treatment spacing between about 2 mm and 3 mm from the first linear sequence. In one embodiment, a user can manually move the transducer modules across the surface of a treatment area so that adjacent linear sequences of TTZs are created.
In one embodiment, a TTZ can be swept from a first position to a second position. In one embodiment, a TTZ can be swept from the first position to the second position repeatedly. In one embodiment, a TTZ can be swept from the first position, to the second position, and back to the first position. In one embodiment, a TTZ can be swept from the first position, to the second position, and back to the first position, and repeated. In one embodiment, multiple sequences of TTZs can be created in a treatment region. For example, TTZs can be formed along a first linear sequence and a second linear sequence separated by a treatment distance from the first linear sequence.
In one embodiment, TTZs can be created in a linear or substantially linear zone or sequence, with each individual TTZ separated from neighboring TTZs by a treatment spacing, such as shown in
In various embodiments, an active TTZ can be moved (continuously, or non-continuously) through tissue to form a treatment area 552, such as shown in
In various embodiments, therapeutic treatment advantageously can be delivered at a faster rate and with improved accuracy by using a transducer configured to deliver energy to an expanded TTZ. This in turn can reduce treatment time and decrease pain experienced by a subject. In several embodiments, treatment time is reduced by creating a TTZ and sweeping the TTZ through an area or volume for treatment from a single transducer. In some embodiments, it is desirable to reduce treatment time and corresponding risk of pain and/or discomfort experienced by a patient. Therapy time can be reduced by treating larger areas in a given time by forming larger a TTZ 550, multiple TTZs simultaneously, nearly simultaneously, or sequentially, and/or moving the TTZ 550 to form larger treatment areas 552. In one embodiment, a reduction in treatment time is reduced by treating a given area or volume with multiple TTZs reduces the overall amount of movement for a device. In some embodiments, overall treatment time can be reduced 10%, 20%, 25%, 30%, 35%, 40%, 4%, 50%, 55%, 60%, 65%, 70%, 75%, 80% or more by through creation of continuous treatment areas 552 or discrete, segmented treatment areas 552 from a sequence of individual TTZs. In various embodiments, therapy time can be reduced by 10-25%, 30-50%, 40-80%, 50-90%, or approximately 40%, 50%, 60%, 70%, and/or 80%. Although treatment of a subject at different locations in one session may be advantageous in some embodiments, sequential treatment over time may be beneficial in other embodiments. For example, a subject may be treated under the same surface region at one depth in time one, a second depth in time two, etc. In various embodiments, the time can be on the order of nanoseconds, microseconds, milliseconds, seconds, minutes, hours, days, weeks, months, or other time periods. For example, in some embodiments, the transducer module is configured to deliver energy with an on-time of 10 ms-100 minutes (e.g., 100 ms, 1 second, 1-60 seconds, 1 minute-10 minutes, 1 minute-60 minutes, and any range therein). The new collagen produced by the first treatment may be more sensitive to subsequent treatments, which may be desired for some indications. Alternatively, multiple depth treatment under the same surface region in a single session may be advantageous because treatment at one depth may synergistically enhance or supplement treatment at another depth (due to, for example, enhanced blood flow, stimulation of growth factors, hormonal stimulation, etc.). In several embodiments, different transducer modules provide treatment at different depths. In one embodiment, a single transducer module can be adjusted or controlled for varied depths.
In one embodiment, an aesthetic treatment system includes an ultrasonic probe with a removable module that includes an ultrasound transducer configured to apply ultrasonic therapy to tissue at in a focal zone. In one embodiment, the focal zone is a point. In one embodiment, the focal zone is a line. In one embodiment, the focal zone is a two dimensional region or plane. In one embodiment, the focal zone is a volume. In various embodiments, a focal zone can be moved to sweep a volume between a first position and a second position. In various embodiments, one or more a focal zone locations are positioned in a substantially linear sequence within a cosmetic treatment zone. In one embodiment, a first set of locations is positioned within a first cosmetic treatment zone and a second set of locations is positioned within a second cosmetic treatment zone, the first zone being different from the second zone. In one embodiment, the first cosmetic treatment zone includes a substantially linear sequence of the first set of locations and the second cosmetic treatment zone includes a substantially linear sequence of the second set of locations.
In one embodiment, the transducer module 280 can provide an acoustic power in a range of about 1 W or less, between about 1 W to about 100 W, and more than about 100 W. In one embodiment, the transducer module 280 can provide an acoustic power at a frequency of about 1 MHz or less, between about 1 MHz to about 10 MHz, and more than about 10 MHz. In one embodiment, the module 200 has a focal depth 278 for a treatment at a tissue depth 279 of about 4.5 mm below the skin surface 501. Some non-limiting embodiments of transducers 280 or modules 200 can be configured for delivering ultrasonic energy at a tissue depth of 3 mm, 4.5 mm, 6 mm, less than 3 mm, between 3 mm and 4.5 mm, between 4.5 mm and 6 mm, more than more than 4.5 mm, more than 6 mm, etc., and anywhere in the ranges of 0.1-3 mm, 0.1-4.5 mm, 0.1-6 mm, 0.1-25 mm, 0.1-100 mm, etc. and any depths therein. In one embodiment, the ultrasound system 20 is provided with two or more removable transducer modules 280. In one embodiment, a transducer 280 can apply treatment at a tissue depth (e.g., about 6 mm). For example, a first transducer module can apply treatment at a first tissue depth (e.g., about 4.5 mm) and a second transducer module can apply treatment at a second tissue depth (e.g., of about 3 mm), and a third transducer module can apply treatment at a third tissue depth (e.g., of about 1.5-2 mm). In one embodiment, at least some or all transducer modules can be configured to apply treatment at substantially same depths. In various embodiments, the tissue depth can be 1.5 mm, 2 mm, 3 mm, 4.5 mm, 7 mm, 10 mm, 12 mm, 14 mm, 15 mm, 17 mm, 18 mm, and/or 20 mm, or any range therein (including but not limited to 12-20 mm, or higher).
In one embodiment, a transducer module permits a treatment sequence at a fixed depth at or below the skin surface. In one embodiment, a transducer module permits a treatment sequence at a range of depths below the skin surface. In several embodiments, the transducer module comprises a movement mechanism configured to move the ultrasonic treatment at the TTZ. In one embodiment, the linear sequence of individual TTZs has a treatment spacing in a range from about 0.01 mm to about 25 mm. For example, the spacing can be 1.1 mm or less, 1.5 mm or more, between about 1.1 mm and about 1.5 mm, etc. In one embodiment, the individual TTZs are discrete. In one embodiment, the individual TTZs are overlapping. In one embodiment, the movement mechanism is configured to be programmed to provide variable spacing between the individual TTZs. In several embodiments, a transducer module comprises a movement mechanism configured to direct ultrasonic treatment in a sequence so that TTZs are formed in linear or substantially linear sequences separated by a treatment distance. For example, a transducer module can be configured to form TTZs along a first linear sequence and a second linear sequence separated by a treatment distance from the first linear sequence. In one embodiment, treatment distance between adjacent linear sequences of individual TTZs is in a range from about 0.01 mm to about 25 mm. For example, the treatment distance can be 2 mm or less, 3 mm or more, between about 2 mm and about 3 mm, etc. In several embodiments, a transducer module can comprise one or more movement mechanisms configured to direct ultrasonic treatment in a sequence so that TTZs are formed in linear or substantially linear sequences of individual thermal lesions separated by a treatment distance from other linear sequences. In one embodiment, the treatment distance separating linear or substantially linear TTZs sequences is the same or substantially the same. In one embodiment, the treatment distance separating linear or substantially linear TTZs sequences is different or substantially different for various adjacent pairs of linear TTZs sequences.
In various embodiments, including an imaging transducer or imaging element with a cylindrical transduction element 281 can be used to improve safety and/or efficacy of a treatment. In one embodiment, an imaging element can be used to confirm acceptable coupling between the ultrasound therapy transducer and/or identify target tissue below the skin surface. As illustrated at
In one embodiment, first and second removable transducer modules are provided. In one embodiment, each of the first and second transducer modules are configured for both ultrasonic imaging and ultrasonic treatment. In one embodiment, a transducer module is configured for treatment only. In one embodiment, an imaging transducer may be attached to a handle of a probe or a hand wand. The first and second transducer modules are configured for interchangeable coupling to a hand wand. The first transducer module is configured to apply ultrasonic therapy to a first treatment area, while the second transducer module is configured to apply ultrasonic therapy to a second treatment area. The second treatment area can be at a different depth, width, height, position, and/or orientation than the first treatment area.
In various embodiments, treatment advantageously can be delivered with improved accuracy. Further, efficiency, comfort and safety can be increased if variance is reduced in a treatment area. This in turn can reduce treatment time and decrease pain experienced by a subject. In some instances, non-uniform heating at a focal zone can result from geometric aspects of a transducer. Inconsistencies in pressure or temperature profiles can be attributed to edge effects, which can cause spikes in pressure or temperature around the focal zone of a transducer. Thus, with edge effects, instead of achieving a uniform line segment of heating, the segment is broken into many isolated hot spots which may fail to meet an objective a more uniform heat distribution at the focal zone. This phenomenon is further exacerbated at high heating rates which relate to elevated acoustic pressures. This is due to the generation of nonlinear harmonics created especially in areas of high pressure. Energy at harmonic frequencies is more readily absorbed than energy at the fundamental frequency. In one embodiment, energy absorption is governed by the following equation:
H=2*α*f*p2/Z (1)
where alpha is the absorption constant in nepers per MHz cm, f is frequency in MHz, p is the pressure at that frequency, Z is the acoustic impedance of tissue, and H is the heating rate in Watt/cm3. In one embodiment, the amount of harmonics produced is proportional to the intensity.
In one embodiment, a way to combat these hot and cold spots that are the result from edge effects is to reduce the average intensity at the focal depth and/or increase the heating time. These two processes can reduce the amount on nonlinear heating as well as allow for the conduction of the heat away from the hot spot into the cold areas. The thermal conduction of tissue effectively acts as a low pass filter to the acoustic intensity distribution as the heating time increases. Although these methods may reduce the non-uniform heating issues, they can also reduce the localization of the heating zone and can also increase the treatment time. Therefore, three performance areas of ultrasound therapy, e.g. efficacy, comfort, and treatment time, are adversely affected. In one embodiment, a more normalized pressure profile results in more consistent therapy, such that temperature increase through heating, coagulation, and/or ablation is more predictable and can better ensure the desired or targeted temperature profiles are obtained in the TTZ 550. In various embodiments, apodization of edge effects is accomplished with transducers coated in specific regions.
In one embodiment, use of coatings, or shadings, can help circumvents these issues such that efficacy, comfort and treatment time are optimized.
In one embodiment, the coated element is a shaded therapeutic cylinder. In one embodiment, a coated element also has benefits outside the intended heating zone. In one embodiment, the boundary between the heated and unheated junction is vastly improved when compared to an uncoated element.
Referring to
As shown in
The edge effects from the geometry of one embodiment of a combined imaging and cylindrical therapy transducer comprising a cylindrical transduction element 281 with an opening 285 through it are more pronounced due to the additional edges of the opening 285.
As described in Example 2 below,
In one embodiment, the coated region 287 is plating. In one embodiment, the coated region 287 is a conductive material. In one embodiment, the coated region 287 is a semi-conductive material. In one embodiment, the coated region 287 is an insulator material. In various embodiments, the coated region 287 is silver, copper, gold, platinum, nickel, chrome, and/or any conductive material that will adhere with the surface of a piezoelectric material, or any combinations thereof. In one embodiment, the coated region 287 is silver plating.
In various embodiments, a cylindrical transduction element 281 has an azimuth (x-axis) dimension in the range of 1-50 mm, 5-40 mm, 10-20 mm, 15-25 mm, and/or 15 mm, 16 mm, 17 mm, 18 mm, 19 mm, 20 mm, 21 mm, 22 mm, 23 mm, 24 mm, and 25 mm. In various embodiments, a cylindrical transduction element 281 has an elevation (y-axis) dimension in the range of 1-50 mm, 5-40 mm, 10-20 mm, 15-25 mm, and/or 15 mm, 16 mm, 17 mm, 18 mm, 19 mm, 20 mm, 21 mm, 22 mm, 23 mm, 24 mm, and 25 mm. In various embodiments, a cylindrical transduction element 281 has focal depth (z-axis) dimension in the range of 1-50 mm, 5-40 mm, 10-20 mm, 15-25 mm, 12-17 mm, 13-15 mm, and/or 10 mm, 11 mm, 12 mm, 13 mm, 13.6 mm, 14 mm, 15 mm, 16 mm, 17 mm, 18 mm, 19 mm, 20 mm, 21 mm, 22 mm, 23 mm, 24 mm, and 25 mm. In some non-limiting embodiments transducers can be configured for a treatment zone at a tissue depth below a skin surface of 1.5 mm, 3 mm, 4.5 mm, 6 mm, less than 3 mm, between 1.5 mm and 3 mm, between 1.5 mm and 4.5 mm, more than more than 4.5 mm, more than 6 mm, and anywhere in the ranges of 0.1 mm-3 mm, 0.1 mm-4.5 mm, 3 mm-7 mm, 3 mm-9 mm, 0.1 mm-25 mm, 0.1 mm-100 mm, and any depths therein.
In various embodiments, a coated transducer 600 comprising a cylindrical transduction element 281 has one, two, three, four, or more coated regions 287. In one embodiment, a coated region 287 covers an entire surface of the element. In one embodiment, a coated region 287 covers a portion of a surface of the element. In various embodiments, the coated region 287 includes a conductive plating. In one embodiment, a coated region 287 includes a silver plating to form an electrode. When an electrical signal is applied to an electrode at a coated region 287, the coated region 287 expands and/or contracts the corresponding portion of the cylindrical transduction element 281. In various embodiments, the coated region 287 has a shape or border that is a complete or a partial point, edge, line, curve, radius, circle, oval, ellipse, parabola, star, triangle, square, rectangle, pentagon, polygon, a combination of shapes, or other shape. In various embodiments, a coated transducer 600 can also comprise an opening 285.
In one embodiment illustrated at
In one embodiment illustrated at
In one embodiment illustrated at
In one embodiment illustrated at
In one embodiment illustrated at
In one embodiment illustrated at
In one embodiment illustrated at
In various embodiments, a coated cylindrical transducer 600 comprising one or more coated regions 287 is configured for non-therapeutic use.
In one embodiment, a coated cylindrical transducer 600 comprising one or more coated regions 287 is configured for materials processing. In one embodiment, a coated cylindrical transducer 600 comprising one or more coated regions 287 is configured for ultrasonic impact treatment for the enhancement of properties of a material, such as a metal, compound, polymer, adhesive, liquid, slurry, industrial material.
In one embodiment, a coated cylindrical transducer 600 comprising one or more coated regions 287 is configured for material heating. In various embodiments, the cylindrical transducer 600 is configured for cooking, heating, and/or warming materials, food, adhesives or other products.
As described above, in various embodiments, systems and/or methods provide non-invasive dermatological treatment to tissue through heating, hyperthermia, thermal dosimetry, thermal treatment, coagulation, ablation, apoptosis, lysis, increasing tissue volume, decreasing or reducing tissue volume, and/or tissue tightening. In one embodiment, dermal tissue volume is increased. In one embodiment, fat tissue volume is reduced, or decreased.
In various embodiments, band treatment involves metrics that quantify the magnitude of adipocyte death with heat. For example, in one embodiment, thermal dosage in a heat treatment relates time-temperature curves back to a single reference temperature, e.g. T=43 degrees Celsius, using the Arrhenius equation. In one embodiment, a band treatment is configured under a relationship that that for every 1 degree Celsius increase in tissue temperature above in a range above body temperature, the rate of cell death doubles. A theoretical survival fraction can then be determined by comparing the thermal dose to empirical data from the literature.
In various embodiments, band treatment provides improved thermal heating and treatment of tissue compared to diathermy or general bulk heating techniques. In general, normal body temperatures tend to range between about 33-37 degrees Celsius. In various embodiments, as tissue is heated in a range of about 37-43 degrees Celsius, physiological hyperthermia can take place, and exposure to this temperature range on order of, for example, a few hours, can result in increased normal tissue metabolism and/or increased normal tissue blood flow, and in some embodiments, accelerated normal tissue repair. As temperature in the tissues reaches the higher ˜43 degrees Celsius range and/or the tissue is subject to the temperature for longer periods of time (e.g., 2 hours, 3, hours or more) the tissue can experience acute tissue metabolism and/or acute tissue blood flow, and in some embodiments, accelerated normal tissue repair. In one embodiment, heating (e.g., bulk heating) of tissue to a range of about 42-55 degrees Celsius is performed. In various embodiments, heating of tissue to about 43-50 degrees Celsius can be considered adjuvant synergistic hyperthermia, and exposure to this temperature range on order of, for example, a few minutes, can result in immediate or delayed cell death, apoptosis, decreased tumor metabolism, increased tissue oxygen levels, increased tissue damage, increased sensitivity to therapy, vascular status, DNA damage, cell reproductive failure, and/or cell destruction. In various embodiments, heating of tissue to about 50-100 degrees Celsius can be considered surgical hyperthermia, and exposure to this temperature range on order of, for example, a few seconds or fractions of a second, can result in coagulation, ablation, vaporization, and immediate cell destruction.
In some embodiments of the invention, the temperature of the tissue treatment site (e.g., the adipocytes) is elevated to 38-43 degrees Celsius, and according to one embodiment, thereby increasing tissue metabolism and perfusion and accelerating tissue repair mechanisms. In other embodiments, the temperature of the tissue treatment site (e.g., the adipocytes) is elevated to 43-50 degrees Celsius, which in one embodiment can increase cell damage starts and result in immediate cell death, particularly when the temperature remains elevated on the order of several minutes to an hour (or longer). In yet other embodiments, the temperature of the tissue treatment site (e.g., the adipocytes) is elevated to above 50 degrees Celsius, which in one embodiment results in protein coagulation on the order of seconds and less and can lead to immediate cell death and ablation. In various embodiments, the temperature of the tissue treatment site is heated to 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 70, 75, 80, 90, or 100 degrees Celsius, and/or any range therein. In various embodiments, a treatment area has uniform temperature, a variance of 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 12%, 15%, 20%, 25%, 30%, 40%, 50% or more. In various embodiments, a treatment area has a variance of +/−0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25 degrees Celsius or more.
In several embodiments, the invention comprises elevating the temperature of the tissue treatment site (e.g., the adipocytes) is elevated to 38-50 degrees Celsius for a time period between 1-120 minutes, and then optionally increasing the temperature in one, two, three, four five or more increments by 10-50%. As an example using three increments, the target temperatures may be increased as follows: (i) elevate temperature to about 40-42 degrees Celsius for 10-30 minutes, (ii) then optionally increase temperature by about 20% to elevate temperature to about 48-51 degrees Celsius for 1-10 minutes, and (iii) then optionally increase by about 10-50% for a shorter time frame. As another example, the target temperature may be increased as follows: (i) elevate temperature to about 50 degrees Celsius for 30 seconds to 5 minutes (e.g., about 1 minute) to destroy over 90%, 95% or 99% of target (e.g., adipose) cells, with an optional pre-heating step of raising the temperature to 38-49 degrees Celsius for a period of 10-120 minutes prior to the elevation to 50 degrees Celsius. As yet another example, in some embodiments, a non-invasive, cosmetic method of heating tissue, comprises applying a cosmetic heating system to a skin surface, wherein the cosmetic heating system comprises a hand-held probe, wherein the hand-held probe comprises a housing that encloses an ultrasound transducer configured to heat tissue below the skin surface to a tissue temperature in the range of 40-50 degrees Celsius, wherein the ultrasound transducer comprises a cylindrical transduction element comprising a first surface, a second surface, a coated region, and an uncoated region, wherein the coated region comprises an electrical conductor, wherein the first surface comprises at least one coated region, wherein the second surface comprises the uncoated region and a plurality of coated regions, applying a current to the plurality of coated regions, thereby directing ultrasound energy to a linear focal zone at a focal depth, wherein the ultrasound energy produces a reduction in focal gain at the linear focal zone, thereby heating the tissue at the focal depth in the linear focal zone to the tissue temperature in the range of 40-50 degrees Celsius for a cosmetic treatment duration of less than 1 hour, thereby reducing a volume of an adipose tissue in the tissue.
In one embodiment, a band therapy system uses a relationship between cell death and time-temperature dosages as quantified using the Arrhenius equation. The Arrhenius equation shows an exponential relationship exists between cell death and exposure time and temperature. Above a certain break temperature, the increase in the rate of cell killing with temperature is relatively constant. Time-temperature relationships to achieve isoeffective dose in several types of tissue appears to be conserved both in vitro and in-vivo across multiple cell types.
In some embodiments, clinical situations involve ramp-up of temperatures, cooling, and fluctuations when approaching and maintaining a steady state temperature. In various embodiments, different thermal profiles can produce the same thermal dose. In order to estimate the thermal dosage from a time-varying thermal profile, a temperature curve is discretized into small time steps, and the average temperature during each time step is calculated. The thermal dosage is then calculated as an equivalent exposure time at the break temperature (43 degrees Celsius) by integrating these temperatures according to equation (2):
Equation (2) suggests that the increase in the rate of killing with temperature is relatively constant. In some embodiments, a 1 degree Celsius increase above a break point results in the rate of cell death doubles.
Once a thermal dose has been calculated, a dose survival response can be estimated from empirical data. In one embodiment, an isoeffective dose of 43 degrees Celsius for 100 minutes theoretically yields a cell survival fraction of 1%. Based on the Arrhenius relationship, a similar surviving fraction can be obtained with an isoeffective dose of 44 degrees Celsius for 50 minutes, or 25 minutes at 45 degrees Celsius, etc. as tabulated in the table listing isoeffective dosages to theoretically achieve 1% survival fraction at
In various embodiment, simulations of various embodiments of band therapy using a cylindrical transducer source conditions linked to the relationship between tissue and heat equation showed that successive treatment pulses obey linear superposition, which allows for simplification of the heat transfer physics so that the heating rate may be described as a temperature rise per time (degrees Celsius/sec), and as a temperature rise per pass (degrees Celsius/button push).
In various embodiments, a band therapy system is configured for treating the tissue. For example, in one embodiment, a band treatment is configured for treatment of supraplatysmal submental fat. In one embodiment, a treatment of fat includes selectively causing thermal heat shock followed by apoptosis to a fat layer, at a depth of about 2.5-6.0 mm, without causing any major skin surface effects. In one embodiment, the treatment involves exposing fat to a bulk heating treatment with a temperature of 42-55 degrees Celsius for 1-5 minutes without exceeding 41 degrees Celsius on the skin surface, with physiologic/biologic effect (e.g. one or more of coagulation, apoptosis, fat cell lysis, etc.). In various embodiments, treatment with a band transducer treats tissue with isoeffective doses, as shown in a graph representing various levels of theoretical cell kill fractions in
In various embodiments, a theoretical review of the effect of stacking multiple treatment pulses using the Khokhlov-Zabolotskaya-Kuznetsov (KZK) Equation was implemented with cylindrical source acoustic geometry, linked to a bioheat equation (e.g., in one embodiment, using the Arrhenius equation).
In various embodiments, various cylindrical geometries were tested from the first build (4.5 MHz-12 mm width at 4.5 mm and 6.0 mm depths); however, acoustic tank testing showed higher acoustic pressures (and therefore heating rates) at the each edge of the therapy line. In one embodiment, a ceramic transducer was apodized to produce a flat thermal profile, as shown in
In various embodiments, a band therapy system is configured for body contouring. In one embodiment, body contouring treatment involves thermal heat shock concurrent with, and/or followed by apoptosis. In one embodiment, body contouring treatment involves exposing fat to 42-55 degrees Celsius for 1-5 minutes to induce delayed apoptosis. In one embodiment, body contouring treatment involves exposing fat at a focus depth of at least 13 mm below the skin surface.
In various embodiments, one or more sensors may be included in the module 200 or system 20 to measure a temperature. In one embodiment, methods of temperature and/or dose control are provided. In one embodiment, temperature is measured to control dosage of energy provided for a tissue treatment. In various embodiments, a temperature sensor is used to measure a tissue temperature to increase, decrease, and/or maintain the application of energy to the tissue in order to reach a target temperature or target temperature range. In some embodiments, a temperature sensor is used for safety, for example, to reduce or cease energy application if a threshold or maximum target temperature is reached. In one embodiment, a cooling device or system can be employed to cool a tissue temperature if a certain temperature is reached. In some embodiments, a temperature sensor is used to modulate an energy dose, for example, via modulation, termination of amplitude, power, frequency, pulse, speed, or other factors.
In one embodiment, a temperature sensor is used to measure a skin surface temperature. In one embodiment, a temperature sensor may be positioned on top of the transducer holder and a sensor may be located in a portion of the module, or vice versa (swapped). In various embodiments, a temperature sensor is positioned on a system or module housing, such as in one embodiment, near or on an acoustic window, such as an acoustically transparent member 230. In one embodiment, one or more temperature sensors are positioned around or proximate an acoustically transparent member 230. In one embodiment, one or more temperature sensors are positioned in or on an acoustically transparent member 230. In one embodiment, a temperature sensor measure from a skin surface can be used to calculate a temperature in a tissue at the focus depth of the energy application. In various embodiments, a target tissue temperature can be calculated and/or correlated to the depth in tissue, type of tissue (e.g. epidermis, dermis, fat, etc.) and relative thickness of tissue between the skin surface and the focus depth. In some embodiments, a temperature sensor provides a temperature measurement for a signal to a control system. In some embodiments, a temperature sensor provides a temperature measurement for visual and/or auditory feedback to a system operator, such as a text, color, flash, sound, beep, alert, alarm, or other sensory indicator of a temperature state.
In some embodiments, imaging can be used to control energy dose. In one embodiment, a thermal lens effect can be used to account for speckle shift and/or feature shift to indicate a temperature of a tissue at a target location, such as at a focus depth in tissue below the skin surface. In one embodiment, Acoustic Radiation Force Impulse (ARFI) imaging is used to calculate a tissue temperature. In one embodiment, Shear Wave Elasticity Imaging (SWEI) is used to calculate a tissue temperature. In one embodiment, attenuation is used to calculate a tissue temperature.
In various embodiments, a variable dose delivery technique is used to attain a target temperature in a tissue and maintain that target temperature. The body temperature at a depth in tissue surrounds a thermal treatment zone (TTZ). In one embodiment, to overcome the body temperature, a treatment focuses energy at the TTZ at a first rate to bring the tissue temperature in the TTZ to a target temperature. Once that target temperature is attained, the second rate can be reduced or stopped to maintain the tissue at the target temperature.
In some embodiments, energy is focused at a depth or position in tissue at the TTZ, such that the temperature in the focal zone is increased. However, at the edges (e.g., ends, top, bottom, sides, etc.) of the focal zone, a boundary condition at body temperature can result in temperature fluctuations at the boundaries of the treatment area 552. In various embodiments, movement of the TTZ 550 can be with the transducer delivering energy to create a treatment area 552. In one embodiment, a movement mechanism 285 can automatically move the cylindrical transduction element 281 across the surface of a treatment area so that the TTZ 550 can form a treatment area 552. In
In various embodiments, mechanical velocity modulation is used to attain a specific thermal distribution in the treatment area 552. In one embodiment, in order to attain a more uniform temperature in the treatment area 552, the applied temperature at the edges/boundaries is increased to counteract the surrounding body temperature difference.
In various embodiments, amplitude modulation is used to attain a specific thermal distribution in the treatment area 552. In one embodiment, in order to attain a more uniform temperature in the treatment area 552, the applied temperature at the edges/boundaries is increased to counteract the surrounding body temperature difference.
In various embodiments, aperture apodization is used to attain a specific thermal distribution in the treatment area 552. In one embodiment, aperture apodization along the non-focused dimension (such as along TTZ 550 and/or the azimuth direction) is used in order to attain a more uniform temperature in the treatment area 552. The applied temperature at the end points, along the edges/boundaries is increased to counteract the surrounding body temperature difference.
In various embodiments, pulsing and/or duty cycles are controlled to attain a specific thermal distribution in the treatment area 552. At
In various embodiments, treatment patterns are used to attain a specific thermal distribution in the treatment area 552. In some embodiments the TTZ 550 has a dimension (e.g., width, height, thickness, etc.). In some embodiments, the pulsed application of TTZ 550 is non-overlapping, as shown in
In various embodiments, a specific thermal distribution in the treatment area 552 comprises treatment with a tissue temperature of 37-50 degrees Celsius for a duration of minutes to hours to cause a targeted percentage of cell death (such as fat cell death) which a relationship can be determined via Arrhenius equation, such as is shown on the left side of
In some embodiments, one, two, three, four, or more of mechanical velocity modulation, amplitude modulation, aperture apodization, pulsing duty cycles, and/or treatments at different temperatures can be used to achieve a desired temperature profile across the treatment area 552. In various embodiments, one or more of mechanical velocity modulation, amplitude modulation, aperture apodization, pulsing duty cycles, and/or treatments at different temperatures is used to create a temperature profile, wherein the temperature profile can include areas for increased, decreased, and/or uniform temperatures. In some embodiments, one, two, or more types of treatment are applied in one, two, or three dimensions (along any of the azimuth, elevation, and/or depth directions) and is configured for treatment in any of one, two, or three dimensions to create a one, two, or three dimensional temperature profile.
In some embodiments, a compound lens system produces various peak intensities and different depths. In various embodiments, a mechanical and/or electronic focus lens can be used in any one or more of the azimuth, elevation, and/or depth directions. As illustrated in
In various embodiments, an ultrasound system 20 comprises a motion mechanism 285 configured for moving a plurality of ultrasound transducers 280 and/or a plurality of ultrasound elements 281. In some embodiments, such as illustrated in an embodiment at
In some embodiments, imaging is used to confirm the quality of the acoustic coupling between a treatment device and the skin. In one embodiment, clarity of an ultrasound image along a treatment area, line, or point is used to determine the extent to which a device is acoustically coupled to a skin surface. In one embodiment, defocused imaging and/or Voltage Standing Wave Ratio (VSWR) from backscatter is used to check acoustic coupling for a treatment.
In some embodiments, a treatment is automated. In one embodiment, a treatment is set up by acoustically coupling a system to a skin surface, and the movement mechanism and treatment is automated to function. In various embodiments, the system is coupled to a skin surface via suction. In various embodiments, a system operator couples the system to a skin surface, activates the system, and can leave the system to automatically perform a treatment, or a portion of a treatment. In one embodiment, a system uses suction and/or vacuum pressure to hold a probe or portion of the system to a skin surface, allowing the system user to initiate treatment and leave the system to automatically perform a treatment or a portion of a treatment for a period of time. In some embodiments, a treatment system includes a TENS stimulation device to reduce pain at a skin treatment site.
The following examples illustrate various non-limiting embodiments.
The following example is intended to be a non-limiting embodiment of the invention.
As illustrated at
In
In
As illustrated at
The following example is intended to be a non-limiting embodiment of the invention.
As illustrated at
In
The following example is intended to be a non-limiting embodiment of the invention.
Multiple in-vivo porcine studies and multiple cadaver studies were conducted to evaluate various embodiments of hardware to perform bulk heating treatments. Early studies focused on specifying and improving the instrumentation necessary to measure subdermal temperatures. In some embodiments, insulated wire thermocouples were placed at focal and subfocal depths by snaking the thermocouple through a needle-bored hole in the skin and verifying the depth with a Siemens s2000 ultrasound device. Temperature profiles were collected using a high sampling DAQ card. Once the measurement setup was defined, a replicated 3-factor 3-level design of experiments was performed in the in-vivo porcine model to determine energy settings that could safely reach isoeffective dosages without causing skin surface damage. In one embodiment, a mean temperature differential of 10 degrees Celsius was observed, with a mean focal heating rate of ˜1.2 degrees Celsius/pass. Safe heating rates appear to be similar across transducer.
A thermal dosage study was performed in the in-vivo porcine model after safe heating rates were determined. The study demonstrated an embodiment of the system is capable of reaching isoeffective dosages such as 47 degrees Celsius for 3 minutes, 48 degrees Celsius for 1 minute, and 50 degrees Celsius for 1 minute without exceeding 41 degrees Celsius on the skin surface. In some embodiments, use of higher temperature, shorter exposure time treatments may have the potential to overshoot the target temperature and could overheat the skin surface. In various embodiments, the longer it takes to perform an isoeffective dose, the more heat diffuses to the surrounding tissue and less selective the treatment becomes with depth. Additionally, the longer the isoeffective exposure time, the more impractical the treatment becomes from an operator and ergonomics point of view. For these reasons, in some embodiments, use of higher isoeffective temperatures and shorter exposure times were preferred.
In-vivo porcine tests were conducted to determine if the candidate treatment settings for submental could cause adverse surface skin effects. The animals procured for these studies were light skinned, 120-140 pound castrated male Yucatan miniature pigs, selected due to its skin characteristics being similar to that of human tissue. Skin surface data was evaluated by monitoring the animal for evidence of erythema, edema, and contusion on the skin surface after treatment. Photographs of each treatment area were taken prior to and following treatment (Cannon G9 and Cannon VIXIA HF 510). In one embodiment, a thermal dosage study using a cylindrical element transducer was performed on in-vivo porcine models. In several embodiments, test sites were able to achieve a significant temperature differential between the focus tissue site and the skin surface without causing damage to the skin surface.
In various embodiments, thermal dosage studies were performed on in-vivo porcine and cadaver models to determine safe isoeffective dosages, and the geometry of adipocyte death through histological evaluation. The Table at
Some embodiments and the examples described herein are examples and not intended to be limiting in describing the full scope of compositions and methods of these invention(s). Equivalent changes, modifications and variations of some embodiments, materials, compositions and methods can be made within the scope of the embodiments herein. In various embodiments, a device or method can combine features or characteristics of any of the embodiments disclosed herein.
While the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as “coupling an ultrasound probe to a skin surface” include “instructing the coupling of an ultrasound probe to a skin surface.” The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “about” or “approximately” include the recited numbers. For example, “about 25 mm” includes “25 mm.” The terms “approximately”, “about”, and “substantially” as used herein represent an amount or characteristic close to the stated amount or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount or characteristic.
This application is a continuation of U.S. application Ser. No. 15/855,949 filed Dec. 27, 2017 now issued as U.S. Pat. No. 10,603,521, which is a continuation from U.S. application Ser. No. 15/302,436 filed Oct. 6, 2016, a National Phase from International App. No. PCT/US2015/025581 filed Apr. 13, 2015, published in English as WO 2015/160708, which claims the benefit of priority from U.S. Provisional Application No. 61/981,660 filed Apr. 18, 2014, each of which is incorporated in its entirety by reference, herein.
Number | Name | Date | Kind |
---|---|---|---|
2427348 | Bond et al. | Sep 1947 | A |
2792829 | Calosi | Feb 1952 | A |
3913386 | Saglio | Oct 1975 | A |
3965455 | Hurwitz | Jun 1976 | A |
3992925 | Perilhou | Nov 1976 | A |
4039312 | Patru | Aug 1977 | A |
4059098 | Murdock | Nov 1977 | A |
4101795 | Fukumoto | Jul 1978 | A |
4151834 | Sato et al. | May 1979 | A |
4166967 | Benes et al. | Sep 1979 | A |
4211948 | Smith et al. | Jul 1980 | A |
4211949 | Brisken et al. | Jul 1980 | A |
4213344 | Rose | Jul 1980 | A |
4276491 | Daniel | Jun 1981 | A |
4315514 | Drewes et al. | Feb 1982 | A |
4325381 | Glenn | Apr 1982 | A |
4343301 | Indech | Aug 1982 | A |
4372296 | Fahim | Feb 1983 | A |
4379145 | Masuho et al. | Apr 1983 | A |
4381007 | Doss | Apr 1983 | A |
4381787 | Hottinger | May 1983 | A |
4397314 | Vaguine | Aug 1983 | A |
4409839 | Taenzer | Oct 1983 | A |
4417170 | Benisncasa | Nov 1983 | A |
4431008 | Wanner et al. | Feb 1984 | A |
4441486 | Pounds | Apr 1984 | A |
4452084 | Taenzer | Jun 1984 | A |
4484569 | Driller | Nov 1984 | A |
4507582 | Glenn | Mar 1985 | A |
4513749 | Kino | Apr 1985 | A |
4513750 | Heyman et al. | Apr 1985 | A |
4527550 | Ruggera et al. | Jul 1985 | A |
4528979 | Marchenko | Jul 1985 | A |
4534221 | Fife et al. | Aug 1985 | A |
4566459 | Umemura et al. | Jan 1986 | A |
4567895 | Putzke | Feb 1986 | A |
4586512 | Do-Huu | May 1986 | A |
4587971 | Stolfi | May 1986 | A |
4601296 | Yerushalmi | Jul 1986 | A |
4620546 | Aida et al. | Nov 1986 | A |
4637256 | Sugiyama et al. | Jan 1987 | A |
4646756 | Watmough | Mar 1987 | A |
4663358 | Hyon | May 1987 | A |
4668516 | Duraffourd et al. | May 1987 | A |
4672591 | Breimesser et al. | Jun 1987 | A |
4680499 | Umemura et al. | Jul 1987 | A |
4697588 | Reichenberger | Oct 1987 | A |
4754760 | Fukukita et al. | Jul 1988 | A |
4757820 | Itoh | Jul 1988 | A |
4771205 | Mequio | Sep 1988 | A |
4801459 | Liburdy | Jan 1989 | A |
4803625 | Fu et al. | Feb 1989 | A |
4807633 | Fry | Feb 1989 | A |
4817615 | Fukukita et al. | Apr 1989 | A |
4858613 | Fry | Aug 1989 | A |
4860732 | Hasegawa et al. | Aug 1989 | A |
4865041 | Hassler | Sep 1989 | A |
4865042 | Umemura | Sep 1989 | A |
4867169 | Machida | Sep 1989 | A |
4874562 | Hyon | Oct 1989 | A |
4875487 | Seppi | Oct 1989 | A |
4881212 | Takeuchi | Nov 1989 | A |
4891043 | Zeimer et al. | Jan 1990 | A |
4893624 | Lele | Jan 1990 | A |
4896673 | Rose | Jan 1990 | A |
4900540 | Ryan et al. | Feb 1990 | A |
4901729 | Saitoh | Feb 1990 | A |
4917096 | Englehart | Apr 1990 | A |
4932414 | Coleman et al. | Jun 1990 | A |
4938216 | Lele | Jul 1990 | A |
4938217 | Lele | Jul 1990 | A |
4947046 | Kawabata et al. | Aug 1990 | A |
4951653 | Fry | Aug 1990 | A |
4955365 | Fry | Sep 1990 | A |
4958626 | Nambu | Sep 1990 | A |
4976709 | Sand | Dec 1990 | A |
4979501 | Valchanov | Dec 1990 | A |
4992989 | Watanabe et al. | Feb 1991 | A |
5012797 | Liang | May 1991 | A |
5018508 | Fry et al. | May 1991 | A |
5030874 | Saito et al. | Jul 1991 | A |
5036855 | Fry | Aug 1991 | A |
5040537 | Katakura | Aug 1991 | A |
5054310 | Flynn | Oct 1991 | A |
5054470 | Fry | Oct 1991 | A |
5054491 | Saito et al. | Oct 1991 | A |
5070879 | Herres | Dec 1991 | A |
5088495 | Miyagawa | Feb 1992 | A |
5115814 | Griffith | May 1992 | A |
5117832 | Sanghvi | Jun 1992 | A |
5123418 | Saurel | Jun 1992 | A |
5142511 | Kanai et al. | Aug 1992 | A |
5143063 | Fellner | Sep 1992 | A |
5143074 | Dory | Sep 1992 | A |
5149319 | Unger | Sep 1992 | A |
5150711 | Dory | Sep 1992 | A |
5150714 | Green | Sep 1992 | A |
5152294 | Mochizuki et al. | Oct 1992 | A |
5156144 | Iwasaki | Oct 1992 | A |
5158536 | Sekins | Oct 1992 | A |
5159931 | Pini | Nov 1992 | A |
5163421 | Bernstein | Nov 1992 | A |
5163436 | Saitoh et al. | Nov 1992 | A |
5178135 | Uchiyama et al. | Jan 1993 | A |
5190518 | Takasu | Mar 1993 | A |
5190766 | Ishihara | Mar 1993 | A |
5191880 | McLeod | Mar 1993 | A |
5205287 | Erbel et al. | Apr 1993 | A |
5209720 | Unger | May 1993 | A |
5212671 | Fujii et al. | May 1993 | A |
5215680 | D'Arrigo | Jun 1993 | A |
5224467 | Oku | Jul 1993 | A |
5230334 | Klopotek | Jul 1993 | A |
5230338 | Allen et al. | Jul 1993 | A |
5247924 | Suzuki et al. | Sep 1993 | A |
5255681 | Ishimura et al. | Oct 1993 | A |
5257970 | Dougherty | Nov 1993 | A |
5265614 | Hayakawa | Nov 1993 | A |
5267985 | Shimada | Dec 1993 | A |
5269297 | Weng | Dec 1993 | A |
5282797 | Chess | Feb 1994 | A |
5295484 | Marcus | Mar 1994 | A |
5295486 | Wollschlager et al. | Mar 1994 | A |
5304169 | Sand | Apr 1994 | A |
5305756 | Entrekin et al. | Apr 1994 | A |
5321520 | Inga et al. | Jun 1994 | A |
5323779 | Hardy et al. | Jun 1994 | A |
5327895 | Hashimoto et al. | Jul 1994 | A |
5329202 | Garlick et al. | Jul 1994 | A |
5348016 | Unger et al. | Sep 1994 | A |
5358466 | Aida et al. | Oct 1994 | A |
5360268 | Hayashi | Nov 1994 | A |
5370121 | Reichenberger | Dec 1994 | A |
5370122 | Kunig | Dec 1994 | A |
5371483 | Bhardwaj | Dec 1994 | A |
5375602 | Lancee et al. | Dec 1994 | A |
5379773 | Hornsby | Jan 1995 | A |
5380280 | Peterson | Jan 1995 | A |
5380519 | Schneider et al. | Jan 1995 | A |
5383917 | Desai et al. | Jan 1995 | A |
5391140 | Schaetzle et al. | Feb 1995 | A |
5391197 | Burdette et al. | Feb 1995 | A |
5392259 | Bolorforosh | Feb 1995 | A |
5396143 | Seyed-Bolorforosh et al. | Mar 1995 | A |
5398689 | Connor et al. | Mar 1995 | A |
5406503 | Williams | Apr 1995 | A |
5413550 | Castel | May 1995 | A |
5417216 | Tanaka | May 1995 | A |
5423220 | Finsterwald et al. | Jun 1995 | A |
5435311 | Umemura | Jul 1995 | A |
5438998 | Hanafy | Aug 1995 | A |
5443068 | Cline et al. | Aug 1995 | A |
5445611 | Eppstein et al. | Aug 1995 | A |
5458596 | Lax | Oct 1995 | A |
5460179 | Okunuki et al. | Oct 1995 | A |
5460595 | Hall et al. | Oct 1995 | A |
5419327 | Rohwedder | Nov 1995 | A |
5469854 | Unger et al. | Nov 1995 | A |
5471488 | Fujio | Dec 1995 | A |
5472405 | Buchholtz et al. | Dec 1995 | A |
5487388 | Rello et al. | Jan 1996 | A |
5492126 | Hennige | Feb 1996 | A |
5496256 | Bock | Mar 1996 | A |
5501655 | Rolt | Mar 1996 | A |
5503152 | Oakley et al. | Apr 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5507790 | Weiss | Apr 1996 | A |
5511296 | Dias et al. | Apr 1996 | A |
5520188 | Hennige | May 1996 | A |
5522869 | Burdette | Jun 1996 | A |
5523058 | Umemura et al. | Jun 1996 | A |
5524620 | Rosenchein | Jun 1996 | A |
5524624 | Tepper | Jun 1996 | A |
5524625 | Okazaki | Jun 1996 | A |
5526624 | Berg | Jun 1996 | A |
5526812 | Dumoulin et al. | Jun 1996 | A |
5526814 | Cline et al. | Jun 1996 | A |
5526815 | Granz | Jun 1996 | A |
5529070 | Augustine et al. | Jun 1996 | A |
5540235 | Wilson | Jul 1996 | A |
5558092 | Unger | Sep 1996 | A |
5560362 | Sliwa et al. | Oct 1996 | A |
5573497 | Chapelon | Nov 1996 | A |
5575291 | Hayakawa | Nov 1996 | A |
5575807 | Faller | Nov 1996 | A |
5577502 | Darrow et al. | Nov 1996 | A |
5577507 | Snyder et al. | Nov 1996 | A |
5577991 | Akui et al. | Nov 1996 | A |
5580575 | Unger et al. | Dec 1996 | A |
5643179 | Fujimoto | Jan 1997 | A |
5601526 | Chapelon | Feb 1997 | A |
5603323 | Pflugrath et al. | Feb 1997 | A |
5605154 | Ries et al. | Feb 1997 | A |
5609562 | Kaali | Mar 1997 | A |
5615091 | Palatnik | Mar 1997 | A |
5618275 | Bock | Apr 1997 | A |
5620479 | Diederich | Apr 1997 | A |
5622175 | Sudol et al. | Apr 1997 | A |
5617858 | Taverna et al. | May 1997 | A |
5638819 | Manwaring et al. | Jun 1997 | A |
5644085 | Lorraine et al. | Jul 1997 | A |
5647373 | Paltieli | Jul 1997 | A |
5655535 | Frlemel et al. | Aug 1997 | A |
5655538 | Lorraine | Aug 1997 | A |
5657760 | Ying | Aug 1997 | A |
5658328 | Johnson | Aug 1997 | A |
5660836 | Knowlton | Aug 1997 | A |
5662116 | Kondo | Sep 1997 | A |
5665053 | Jacobs | Sep 1997 | A |
5665141 | Vago | Sep 1997 | A |
5671746 | Dreschel et al. | Sep 1997 | A |
5673699 | Trahey et al. | Oct 1997 | A |
5676692 | Sanghvi | Oct 1997 | A |
5685820 | Riek et al. | Nov 1997 | A |
5690608 | Watanabe | Nov 1997 | A |
5694936 | Fujimoto | Dec 1997 | A |
5697897 | Buchholtz | Dec 1997 | A |
5701900 | Shehada et al. | Dec 1997 | A |
5704361 | Seward et al. | Jan 1998 | A |
5706252 | Le Verrier et al. | Jan 1998 | A |
5706564 | Rhyne | Jan 1998 | A |
5715823 | Wood et al. | Feb 1998 | A |
5720287 | Chapelon et al. | Feb 1998 | A |
5722411 | Suzuki | Mar 1998 | A |
5727554 | Kalend et al. | Mar 1998 | A |
5735280 | Sherman et al. | Apr 1998 | A |
5740804 | Cerofolini | Apr 1998 | A |
5743863 | Chapelon | Apr 1998 | A |
5746005 | Steinberg | May 1998 | A |
5746762 | Bass | May 1998 | A |
5748767 | Raab | May 1998 | A |
5749364 | Sliwa et al. | May 1998 | A |
5755228 | Wilson et al. | May 1998 | A |
5755753 | Knowlton | May 1998 | A |
5762066 | Law | Jun 1998 | A |
5763886 | Schulte | Jun 1998 | A |
5769790 | Watkins | Jun 1998 | A |
5779644 | Eberle et al. | Jul 1998 | A |
5792058 | Lee | Aug 1998 | A |
5795297 | Daigle | Aug 1998 | A |
5795311 | Wess | Aug 1998 | A |
5810009 | Mine et al. | Sep 1998 | A |
5810888 | Fenn | Sep 1998 | A |
5814599 | Mitragotri et al. | Sep 1998 | A |
5817013 | Ginn et al. | Oct 1998 | A |
5817021 | Reichenberger | Oct 1998 | A |
5820564 | Slayton | Oct 1998 | A |
5823962 | Schaetzle | Oct 1998 | A |
5827204 | Grandia et al. | Oct 1998 | A |
5840032 | Hatfield et al. | Nov 1998 | A |
5844140 | Seale | Dec 1998 | A |
5853367 | Chalek et al. | Dec 1998 | A |
5866024 | de Villeneuve | Feb 1999 | A |
5869751 | Bonin | Feb 1999 | A |
5871524 | Knowlton | Feb 1999 | A |
5873902 | Sanghvi | Feb 1999 | A |
5876341 | Wang et al. | Mar 1999 | A |
5879303 | Averkiou et al. | Mar 1999 | A |
5882557 | Hayakawa | Mar 1999 | A |
5891034 | Bucholz | Apr 1999 | A |
5895356 | Andrus et al. | Apr 1999 | A |
5899861 | Friemel et al. | May 1999 | A |
5904659 | Duarte | May 1999 | A |
5919219 | Knowlton | Jul 1999 | A |
5923099 | Bilir | Jul 1999 | A |
5924989 | Polz | Jul 1999 | A |
5928169 | Schatzle et al. | Jul 1999 | A |
5931805 | Brisken | Aug 1999 | A |
5938606 | Bonnefous | Aug 1999 | A |
5938612 | Kline-Schoder | Aug 1999 | A |
5948011 | Knowlton | Sep 1999 | A |
5957844 | Dekel | Sep 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957941 | Ream | Sep 1999 | A |
5964707 | Fenster et al. | Oct 1999 | A |
5967980 | Ferre et al. | Oct 1999 | A |
5968034 | Fullmer | Oct 1999 | A |
5971949 | Levin | Oct 1999 | A |
5977538 | Unger et al. | Nov 1999 | A |
5984881 | Ishibashi et al. | Nov 1999 | A |
5984882 | Rosenchein | Nov 1999 | A |
5990598 | Sudol et al. | Nov 1999 | A |
5997471 | Gumb et al. | Dec 1999 | A |
5997497 | Nita et al. | Dec 1999 | A |
5999843 | Anbar | Dec 1999 | A |
6004262 | Putz et al. | Dec 1999 | A |
6007499 | Martin et al. | Dec 1999 | A |
6013032 | Rd | Jan 2000 | A |
6014473 | Hossack et al. | Jan 2000 | A |
6016255 | Bolan et al. | Jan 2000 | A |
6019724 | Gronningsaeter et al. | Feb 2000 | A |
6022308 | Williams | Feb 2000 | A |
6022317 | Cruanas et al. | Feb 2000 | A |
6022327 | Chang | Feb 2000 | A |
6030374 | McDaniel | Feb 2000 | A |
6036646 | Barthe | Mar 2000 | A |
6039048 | Silberg | Mar 2000 | A |
6039689 | Lizzi | Mar 2000 | A |
6042556 | Beach | Mar 2000 | A |
6049159 | Barthe | Apr 2000 | A |
6050943 | Slayton | Apr 2000 | A |
6059727 | Fowlkes | May 2000 | A |
6071239 | Cribbs | Jun 2000 | A |
6080108 | Dunham | Jun 2000 | A |
6083148 | Williams | Jul 2000 | A |
6086535 | Ishibashi | Jul 2000 | A |
6086580 | Morden et al. | Jul 2000 | A |
6090054 | Tagishi | Jul 2000 | A |
6093148 | Fujimoto | Jul 2000 | A |
6093883 | Sanghvi | Jul 2000 | A |
6100626 | Frey et al. | Aug 2000 | A |
6101407 | Groezinger | Aug 2000 | A |
6106469 | Suzuki et al. | Aug 2000 | A |
6113558 | Rosenchein | Sep 2000 | A |
6113559 | Klopotek | Sep 2000 | A |
6120452 | Barthe | Sep 2000 | A |
6123081 | Durette | Sep 2000 | A |
6126619 | Peterson et al. | Oct 2000 | A |
6135971 | Hutchinson | Oct 2000 | A |
6139499 | Wilk | Oct 2000 | A |
6159150 | Yale et al. | Dec 2000 | A |
6171244 | Finger et al. | Jan 2001 | B1 |
6176840 | Nishimura | Jan 2001 | B1 |
6183426 | Akisada | Feb 2001 | B1 |
6183502 | Takeuchi | Feb 2001 | B1 |
6183773 | Anderson | Feb 2001 | B1 |
6190323 | Dias | Feb 2001 | B1 |
6190336 | Duarte | Feb 2001 | B1 |
6193658 | Wendelken | Feb 2001 | B1 |
6198956 | Dunne | Mar 2001 | B1 |
6210327 | Brackett et al. | Apr 2001 | B1 |
6213948 | Barthe | Apr 2001 | B1 |
6216029 | Paltieli | Apr 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6234990 | Rowe et al. | May 2001 | B1 |
6241753 | Knowlton | Jun 2001 | B1 |
6246898 | Vesely et al. | Jun 2001 | B1 |
6251074 | Averkiou et al. | Jun 2001 | B1 |
6251088 | Kaufman et al. | Jun 2001 | B1 |
6268405 | Yao | Jul 2001 | B1 |
6273864 | Duarte | Aug 2001 | B1 |
6280402 | Ishibashi et al. | Aug 2001 | B1 |
6287257 | Matichuk | Sep 2001 | B1 |
6287304 | Eggers et al. | Sep 2001 | B1 |
6296619 | Brisker | Oct 2001 | B1 |
6301989 | Brown et al. | Oct 2001 | B1 |
6307302 | Toda | Oct 2001 | B1 |
6309355 | Cain et al. | Oct 2001 | B1 |
6311090 | Knowlton | Oct 2001 | B1 |
6315741 | Martin | Nov 2001 | B1 |
6322509 | Pan et al. | Nov 2001 | B1 |
6322532 | D'Sa | Nov 2001 | B1 |
6325540 | Lounsberry et al. | Dec 2001 | B1 |
6325758 | Carol et al. | Dec 2001 | B1 |
6325769 | Klopotek | Dec 2001 | B1 |
6325798 | Edwards et al. | Dec 2001 | B1 |
6338716 | Hossack et al. | Jan 2002 | B1 |
6350276 | Knowlton | Feb 2002 | B1 |
6356780 | Licato et al. | Mar 2002 | B1 |
6361531 | Hissong | Mar 2002 | B1 |
6370411 | Osadchy et al. | Apr 2002 | B1 |
6375672 | Aksan | Apr 2002 | B1 |
6377854 | Knowlton | Apr 2002 | B1 |
6377855 | Knowlton | Apr 2002 | B1 |
6381497 | Knowlton | Apr 2002 | B1 |
6381498 | Knowlton | Apr 2002 | B1 |
6387380 | Knowlton | May 2002 | B1 |
6390982 | Bova et al. | May 2002 | B1 |
6405090 | Knowlton | Jun 2002 | B1 |
6409720 | Hissong | Jun 2002 | B1 |
6413216 | Cain et al. | Jul 2002 | B1 |
6413253 | Koop | Jul 2002 | B1 |
6413254 | Hissong | Jul 2002 | B1 |
6419648 | Vitek | Jul 2002 | B1 |
6423007 | Lizzi et al. | Jul 2002 | B2 |
6425865 | Salcudean | Jul 2002 | B1 |
6425867 | Vaezy | Jul 2002 | B1 |
6425912 | Knowlton | Jul 2002 | B1 |
6428477 | Mason | Aug 2002 | B1 |
6428532 | Doukas | Aug 2002 | B1 |
6430446 | Knowlton | Aug 2002 | B1 |
6432057 | Mazess et al. | Aug 2002 | B1 |
6432067 | Martin | Aug 2002 | B1 |
6432101 | Weber | Aug 2002 | B1 |
6436061 | Costantino | Aug 2002 | B1 |
6438424 | Knowlton | Aug 2002 | B1 |
6440071 | Slayton | Aug 2002 | B1 |
6440121 | Weber | Aug 2002 | B1 |
6443914 | Costantino | Sep 2002 | B1 |
6447443 | Keogh et al. | Sep 2002 | B1 |
6450979 | Miwa et al. | Sep 2002 | B1 |
6451013 | Bays et al. | Sep 2002 | B1 |
6453202 | Knowlton | Sep 2002 | B1 |
6461304 | Tanaka et al. | Oct 2002 | B1 |
6461378 | Knowlton | Oct 2002 | B1 |
6470216 | Knowlton | Oct 2002 | B1 |
6485420 | Bullis | Nov 2002 | B1 |
6488626 | Lizzi | Dec 2002 | B1 |
6491657 | Rowe | Dec 2002 | B2 |
6500121 | Slayton | Dec 2002 | B1 |
6500141 | Irion | Dec 2002 | B1 |
6506171 | Vitek et al. | Jan 2003 | B1 |
6508774 | Acker | Jan 2003 | B1 |
6511427 | Sliwa, Jr. et al. | Jan 2003 | B1 |
6511428 | Azuma | Jan 2003 | B1 |
6514244 | Pope | Feb 2003 | B2 |
6517484 | Wilk | Feb 2003 | B1 |
6524250 | Weber | Feb 2003 | B1 |
6666835 | Martin | Mar 2003 | B2 |
6540679 | Slayton | Apr 2003 | B2 |
6540685 | Rhoads et al. | Apr 2003 | B1 |
6540700 | Fujimoto et al. | Apr 2003 | B1 |
6547788 | Maguire et al. | Apr 2003 | B1 |
6554771 | Buil et al. | Apr 2003 | B1 |
6569099 | Babaev | May 2003 | B1 |
6569108 | Sarvazyan et al. | May 2003 | B2 |
6572552 | Fukukita | Jun 2003 | B2 |
6575956 | Brisken et al. | Jun 2003 | B1 |
6595934 | Hissong | Jul 2003 | B1 |
6599256 | Acker | Jul 2003 | B1 |
6605043 | Dreschel | Aug 2003 | B1 |
6605080 | Altshuler et al. | Aug 2003 | B1 |
6607498 | Eshel | Aug 2003 | B2 |
6618620 | Freundlich et al. | Sep 2003 | B1 |
6623430 | Slayton | Sep 2003 | B1 |
6626854 | Friedman | Sep 2003 | B2 |
6626855 | Weng | Sep 2003 | B1 |
6638226 | He et al. | Oct 2003 | B2 |
6645145 | Dreschel et al. | Nov 2003 | B1 |
6645150 | Angelsen et al. | Nov 2003 | B2 |
6645162 | Friedman | Nov 2003 | B2 |
6662054 | Kreindel | Dec 2003 | B2 |
6663627 | Francischelli | Dec 2003 | B2 |
6665806 | Shimizu | Dec 2003 | B1 |
6669638 | Miller | Dec 2003 | B1 |
6685639 | Wang et al. | Feb 2004 | B1 |
6685640 | Fry | Feb 2004 | B1 |
6692450 | Coleman | Feb 2004 | B1 |
6699237 | Weber | Mar 2004 | B2 |
6716184 | Vaezy et al. | Apr 2004 | B2 |
6719449 | Laughlin | Apr 2004 | B1 |
6719694 | Weng | Apr 2004 | B2 |
6726627 | Lizzi et al. | Apr 2004 | B1 |
6733449 | Krishnamurthy et al. | May 2004 | B1 |
6749624 | Knowlton | Jun 2004 | B2 |
6772490 | Toda | Aug 2004 | B2 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6775404 | Pagoulatos et al. | Aug 2004 | B1 |
6790187 | Thompson et al. | Sep 2004 | B2 |
6824516 | Batten et al. | Nov 2004 | B2 |
6825176 | White et al. | Nov 2004 | B2 |
6835940 | Morikawa et al. | Dec 2004 | B2 |
6846290 | Lizzi et al. | Jan 2005 | B2 |
6875176 | Mourad et al. | Apr 2005 | B2 |
6882884 | Mosk et al. | Apr 2005 | B1 |
6887239 | Elstrom | May 2005 | B2 |
6887260 | McDaniel | May 2005 | B1 |
6889089 | Behl | May 2005 | B2 |
6896657 | Willis | May 2005 | B2 |
6902536 | Manna | Jun 2005 | B2 |
6905466 | Saigo | Jun 2005 | B2 |
6918907 | Kelly | Jul 2005 | B2 |
6920883 | Bessette | Jul 2005 | B2 |
6921371 | Wilson | Jul 2005 | B2 |
6932771 | Whitmore | Aug 2005 | B2 |
6932814 | Wood | Aug 2005 | B2 |
6936044 | McDaniel | Aug 2005 | B2 |
6936046 | Hissong | Aug 2005 | B2 |
6945937 | Culp et al. | Sep 2005 | B2 |
6948843 | Laugharn et al. | Sep 2005 | B2 |
6953941 | Nakano et al. | Oct 2005 | B2 |
6958043 | Hissong | Oct 2005 | B2 |
6971994 | Young et al. | Dec 2005 | B1 |
6974417 | Lockwood | Dec 2005 | B2 |
6976492 | Ingle | Dec 2005 | B2 |
6992305 | Maezawa et al. | Jan 2006 | B2 |
6997923 | Anderson | Feb 2006 | B2 |
7006874 | Knowlton | Feb 2006 | B2 |
7020528 | Neev | Mar 2006 | B2 |
7022089 | Ooba | Apr 2006 | B2 |
7058440 | Heuscher et al. | Jun 2006 | B2 |
7063666 | Weng | Jun 2006 | B2 |
7070565 | Vaezy et al. | Jul 2006 | B2 |
7074218 | Washington et al. | Jul 2006 | B2 |
7094252 | Koop | Aug 2006 | B2 |
7108663 | Talish et al. | Sep 2006 | B2 |
7115123 | Knowlton | Oct 2006 | B2 |
7122029 | Koop et al. | Oct 2006 | B2 |
7142905 | Slayton | Nov 2006 | B2 |
7165451 | Brooks et al. | Jan 2007 | B1 |
7179238 | Hissong | Feb 2007 | B2 |
7189230 | Knowlton | Mar 2007 | B2 |
7229411 | Slayton | Jun 2007 | B2 |
7235592 | Muratoglu | Jun 2007 | B2 |
7258674 | Cribbs | Aug 2007 | B2 |
7273459 | Desilets | Sep 2007 | B2 |
7294125 | Phalen et al. | Nov 2007 | B2 |
7297117 | Trucco | Nov 2007 | B2 |
7303555 | Makin et al. | Dec 2007 | B2 |
7311679 | Desilets et al. | Dec 2007 | B2 |
7327071 | Nishiyama et al. | Feb 2008 | B2 |
7331951 | Eshel et al. | Feb 2008 | B2 |
7332985 | Larson et al. | Feb 2008 | B2 |
7338434 | Haarstad et al. | Mar 2008 | B1 |
7347855 | Eshel | Mar 2008 | B2 |
RE40403 | Cho et al. | Jun 2008 | E |
7393325 | Barthe | Jul 2008 | B2 |
7398116 | Edwards | Jul 2008 | B2 |
7399279 | Abend et al. | Jul 2008 | B2 |
7491171 | Barthe et al. | Feb 2009 | B2 |
7507235 | Keogh et al. | Mar 2009 | B2 |
7510536 | Foley et al. | Mar 2009 | B2 |
7517315 | Willis | Apr 2009 | B2 |
7530356 | Slayton | May 2009 | B2 |
7530958 | Slayton | May 2009 | B2 |
7532201 | Quistgaard et al. | May 2009 | B2 |
7571336 | Barthe | Aug 2009 | B2 |
7601120 | Moilanen et al. | Oct 2009 | B2 |
7615015 | Coleman | Nov 2009 | B2 |
7615016 | Barthe | Nov 2009 | B2 |
7652411 | Crunkilton et al. | Jan 2010 | B2 |
7662114 | Seip et al. | Feb 2010 | B2 |
7674257 | Pless et al. | Mar 2010 | B2 |
7686763 | Vaezy et al. | Mar 2010 | B2 |
7713203 | Lacoste et al. | Mar 2010 | B2 |
7694406 | Wildes et al. | Apr 2010 | B2 |
7695437 | Quistgaard et al. | Apr 2010 | B2 |
7727156 | Angelsen et al. | Jun 2010 | B2 |
7758524 | Barthe | Jul 2010 | B2 |
7766848 | Desilets et al. | Aug 2010 | B2 |
7789841 | Huckle et al. | Sep 2010 | B2 |
7806839 | Mast et al. | Oct 2010 | B2 |
7815570 | Eshel et al. | Oct 2010 | B2 |
7819826 | Diederich et al. | Oct 2010 | B2 |
7828734 | Azhari et al. | Oct 2010 | B2 |
7824348 | Barthe | Nov 2010 | B2 |
7833162 | Hasegawa et al. | Nov 2010 | B2 |
7841984 | Cribbs et al. | Nov 2010 | B2 |
7846096 | Mast et al. | Dec 2010 | B2 |
7857773 | Desilets et al. | Dec 2010 | B2 |
7875023 | Eshel et al. | Jan 2011 | B2 |
7901359 | Mandrusov et al. | Mar 2011 | B2 |
7905007 | Calisti et al. | Mar 2011 | B2 |
7905844 | Desilets et al. | Mar 2011 | B2 |
7914453 | Slayton et al. | Mar 2011 | B2 |
7914469 | Torbati | Mar 2011 | B2 |
7955281 | Pedersen et al. | Jun 2011 | B2 |
7967764 | Lidgren et al. | Jun 2011 | B2 |
7967839 | Flock et al. | Jun 2011 | B2 |
7955262 | Rosenberg | Jul 2011 | B2 |
7993289 | Quistgaard et al. | Aug 2011 | B2 |
8057465 | Sliwa, Jr. et al. | Sep 2011 | B2 |
8057389 | Barthe et al. | Nov 2011 | B2 |
8066641 | Barthe et al. | Nov 2011 | B2 |
8123707 | Huckle et al. | Feb 2012 | B2 |
8128618 | Gliklich et al. | Mar 2012 | B2 |
8133180 | Slayton et al. | Mar 2012 | B2 |
8133191 | Rosenberg et al. | Mar 2012 | B2 |
8142200 | Crunkilton et al. | Mar 2012 | B2 |
8152904 | Slobodzian et al. | Apr 2012 | B2 |
8162858 | Manna et al. | Apr 2012 | B2 |
8166332 | Barthe et al. | Apr 2012 | B2 |
8182428 | Angelsen et al. | May 2012 | B2 |
8197409 | Foley et al. | Jun 2012 | B2 |
8206299 | Foley et al. | Jun 2012 | B2 |
8208346 | Crunkilton | Jun 2012 | B2 |
8211017 | Foley et al. | Jul 2012 | B2 |
8262591 | Pedersen et al. | Sep 2012 | B2 |
8262650 | Zanelli et al. | Sep 2012 | B2 |
8264126 | Toda et al. | Sep 2012 | B2 |
8273037 | Kreindel et al. | Sep 2012 | B2 |
8282554 | Makin et al. | Oct 2012 | B2 |
8292835 | Cimino | Oct 2012 | B1 |
8298163 | Cimino | Oct 2012 | B1 |
8333700 | Barthe et al. | Dec 2012 | B1 |
8334637 | Crunkilton et al. | Dec 2012 | B2 |
8337407 | Quistgaard et al. | Dec 2012 | B2 |
8343051 | Desilets et al. | Jan 2013 | B2 |
8454540 | Eshel et al. | Jan 2013 | B2 |
8366622 | Slayton et al. | Feb 2013 | B2 |
8398549 | Palmeri et al. | Mar 2013 | B2 |
8409097 | Slayton et al. | Apr 2013 | B2 |
8425435 | Wing et al. | Apr 2013 | B2 |
8388535 | Weng et al. | May 2013 | B2 |
8444562 | Barthe et al. | May 2013 | B2 |
8460193 | Barthe et al. | Jun 2013 | B2 |
8480585 | Slayton et al. | Jul 2013 | B2 |
8486001 | Weyant | Jul 2013 | B2 |
8506486 | Slayton et al. | Aug 2013 | B2 |
8512250 | Quistgaard et al. | Aug 2013 | B2 |
8523775 | Barthe et al. | Sep 2013 | B2 |
8523849 | Liu et al. | Sep 2013 | B2 |
8535228 | Slayton et al. | Sep 2013 | B2 |
8570837 | Toda et al. | Oct 2013 | B2 |
8573392 | Bennett et al. | Nov 2013 | B2 |
8583211 | Salomir et al. | Nov 2013 | B2 |
8585618 | Hunziker et al. | Nov 2013 | B2 |
8604672 | Toda et al. | Dec 2013 | B2 |
8622937 | Weng et al. | Jan 2014 | B2 |
8636665 | Slayton et al. | Jan 2014 | B2 |
8641622 | Barthe et al. | Feb 2014 | B2 |
8663112 | Slayton et al. | Mar 2014 | B2 |
8672848 | Slayton et al. | Mar 2014 | B2 |
8690778 | Slayton et al. | Apr 2014 | B2 |
8690779 | Slayton et al. | Apr 2014 | B2 |
8690780 | Slayton et al. | Apr 2014 | B2 |
8708935 | Barthe et al. | Apr 2014 | B2 |
8715186 | Slayton et al. | May 2014 | B2 |
8726781 | Eckhoff et al. | May 2014 | B2 |
8728071 | Lischinsky et al. | May 2014 | B2 |
8753295 | Thierman | Jun 2014 | B2 |
8758253 | Sano et al. | Jun 2014 | B2 |
8836203 | Nobles et al. | Sep 2014 | B2 |
8857438 | Barthe et al. | Oct 2014 | B2 |
8858471 | Barthe et al. | Oct 2014 | B2 |
8915853 | Barthe et al. | Dec 2014 | B2 |
8915854 | Slayton et al. | Dec 2014 | B2 |
8915870 | Barthe et al. | Dec 2014 | B2 |
8920320 | Stecco et al. | Dec 2014 | B2 |
8920324 | Slayton et al. | Dec 2014 | B2 |
8926533 | Bockenstedt et al. | Jan 2015 | B2 |
8932224 | Barthe et al. | Jan 2015 | B2 |
8932238 | Wing et al. | Jan 2015 | B2 |
8968205 | Zeng et al. | Mar 2015 | B2 |
9011336 | Slayton et al. | Apr 2015 | B2 |
9039617 | Slayton et al. | May 2015 | B2 |
9039619 | Barthe et al. | May 2015 | B2 |
9050116 | Homer | Jun 2015 | B2 |
9095697 | Barthe et al. | Aug 2015 | B2 |
9107798 | Azhari et al. | Aug 2015 | B2 |
9114247 | Barthe et al. | Aug 2015 | B2 |
9180314 | Desilets et al. | Nov 2015 | B2 |
9216276 | Slayton et al. | Dec 2015 | B2 |
9220915 | Liu et al. | Dec 2015 | B2 |
9272162 | Slayton et al. | Mar 2016 | B2 |
9283409 | Slayton et al. | Mar 2016 | B2 |
9283410 | Slayton et al. | Mar 2016 | B2 |
9295607 | Rosenberg | Mar 2016 | B2 |
9308390 | Youngquist | Apr 2016 | B2 |
9308391 | Liu et al. | Apr 2016 | B2 |
9314650 | Rosenberg et al. | Apr 2016 | B2 |
9320537 | Slayton et al. | Apr 2016 | B2 |
9345910 | Slayton et al. | May 2016 | B2 |
9421029 | Barthe et al. | Aug 2016 | B2 |
9427600 | Barthe et al. | Aug 2016 | B2 |
9427601 | Barthe et al. | Aug 2016 | B2 |
9433803 | Lin et al. | Sep 2016 | B2 |
9440093 | Homer | Sep 2016 | B2 |
9440096 | Barthe et al. | Sep 2016 | B2 |
9492645 | Zhou et al. | Nov 2016 | B2 |
9492686 | Da Silva | Nov 2016 | B2 |
9498651 | Sapozhnikov et al. | Nov 2016 | B2 |
9510802 | Barthe et al. | Dec 2016 | B2 |
9522290 | Slayton et al. | Dec 2016 | B2 |
9532832 | Ron Edoute et al. | Jan 2017 | B2 |
9533174 | Barthe et al. | Jan 2017 | B2 |
9533175 | Slayton et al. | Jan 2017 | B2 |
9545529 | Britva et al. | Jan 2017 | B2 |
9566454 | Barthe et al. | Feb 2017 | B2 |
9623267 | Ulric et al. | Apr 2017 | B2 |
9694211 | Barthe et al. | Jul 2017 | B2 |
9694212 | Barthe et al. | Jul 2017 | B2 |
9700340 | Barthe et al. | Jul 2017 | B2 |
9707412 | Slayton et al. | Jul 2017 | B2 |
9710607 | Ramdas et al. | Jul 2017 | B2 |
9713731 | Slayton et al. | Jul 2017 | B2 |
9802063 | Barthe et al. | Oct 2017 | B2 |
9827449 | Barthe et al. | Nov 2017 | B2 |
9827450 | Slayton et al. | Nov 2017 | B2 |
9833639 | Slayton et al. | Dec 2017 | B2 |
9833640 | Barthe et al. | Dec 2017 | B2 |
9895560 | Barthe et al. | Feb 2018 | B2 |
9907535 | Barthe et al. | Mar 2018 | B2 |
9919167 | Domankevitz | Mar 2018 | B2 |
9974982 | Slayton et al. | May 2018 | B2 |
9993664 | Aviad et al. | Jun 2018 | B2 |
10010721 | Slayton et al. | Jul 2018 | B2 |
10010724 | Barthe et al. | Jul 2018 | B2 |
10010725 | Slayton et al. | Jul 2018 | B2 |
10010726 | Barthe et al. | Jul 2018 | B2 |
10016626 | Zovrin et al. | Jul 2018 | B2 |
10046181 | Barthe et al. | Aug 2018 | B2 |
10046182 | Barthe et al. | Aug 2018 | B2 |
10070883 | Barthe et al. | Sep 2018 | B2 |
10183183 | Burdette | Jan 2019 | B2 |
10226645 | Barthe | Mar 2019 | B2 |
10238894 | Slayton et al. | Mar 2019 | B2 |
10245450 | Slayton et al. | Apr 2019 | B2 |
10252086 | Barthe et al. | Apr 2019 | B2 |
10265550 | Barthe et al. | Apr 2019 | B2 |
10272272 | Lee et al. | Apr 2019 | B2 |
10300308 | Seip et al. | May 2019 | B2 |
10328289 | Barthe et al. | Jun 2019 | B2 |
10406383 | Luebcke | Sep 2019 | B2 |
10420960 | Emery | Sep 2019 | B2 |
10420961 | Lacoste | Sep 2019 | B2 |
10485573 | Clark, III et al. | Nov 2019 | B2 |
10492862 | Domankevitz | Dec 2019 | B2 |
10525288 | Slayton et al. | Jan 2020 | B2 |
10532230 | Barthe et al. | Jan 2020 | B2 |
10537304 | Barthe et al. | Jan 2020 | B2 |
10556123 | Altshuler et al. | Feb 2020 | B2 |
10583287 | Schwarz | Mar 2020 | B2 |
10603519 | Slayton et al. | Mar 2020 | B2 |
10603521 | Emery | Mar 2020 | B2 |
10603523 | Slayton et al. | Mar 2020 | B2 |
10610705 | Barthe et al. | Apr 2020 | B2 |
10610706 | Barthe et al. | Apr 2020 | B2 |
10639006 | Choi et al. | May 2020 | B2 |
10639504 | Kim | May 2020 | B2 |
10751246 | Kaila | Aug 2020 | B2 |
10772646 | Lu et al. | Sep 2020 | B2 |
10780298 | Cain et al. | Sep 2020 | B2 |
10888716 | Slayton et al. | Jan 2021 | B2 |
10888717 | Slayton et al. | Jan 2021 | B2 |
10888718 | Barthe et al. | Jan 2021 | B2 |
10960235 | Barthe et al. | Mar 2021 | B2 |
10960236 | Slayton et al. | Mar 2021 | B2 |
11123039 | Barthe et al. | Sep 2021 | B2 |
11167155 | Barthe et al. | Nov 2021 | B2 |
11179580 | Slayton et al. | Nov 2021 | B2 |
11207547 | Slayton et al. | Dec 2021 | B2 |
11207548 | Barthe et al. | Dec 2021 | B2 |
11224895 | Brown et al. | Jan 2022 | B2 |
11235179 | Barthe et al. | Feb 2022 | B2 |
11235180 | Slayton et al. | Feb 2022 | B2 |
11241218 | Emery et al. | Feb 2022 | B2 |
20010009997 | Pope | Jul 2001 | A1 |
20010009999 | Kaufman et al. | Jul 2001 | A1 |
20010014780 | Martin | Aug 2001 | A1 |
20010014819 | Ingle | Aug 2001 | A1 |
20010031922 | Weng | Oct 2001 | A1 |
20010039380 | Larson et al. | Nov 2001 | A1 |
20010041880 | Brisken | Nov 2001 | A1 |
20020000763 | Jones | Jan 2002 | A1 |
20020002345 | Marlinghaus | Jan 2002 | A1 |
20020040199 | Klopotek | Apr 2002 | A1 |
20020040442 | Ishidera | Apr 2002 | A1 |
20020055702 | Atala | May 2002 | A1 |
20020062077 | Emmenegger | May 2002 | A1 |
20020062142 | Knowlton | May 2002 | A1 |
20020072691 | Thompson et al. | Jun 2002 | A1 |
20020082528 | Friedman | Jun 2002 | A1 |
20020082529 | Suorsa et al. | Jun 2002 | A1 |
20020082589 | Friedman | Jun 2002 | A1 |
20020087080 | Slayton | Jul 2002 | A1 |
20020095143 | Key | Jul 2002 | A1 |
20020099094 | Anderson | Jul 2002 | A1 |
20020111569 | Rosenschien et al. | Aug 2002 | A1 |
20020115917 | Honda et al. | Aug 2002 | A1 |
20020128639 | Pless et al. | Aug 2002 | A1 |
20020128648 | Weber | Sep 2002 | A1 |
20020143252 | Dunne et al. | Oct 2002 | A1 |
20020156400 | Babaev | Oct 2002 | A1 |
20020161357 | Anderson | Oct 2002 | A1 |
20020165529 | Danek | Nov 2002 | A1 |
20020168049 | Schriever | Nov 2002 | A1 |
20020169394 | Eppstein et al. | Nov 2002 | A1 |
20020169442 | Neev | Nov 2002 | A1 |
20020173721 | Grunwald et al. | Nov 2002 | A1 |
20020193784 | McHale et al. | Dec 2002 | A1 |
20020193831 | Smith | Dec 2002 | A1 |
20030009153 | Brisken et al. | Jan 2003 | A1 |
20030014039 | Barzell et al. | Jan 2003 | A1 |
20030018255 | Martin | Jan 2003 | A1 |
20030018270 | Makin et al. | Jan 2003 | A1 |
20030023283 | McDaniel | Jan 2003 | A1 |
20030028111 | Vaezy et al. | Feb 2003 | A1 |
20030028113 | Gilbert et al. | Feb 2003 | A1 |
20030032900 | Ella | Feb 2003 | A1 |
20030036706 | Slayton et al. | Feb 2003 | A1 |
20030040739 | Koop | Feb 2003 | A1 |
20030050678 | Sierra | Mar 2003 | A1 |
20030055308 | Friemel et al. | Mar 2003 | A1 |
20030055417 | Truckai et al. | Mar 2003 | A1 |
20030060736 | Martin et al. | Mar 2003 | A1 |
20030065313 | Koop | Apr 2003 | A1 |
20030066708 | Allison et al. | Apr 2003 | A1 |
20030073907 | Taylor | Apr 2003 | A1 |
20030074023 | Kaplan | Apr 2003 | A1 |
20030083536 | Eshel | May 2003 | A1 |
20030092988 | Makin | May 2003 | A1 |
20030097071 | Halmann et al. | May 2003 | A1 |
20030099383 | Lefebvre | May 2003 | A1 |
20030125629 | Ustuner | Jul 2003 | A1 |
20030135135 | Miwa et al. | Jul 2003 | A1 |
20030139790 | Ingle et al. | Jul 2003 | A1 |
20030149366 | Stringer et al. | Aug 2003 | A1 |
20030153961 | Babaev | Aug 2003 | A1 |
20030171678 | Batten et al. | Sep 2003 | A1 |
20030171701 | Babaev | Sep 2003 | A1 |
20030176790 | Slayton | Sep 2003 | A1 |
20030191396 | Sanghvi | Oct 2003 | A1 |
20030199794 | Sakurai et al. | Oct 2003 | A1 |
20030200481 | Stanley | Oct 2003 | A1 |
20030212129 | Liu et al. | Nov 2003 | A1 |
20030212351 | Hissong | Nov 2003 | A1 |
20030212393 | Knowlton | Nov 2003 | A1 |
20030216648 | Lizzi et al. | Nov 2003 | A1 |
20030216795 | Harth | Nov 2003 | A1 |
20030220536 | Hissong | Nov 2003 | A1 |
20030220585 | Hissong | Nov 2003 | A1 |
20030229331 | Brisken et al. | Dec 2003 | A1 |
20030233085 | Giammarusti | Dec 2003 | A1 |
20030236487 | Knowlton | Dec 2003 | A1 |
20040000316 | Knowlton | Jan 2004 | A1 |
20040001809 | Brisken | Jan 2004 | A1 |
20040002658 | Marian, Jr. | Jan 2004 | A1 |
20040002705 | Knowlton | Jan 2004 | A1 |
20040010222 | Nunomura et al. | Jan 2004 | A1 |
20040015079 | Berger et al. | Jan 2004 | A1 |
20040015106 | Coleman | Jan 2004 | A1 |
20040030227 | Littrup | Feb 2004 | A1 |
20040030268 | Weng et al. | Feb 2004 | A1 |
20040039312 | Hillstead | Feb 2004 | A1 |
20040039418 | Elstrom | Feb 2004 | A1 |
20040041563 | Lewin et al. | Mar 2004 | A1 |
20040041880 | Ikeda et al. | Mar 2004 | A1 |
20040042168 | Yang et al. | Mar 2004 | A1 |
20040044375 | Diederich et al. | Mar 2004 | A1 |
20040049134 | Tosaya et al. | Mar 2004 | A1 |
20040049734 | Tosaya et al. | Mar 2004 | A1 |
20040059266 | Fry | Mar 2004 | A1 |
20040068186 | Ishida et al. | Apr 2004 | A1 |
20040073079 | Altshuler et al. | Apr 2004 | A1 |
20040073113 | Salgo | Apr 2004 | A1 |
20040073115 | Horzewski et al. | Apr 2004 | A1 |
20040073116 | Smith | Apr 2004 | A1 |
20040073204 | Ryan et al. | Apr 2004 | A1 |
20040077977 | Ella et al. | Apr 2004 | A1 |
20040082857 | Schonenberger | Apr 2004 | A1 |
20040082859 | Schaer | Apr 2004 | A1 |
20040102697 | Evron | May 2004 | A1 |
20040105559 | Aylward et al. | Jun 2004 | A1 |
20040106867 | Eshel et al. | Jun 2004 | A1 |
20040122323 | Vortman et al. | Jun 2004 | A1 |
20040122493 | Ishibashi et al. | Jun 2004 | A1 |
20040143297 | Ramsey | Jul 2004 | A1 |
20040152982 | Hwang et al. | Aug 2004 | A1 |
20040158150 | Rabiner et al. | Aug 2004 | A1 |
20040186535 | Knowlton | Sep 2004 | A1 |
20040189155 | Funakubo | Sep 2004 | A1 |
20040206365 | Knowlton | Oct 2004 | A1 |
20040210214 | Knowlton | Oct 2004 | A1 |
20040217675 | Desilets | Nov 2004 | A1 |
20040249318 | Tanaka | Dec 2004 | A1 |
20040254620 | Lacoste | Dec 2004 | A1 |
20040267252 | Washington et al. | Dec 2004 | A1 |
20050007879 | Nishida | Jan 2005 | A1 |
20050033201 | Takahashi | Feb 2005 | A1 |
20050033316 | Kertz | Feb 2005 | A1 |
20050038340 | Vaezy et al. | Feb 2005 | A1 |
20050055018 | Kreindel | Mar 2005 | A1 |
20050055073 | Weber | Mar 2005 | A1 |
20050061834 | Garcia et al. | Mar 2005 | A1 |
20050070961 | Maki | Mar 2005 | A1 |
20050074407 | Smith | Apr 2005 | A1 |
20050080469 | Larson | Apr 2005 | A1 |
20050085731 | Miller et al. | Apr 2005 | A1 |
20050091770 | Mourad et al. | May 2005 | A1 |
20050096542 | Weng et al. | May 2005 | A1 |
20050104690 | Larson et al. | May 2005 | A1 |
20050113689 | Gritzky | May 2005 | A1 |
20050131302 | Poland | Jun 2005 | A1 |
20050137656 | Malak | Jun 2005 | A1 |
20050143677 | Young et al. | Jun 2005 | A1 |
20050154313 | Desilets | Jul 2005 | A1 |
20050154314 | Quistgaard | Jul 2005 | A1 |
20050154332 | Zanelli | Jul 2005 | A1 |
20050154431 | Quistgaard | Jul 2005 | A1 |
20050187495 | Quistgaard | Aug 2005 | A1 |
20050191252 | Mitsui | Sep 2005 | A1 |
20050193451 | Quistgaard | Sep 2005 | A1 |
20050193820 | Sheljaskow et al. | Sep 2005 | A1 |
20050197681 | Barolet et al. | Sep 2005 | A1 |
20050228281 | Nefos | Oct 2005 | A1 |
20050240127 | Seip et al. | Oct 2005 | A1 |
20050240170 | Zhang et al. | Oct 2005 | A1 |
20050251120 | Anderson et al. | Nov 2005 | A1 |
20050251125 | Pless et al. | Nov 2005 | A1 |
20050256406 | Barthe | Nov 2005 | A1 |
20050261584 | Eshel | Nov 2005 | A1 |
20050261585 | Makin et al. | Nov 2005 | A1 |
20050267454 | Hissong | Dec 2005 | A1 |
20050288748 | Li et al. | Dec 2005 | A1 |
20060004306 | Altshuler | Jan 2006 | A1 |
20060020260 | Dover et al. | Jan 2006 | A1 |
20060025756 | Francischelli | Feb 2006 | A1 |
20060042201 | Curry | Mar 2006 | A1 |
20060058664 | Barthe | Mar 2006 | A1 |
20060058671 | Vitek et al. | Mar 2006 | A1 |
20060058707 | Barthe | Mar 2006 | A1 |
20060058712 | Altshuler et al. | Mar 2006 | A1 |
20060074309 | Bonnefous | Apr 2006 | A1 |
20060074313 | Slayton et al. | Apr 2006 | A1 |
20060074314 | Slayton | Apr 2006 | A1 |
20060074355 | Slayton | Apr 2006 | A1 |
20060079816 | Barthe | Apr 2006 | A1 |
20060079868 | Makin | Apr 2006 | A1 |
20060084891 | Barthe | Apr 2006 | A1 |
20060089632 | Barthe | Apr 2006 | A1 |
20060089688 | Panescu | Apr 2006 | A1 |
20060094988 | Tosaya | May 2006 | A1 |
20060106325 | Perrier | May 2006 | A1 |
20060111744 | Makin | May 2006 | A1 |
20060116583 | Ogasawara et al. | Jun 2006 | A1 |
20060116671 | Slayton | Jun 2006 | A1 |
20060122508 | Slayton | Jun 2006 | A1 |
20060122509 | Desilets | Jun 2006 | A1 |
20060161062 | Arditi et al. | Jul 2006 | A1 |
20060184069 | Vaitekunas | Aug 2006 | A1 |
20060184071 | Klopotek | Aug 2006 | A1 |
20060189972 | Grossman | Aug 2006 | A1 |
20060206105 | Chopra | Sep 2006 | A1 |
20060224090 | Ostrovsky et al. | Oct 2006 | A1 |
20060229514 | Wiener | Oct 2006 | A1 |
20060238068 | May et al. | Oct 2006 | A1 |
20060241440 | Eshel | Oct 2006 | A1 |
20060241442 | Barthe | Oct 2006 | A1 |
20060241470 | Novak et al. | Oct 2006 | A1 |
20060241576 | Diederich et al. | Oct 2006 | A1 |
20060250046 | Koizumi et al. | Nov 2006 | A1 |
20060282691 | Barthe | Dec 2006 | A1 |
20060291710 | Wang et al. | Dec 2006 | A1 |
20070016039 | Vortman et al. | Jan 2007 | A1 |
20070032784 | Gilklich et al. | Feb 2007 | A1 |
20070035201 | Desilets | Feb 2007 | A1 |
20070055154 | Torbati | Mar 2007 | A1 |
20070055155 | Owen et al. | Mar 2007 | A1 |
20070055156 | Desilets et al. | Mar 2007 | A1 |
20070065420 | Johnson | Mar 2007 | A1 |
20070083120 | Cain et al. | Apr 2007 | A1 |
20070087060 | Dietrich | Apr 2007 | A1 |
20070088245 | Babaev et al. | Apr 2007 | A1 |
20070088346 | Mirizzi et al. | Apr 2007 | A1 |
20070161902 | Dan | Jul 2007 | A1 |
20070166357 | Shaffer et al. | Jul 2007 | A1 |
20070167709 | Slayton | Jul 2007 | A1 |
20070018553 | Kennedy | Aug 2007 | A1 |
20070208253 | Slayton | Sep 2007 | A1 |
20070219448 | Seip et al. | Sep 2007 | A1 |
20070219604 | Yaroslavsky et al. | Sep 2007 | A1 |
20070219605 | Yaroslavsky et al. | Sep 2007 | A1 |
20070238994 | Stecco et al. | Oct 2007 | A1 |
20070239075 | Rosenberg | Oct 2007 | A1 |
20070239077 | Azhari et al. | Oct 2007 | A1 |
20070239079 | Manstein et al. | Oct 2007 | A1 |
20070239142 | Altshuler | Oct 2007 | A1 |
20080015435 | Cribbs et al. | Jan 2008 | A1 |
20080027328 | Klopotek | Jan 2008 | A1 |
20080033458 | McLean et al. | Feb 2008 | A1 |
20080039724 | Seip et al. | Feb 2008 | A1 |
20080071255 | Barthe | Mar 2008 | A1 |
20080086054 | Slayton | Apr 2008 | A1 |
20080086056 | Chang et al. | Apr 2008 | A1 |
20080097214 | Meyers et al. | Apr 2008 | A1 |
20080097253 | Pedersen et al. | Apr 2008 | A1 |
20080114251 | Weymer | May 2008 | A1 |
20080139943 | Deng et al. | Jun 2008 | A1 |
20080139974 | Da Silva | Jun 2008 | A1 |
20080146970 | Litman et al. | Jun 2008 | A1 |
20080167556 | Thompson | Jul 2008 | A1 |
20080183077 | Moreau-Gobard et al. | Jul 2008 | A1 |
20080183110 | Davenport et al. | Jul 2008 | A1 |
20080188745 | Chen et al. | Aug 2008 | A1 |
20080194964 | Randall et al. | Aug 2008 | A1 |
20080195000 | Spooner et al. | Aug 2008 | A1 |
20080200810 | Buchalter | Aug 2008 | A1 |
20080200813 | Quistgaard | Aug 2008 | A1 |
20080214966 | Slayton | Sep 2008 | A1 |
20080214988 | Altshuler et al. | Sep 2008 | A1 |
20080221491 | Slayton | Sep 2008 | A1 |
20080223379 | Stuker | Sep 2008 | A1 |
20080242991 | Moon et al. | Oct 2008 | A1 |
20080243035 | Crunkilton | Oct 2008 | A1 |
20080269608 | Anderson et al. | Oct 2008 | A1 |
20080275342 | Barthe | Nov 2008 | A1 |
20080281206 | Bartlett et al. | Nov 2008 | A1 |
20080281236 | Eshel et al. | Nov 2008 | A1 |
20080281237 | Slayton | Nov 2008 | A1 |
20080281255 | Slayton | Nov 2008 | A1 |
20080294072 | Crutchfield, III | Nov 2008 | A1 |
20080294073 | Barthe | Nov 2008 | A1 |
20080319356 | Cain | Dec 2008 | A1 |
20090005680 | Jones et al. | Jan 2009 | A1 |
20090012394 | Hobelsberger et al. | Jan 2009 | A1 |
20090043198 | Milner et al. | Feb 2009 | A1 |
20090043293 | Pankratov et al. | Feb 2009 | A1 |
20090048514 | Azhari et al. | Feb 2009 | A1 |
20090069677 | Chen et al. | Mar 2009 | A1 |
20090093737 | Chomas et al. | Apr 2009 | A1 |
20090156969 | Santangelo | Jun 2009 | A1 |
20090163807 | Sliwa | Jun 2009 | A1 |
20090171252 | Bockenstedt et al. | Jul 2009 | A1 |
20090171266 | Harris | Jul 2009 | A1 |
20090177122 | Peterson | Jul 2009 | A1 |
20090177123 | Peterson | Jul 2009 | A1 |
20090182231 | Barthe et al. | Jul 2009 | A1 |
20090198157 | Babaev et al. | Aug 2009 | A1 |
20090216159 | Slayton et al. | Aug 2009 | A1 |
20090226424 | Hsu | Sep 2009 | A1 |
20090227910 | Pedersen et al. | Sep 2009 | A1 |
20090230823 | Kushculey et al. | Sep 2009 | A1 |
20090253988 | Slayton et al. | Oct 2009 | A1 |
20090281463 | Chapelon et al. | Nov 2009 | A1 |
20090312693 | Thapliyal et al. | Dec 2009 | A1 |
20090318909 | Debenedictis et al. | Dec 2009 | A1 |
20090326420 | Moonen et al. | Dec 2009 | A1 |
20100011236 | Barthe et al. | Jan 2010 | A1 |
20100022919 | Peterson | Jan 2010 | A1 |
20100022921 | Seip et al. | Jan 2010 | A1 |
20100022922 | Barthe et al. | Jan 2010 | A1 |
20100030076 | Vortman et al. | Feb 2010 | A1 |
20100042020 | Ben-Ezra | Feb 2010 | A1 |
20100049178 | Deem et al. | Feb 2010 | A1 |
20100056925 | Zhang et al. | Mar 2010 | A1 |
20100056962 | Vortman et al. | Mar 2010 | A1 |
20100100014 | Eshel et al. | Apr 2010 | A1 |
20100113983 | Heckerman et al. | May 2010 | A1 |
20100130891 | Taggart et al. | May 2010 | A1 |
20100160782 | Slayton et al. | Jun 2010 | A1 |
20100160837 | Hunziker et al. | Jun 2010 | A1 |
20100168576 | Poland et al. | Jul 2010 | A1 |
20100191120 | Kraus et al. | Jul 2010 | A1 |
20100241035 | Barthe et al. | Sep 2010 | A1 |
20100249602 | Buckley et al. | Sep 2010 | A1 |
20100249669 | Ulric et al. | Sep 2010 | A1 |
20100256489 | Pedersen et al. | Oct 2010 | A1 |
20100274161 | Azhari et al. | Oct 2010 | A1 |
20100280420 | Barthe et al. | Nov 2010 | A1 |
20100286518 | Lee et al. | Nov 2010 | A1 |
20100312150 | Douglas et al. | Dec 2010 | A1 |
20110040171 | Foley et al. | Feb 2011 | A1 |
20110040190 | Jahnke et al. | Feb 2011 | A1 |
20110040213 | Dietz et al. | Feb 2011 | A1 |
20110040214 | Foley et al. | Feb 2011 | A1 |
20110066084 | Desilets et al. | Mar 2011 | A1 |
20110072970 | Slobodzian et al. | Mar 2011 | A1 |
20110077514 | Ulric et al. | Mar 2011 | A1 |
20110079083 | Yoo et al. | Apr 2011 | A1 |
20110087099 | Eshel et al. | Apr 2011 | A1 |
20110087255 | McCormack et al. | Apr 2011 | A1 |
20110112405 | Barthe et al. | May 2011 | A1 |
20110144490 | Davis et al. | Jun 2011 | A1 |
20110178444 | Slayton et al. | Jul 2011 | A1 |
20110178541 | Azhari | Jul 2011 | A1 |
20110190745 | Uebelhoer et al. | Aug 2011 | A1 |
20110201976 | Sanghvi et al. | Aug 2011 | A1 |
20110251524 | Azhari et al. | Oct 2011 | A1 |
20110251527 | Kushculey et al. | Oct 2011 | A1 |
20110270137 | Goren et al. | Nov 2011 | A1 |
20110319793 | Henrik et al. | Dec 2011 | A1 |
20110319794 | Gertner | Dec 2011 | A1 |
20120004549 | Barthe et al. | Jan 2012 | A1 |
20120016239 | Barthe et al. | Jan 2012 | A1 |
20120029353 | Slayton et al. | Feb 2012 | A1 |
20120035473 | Sanghvi et al. | Feb 2012 | A1 |
20120035475 | Barthe et al. | Feb 2012 | A1 |
20120035476 | Barthe et al. | Feb 2012 | A1 |
20120046547 | Barthe et al. | Feb 2012 | A1 |
20120053458 | Barthe et al. | Mar 2012 | A1 |
20120059288 | Barthe et al. | Mar 2012 | A1 |
20120111339 | Barthe et al. | May 2012 | A1 |
20120123304 | Rybyanets et al. | May 2012 | A1 |
20120136280 | Rosenberg et al. | May 2012 | A1 |
20120136282 | Rosenberg et al. | May 2012 | A1 |
20120143056 | Slayton et al. | Jun 2012 | A1 |
20120143100 | Jeong et al. | Jun 2012 | A1 |
20120165668 | Slayton et al. | Jun 2012 | A1 |
20120165848 | Slayton et al. | Jun 2012 | A1 |
20120191019 | Desilets et al. | Jul 2012 | A1 |
20120191020 | Vitek et al. | Jul 2012 | A1 |
20120197120 | Makin et al. | Aug 2012 | A1 |
20120197121 | Slayton et al. | Aug 2012 | A1 |
20120209150 | Zeng et al. | Aug 2012 | A1 |
20120215105 | Slayton et al. | Aug 2012 | A1 |
20120271202 | Wisdom | Oct 2012 | A1 |
20120271294 | Barthe et al. | Oct 2012 | A1 |
20120277639 | Pollock et al. | Nov 2012 | A1 |
20120296240 | Azhari et al. | Nov 2012 | A1 |
20120302883 | Kong et al. | Nov 2012 | A1 |
20120316426 | Foley et al. | Dec 2012 | A1 |
20120330197 | Makin et al. | Dec 2012 | A1 |
20120330222 | Makin et al. | Dec 2012 | A1 |
20120330223 | Makin et al. | Dec 2012 | A1 |
20120330283 | Hyde et al. | Dec 2012 | A1 |
20120330284 | Hyde et al. | Dec 2012 | A1 |
20130012755 | Slayton | Jan 2013 | A1 |
20130012816 | Slayton et al. | Jan 2013 | A1 |
20130012838 | Jaeger et al. | Jan 2013 | A1 |
20130012842 | Barthe | Jan 2013 | A1 |
20130018285 | Park et al. | Jan 2013 | A1 |
20130018286 | Slayton et al. | Jan 2013 | A1 |
20130046209 | Slayton et al. | Feb 2013 | A1 |
20130051178 | Rybyanets | Feb 2013 | A1 |
20130060170 | Lee et al. | Mar 2013 | A1 |
20130066208 | Barthe et al. | Mar 2013 | A1 |
20130066237 | Smotrich et al. | Mar 2013 | A1 |
20130072826 | Slayton et al. | Mar 2013 | A1 |
20130073001 | Campbell | Mar 2013 | A1 |
20130096471 | Slayton et al. | Apr 2013 | A1 |
20130096596 | Schafer | Apr 2013 | A1 |
20130190659 | Slayton et al. | Jul 2013 | A1 |
20130211293 | Auboiroux et al. | Aug 2013 | A1 |
20130225994 | Hsu et al. | Aug 2013 | A1 |
20130268032 | Neev | Oct 2013 | A1 |
20130274603 | Barthe et al. | Oct 2013 | A1 |
20130278111 | Sammoura | Oct 2013 | A1 |
20130281853 | Slayton et al. | Oct 2013 | A1 |
20130281891 | Slayton et al. | Oct 2013 | A1 |
20130296697 | Slayton et al. | Nov 2013 | A1 |
20130296700 | Slayton et al. | Nov 2013 | A1 |
20130296743 | Lee et al. | Nov 2013 | A1 |
20130303904 | Barthe et al. | Nov 2013 | A1 |
20130303905 | Barthe et al. | Nov 2013 | A1 |
20130310714 | Eshel et al. | Nov 2013 | A1 |
20130310863 | Makin et al. | Nov 2013 | A1 |
20130345562 | Barthe et al. | Dec 2013 | A1 |
20140024974 | Slayton et al. | Jan 2014 | A1 |
20140050054 | Toda et al. | Feb 2014 | A1 |
20140081300 | Melodelima et al. | Mar 2014 | A1 |
20140082907 | Barthe et al. | Mar 2014 | A1 |
20140117814 | Toda et al. | May 2014 | A1 |
20140142430 | Slayton et al. | May 2014 | A1 |
20140148834 | Barthe et al. | May 2014 | A1 |
20140155747 | Bennett | Jun 2014 | A1 |
20140180174 | Slayton et al. | Jun 2014 | A1 |
20140187944 | Slayton et al. | Jul 2014 | A1 |
20140188015 | Slayton et al. | Jul 2014 | A1 |
20140188145 | Slayton et al. | Jul 2014 | A1 |
20140194723 | Herzog et al. | Jul 2014 | A1 |
20140208856 | Schmid | Jul 2014 | A1 |
20140221823 | Keogh et al. | Aug 2014 | A1 |
20140236049 | Barthe et al. | Aug 2014 | A1 |
20140236061 | Lee et al. | Aug 2014 | A1 |
20140243713 | Slayton et al. | Aug 2014 | A1 |
20140257145 | Emery | Sep 2014 | A1 |
20140276055 | Barthe et al. | Sep 2014 | A1 |
20150000674 | Barthe et al. | Jan 2015 | A1 |
20150025420 | Slayton et al. | Jan 2015 | A1 |
20150064165 | Perry et al. | Mar 2015 | A1 |
20150080723 | Barthe et al. | Mar 2015 | A1 |
20150080771 | Barthe et al. | Mar 2015 | A1 |
20150080874 | Slayton et al. | Mar 2015 | A1 |
20150088182 | Slayton et al. | Mar 2015 | A1 |
20150141734 | Chapelon et al. | May 2015 | A1 |
20150164734 | Slayton et al. | Jun 2015 | A1 |
20150165238 | Slayton et al. | Jun 2015 | A1 |
20150165243 | Slayton et al. | Jun 2015 | A1 |
20150174388 | Slayton | Jun 2015 | A1 |
20150202468 | Slayton et al. | Jul 2015 | A1 |
20150217141 | Barthe et al. | Aug 2015 | A1 |
20150238258 | Palero et al. | Aug 2015 | A1 |
20150297188 | Konofagou | Oct 2015 | A1 |
20150321026 | Branson et al. | Nov 2015 | A1 |
20150360058 | Barthe et al. | Dec 2015 | A1 |
20150374333 | Barthe et al. | Dec 2015 | A1 |
20150375014 | Slayton et al. | Dec 2015 | A1 |
20160001097 | Cho et al. | Jan 2016 | A1 |
20160016015 | Slayton et al. | Jan 2016 | A1 |
20160027994 | Toda et al. | Jan 2016 | A1 |
20160151618 | Powers et al. | Jun 2016 | A1 |
20160158580 | Slayton et al. | Jun 2016 | A1 |
20160175619 | Lee et al. | Jun 2016 | A1 |
20160206335 | Slayton | Jul 2016 | A1 |
20160206341 | Slayton | Jul 2016 | A1 |
20160256675 | Slayton | Sep 2016 | A1 |
20160296769 | Barthe et al. | Oct 2016 | A1 |
20160310444 | Dobak, III | Oct 2016 | A1 |
20160361571 | Bernabei | Dec 2016 | A1 |
20160361572 | Slayton | Dec 2016 | A1 |
20170028227 | Emery et al. | Feb 2017 | A1 |
20170043190 | Barthe et al. | Feb 2017 | A1 |
20170050019 | Ron Edoute et al. | Feb 2017 | A1 |
20170080257 | Paunescu et al. | Mar 2017 | A1 |
20170100585 | Hall et al. | Apr 2017 | A1 |
20170119345 | Levien et al. | May 2017 | A1 |
20170136263 | Reil | May 2017 | A1 |
20170209201 | Slayton et al. | Jul 2017 | A1 |
20170209202 | Friedrichs et al. | Jul 2017 | A1 |
20170304654 | Blanche et al. | Oct 2017 | A1 |
20170368574 | Sammoura | Dec 2017 | A1 |
20180001113 | Streeter | Jan 2018 | A1 |
20180015308 | Reed et al. | Jan 2018 | A1 |
20180043147 | Slayton | Feb 2018 | A1 |
20180099162 | Bernabei | Apr 2018 | A1 |
20180099163 | Bernabei | Apr 2018 | A1 |
20180126190 | Aviad et al. | May 2018 | A1 |
20180154184 | Kong et al. | Jun 2018 | A1 |
20180207450 | Sanchez et al. | Jul 2018 | A1 |
20180272156 | Slayton et al. | Sep 2018 | A1 |
20180272157 | Barthe et al. | Sep 2018 | A1 |
20180272158 | Barthe et al. | Sep 2018 | A1 |
20180272159 | Slayton et al. | Sep 2018 | A1 |
20180317884 | Chapelon et al. | Nov 2018 | A1 |
20180333595 | Barthe et al. | Nov 2018 | A1 |
20180360420 | Vortman et al. | Dec 2018 | A1 |
20190000498 | Barthe et al. | Jan 2019 | A1 |
20190009110 | Gross et al. | Jan 2019 | A1 |
20190009111 | Myhr et al. | Jan 2019 | A1 |
20190022405 | Greenbaum et al. | Jan 2019 | A1 |
20190038921 | Domankevitz | Feb 2019 | A1 |
20190060675 | Krone et al. | Feb 2019 | A1 |
20190091490 | Alexander et al. | Mar 2019 | A1 |
20190142380 | Emery et al. | May 2019 | A1 |
20190143148 | Slayton | May 2019 | A1 |
20190184202 | Zereshkian et al. | Jun 2019 | A1 |
20190184203 | Slayton et al. | Jun 2019 | A1 |
20190184205 | Slayton et al. | Jun 2019 | A1 |
20190184207 | Barthe et al. | Jun 2019 | A1 |
20190184208 | Barthe et al. | Jun 2019 | A1 |
20190224501 | Burdette | Jul 2019 | A1 |
20190262634 | Barthe et al. | Aug 2019 | A1 |
20190282834 | Zawada et al. | Sep 2019 | A1 |
20190290939 | Watson et al. | Sep 2019 | A1 |
20190350562 | Slayton et al. | Nov 2019 | A1 |
20190366126 | Pahk et al. | Dec 2019 | A1 |
20190366127 | Emery | Dec 2019 | A1 |
20190366128 | Slayton et al. | Dec 2019 | A1 |
20200094083 | Slayton et al. | Mar 2020 | A1 |
20200100762 | Barthe et al. | Apr 2020 | A1 |
20200129759 | Schwarz | Apr 2020 | A1 |
20200171330 | Barthe et al. | Jun 2020 | A1 |
20200179727 | Slayton et al. | Jun 2020 | A1 |
20200179729 | Slayton et al. | Jun 2020 | A1 |
20200188703 | Barthe et al. | Jun 2020 | A1 |
20200188704 | Barthe et al. | Jun 2020 | A1 |
20200188705 | Emery et al. | Jun 2020 | A1 |
20200206072 | Capelli et al. | Jul 2020 | A1 |
20200222728 | Khokhlova et al. | Jul 2020 | A1 |
20210038925 | Emery | Feb 2021 | A1 |
20210378630 | Slayton et al. | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
2460061 | Nov 2001 | CN |
1734284 | Dec 2009 | CN |
104027893 | Sep 2014 | CN |
4029175 | Mar 1992 | DE |
10140064 | Mar 2003 | DE |
10219297 | Nov 2003 | DE |
10219217 | Dec 2004 | DE |
20314479 | Dec 2004 | DE |
0142215 | May 1984 | EP |
0344773 | Dec 1989 | EP |
1479412 | Nov 1991 | EP |
0473553 | Apr 1992 | EP |
670147 | Feb 1995 | EP |
0661029 | Jul 1995 | EP |
724894 | Feb 1996 | EP |
763371 | Nov 1996 | EP |
1044038 | Oct 2000 | EP |
1050322 | Nov 2000 | EP |
1234566 | Aug 2002 | EP |
1262160 | Dec 2002 | EP |
0659387 | Apr 2003 | EP |
1374944 | Jan 2004 | EP |
1028660 | Jan 2008 | EP |
1874241 | Jan 2008 | EP |
1362223 | May 2008 | EP |
1750804 | Jul 2008 | EP |
1283690 | Nov 2008 | EP |
1811901 | Apr 2009 | EP |
1785164 | Aug 2009 | EP |
2230904 | Sep 2010 | EP |
1501331 | Jun 2011 | EP |
2066405 | Nov 2011 | EP |
2474050 | Jul 2012 | EP |
2527828 | Nov 2012 | EP |
2709726 | Nov 2015 | EP |
1538980 | Jan 2017 | EP |
3124047 | Jan 2017 | EP |
2897547 | Nov 2017 | EP |
2173261 | Aug 2018 | EP |
3417911 | Dec 2018 | EP |
2532851 | Sep 1983 | FR |
2685872 | Jan 1992 | FR |
2672486 | Aug 1992 | FR |
2703254 | Mar 1994 | FR |
2113099 | Aug 1983 | GB |
102516 | Jan 1996 | IL |
112369 | Aug 1999 | IL |
120079 | Mar 2001 | IL |
63036171 | Feb 1988 | JP |
03048299 | Mar 1991 | JP |
3123559 | May 1991 | JP |
03136642 | Jun 1991 | JP |
4089058 | Mar 1992 | JP |
04150847 | May 1992 | JP |
7080087 | Mar 1995 | JP |
07505793 | Jun 1995 | JP |
7184907 | Jul 1995 | JP |
7222782 | Aug 1995 | JP |
09047458 | Feb 1997 | JP |
9108288 | Apr 1997 | JP |
9503926 | Apr 1997 | JP |
3053069 | Oct 1998 | JP |
11123226 | May 1999 | JP |
11505440 | May 1999 | JP |
11506636 | Jun 1999 | JP |
10248850 | Sep 1999 | JP |
2000126310 | May 2000 | JP |
2000166940 | Jun 2000 | JP |
2000233009 | Aug 2000 | JP |
2001-46387 | Feb 2001 | JP |
2001136599 | May 2001 | JP |
2001170068 | Jun 2001 | JP |
2002505596 | Feb 2002 | JP |
2002078764 | Mar 2002 | JP |
2002515786 | May 2002 | JP |
2002537013 | May 2002 | JP |
2002521118 | Jul 2002 | JP |
2002537939 | Nov 2002 | JP |
2003050298 | Jul 2003 | JP |
2003204982 | Jul 2003 | JP |
2004-504898 | Feb 2004 | JP |
2004-507280 | Mar 2004 | JP |
2004154256 | Mar 2004 | JP |
2004-509671 | Apr 2004 | JP |
2004-512856 | Apr 2004 | JP |
2004147719 | May 2004 | JP |
2005503388 | Feb 2005 | JP |
2005527336 | Sep 2005 | JP |
2005323213 | Nov 2005 | JP |
2006520247 | Sep 2006 | JP |
2008515559 | May 2008 | JP |
2009518126 | May 2009 | JP |
2010517695 | May 2010 | JP |
2001-0019317 | Mar 2001 | KR |
1020010024871 | Mar 2001 | KR |
2002-0038547 | May 2002 | KR |
100400870 | Oct 2003 | KR |
20060121267 | Nov 2006 | KR |
1020060113930 | Nov 2006 | KR |
1020070065332 | Jun 2007 | KR |
1020070070161 | Jul 2007 | KR |
1020070098856 | Oct 2007 | KR |
1020070104878 | Oct 2007 | KR |
1020070114105 | Nov 2007 | KR |
1020000059516 | Apr 2012 | KR |
10-2013-0124598 | Nov 2013 | KR |
10-1365946 | Feb 2014 | KR |
386883 | Sep 2000 | TW |
201208734 | Mar 2012 | TW |
WO9312742 | Jul 1993 | WO |
WO9524159 | Sep 1995 | WO |
WO9625888 | Aug 1996 | WO |
WO9634568 | Nov 1996 | WO |
WO9639079 | Dec 1996 | WO |
WO9735518 | Oct 1997 | WO |
WO9832379 | Jul 1998 | WO |
WO9852465 | Nov 1998 | WO |
WO9933520 | Jul 1999 | WO |
WO9939677 | Aug 1999 | WO |
WO9949788 | Oct 1999 | WO |
WO200006032 | Feb 2000 | WO |
WO0015300 | Mar 2000 | WO |
WO0021612 | Apr 2000 | WO |
WO0048518 | Aug 2000 | WO |
WO0053113 | Sep 2000 | WO |
WO200071021 | Nov 2000 | WO |
WO0128623 | Apr 2001 | WO |
WO01045550 | Jun 2001 | WO |
WO0182777 | Nov 2001 | WO |
WO0182778 | Nov 2001 | WO |
WO0187161 | Nov 2001 | WO |
WO01080709 | Nov 2001 | WO |
WO2001087161 | Nov 2001 | WO |
WO0209812 | Feb 2002 | WO |
WO0209813 | Feb 2002 | WO |
WO02015768 | Feb 2002 | WO |
WO0224050 | Mar 2002 | WO |
WO200149194 | Jul 2002 | WO |
WO2002054018 | Jul 2002 | WO |
WO02092168 | Nov 2002 | WO |
WO03053266 | Jul 2003 | WO |
WO03065347 | Aug 2003 | WO |
WO03070105 | Aug 2003 | WO |
WO03077833 | Sep 2003 | WO |
WO03086215 | Oct 2003 | WO |
WO03096883 | Nov 2003 | WO |
WO03099177 | Dec 2003 | WO |
WO03099382 | Dec 2003 | WO |
WO03101530 | Dec 2003 | WO |
WO2004000116 | Dec 2003 | WO |
WO2004080147 | Sep 2004 | WO |
WO2004110558 | Dec 2004 | WO |
WO2005011804 | Feb 2005 | WO |
WO2005065408 | Jul 2005 | WO |
WO2005065409 | Jul 2005 | WO |
WO2005090978 | Sep 2005 | WO |
WO2005113068 | Dec 2005 | WO |
WO2006042163 | Apr 2006 | WO |
WO2006036870 | Apr 2006 | WO |
WO2006042168 | Apr 2006 | WO |
WO2006042201 | Apr 2006 | WO |
WO2006065671 | Jun 2006 | WO |
WO2006082573 | Aug 2006 | WO |
WO2006104568 | Oct 2006 | WO |
WO2006110388 | Oct 2006 | WO |
WO2007067563 | Jun 2007 | WO |
WO2008036479 | Mar 2008 | WO |
WO2008036622 | Mar 2008 | WO |
WO2008144274 | Nov 2008 | WO |
WO2009013729 | Jan 2009 | WO |
WO2009149390 | Oct 2009 | WO |
WO2010102128 | Sep 2010 | WO |
WO2012134645 | Oct 2012 | WO |
WO2013048912 | Apr 2013 | WO |
WO2013178830 | Dec 2013 | WO |
WO2014045216 | Mar 2014 | WO |
WO2014055708 | Apr 2014 | WO |
WO2014057388 | Apr 2014 | WO |
WO2014127091 | Aug 2014 | WO |
WO2015160708 | Oct 2015 | WO |
WO2016054155 | Apr 2016 | WO |
WO2016115363 | Jul 2016 | WO |
WO2017127328 | Jul 2017 | WO |
WO2017149506 | Sep 2017 | WO |
WO2017165595 | Sep 2017 | WO |
WO 2017212489 | Dec 2017 | WO |
WO2017212489 | Dec 2017 | WO |
WO2017223312 | Dec 2017 | WO |
WO2018035012 | Feb 2018 | WO |
WO2018158355 | Sep 2018 | WO |
WO2019008573 | Jan 2019 | WO |
WO2019147596 | Aug 2019 | WO |
WO 2019147596 | Aug 2019 | WO |
WO2019164836 | Aug 2019 | WO |
WO2020009324 | Jan 2020 | WO |
WO2020075906 | Apr 2020 | WO |
WO2020080730 | Apr 2020 | WO |
WO2020121307 | Jun 2020 | WO |
Entry |
---|
US 10,398,895 B2, 09/2019, Schwarz (withdrawn) |
U.S. Appl. No. 12/996,616, filed Jan. 12, 2011, Hand Wand for Ultrasonic Cosmetic Treatment and Imaging. |
U.S. Appl. No. 16/703,019, filed Dec. 6, 2019, System and Method for Ultrasound Treatment. |
U.S. Appl. No. 13/245,822, filed Sep. 26, 2011, System and Method for Cosmetic Treatment. |
U.S. Appl. No. 13/245,852, filed Sep. 26, 2011, Systems for Cosmetic Treatment. |
U.S. Appl. No. 13/245,864, filed Sep. 27, 2011, Methods for Non-Invasive Cosmetic Treatment of the Eye Region. |
U.S. Appl. No. 13/246,117, filed Sep. 27, 2011, Methods for Non-Invasive Lifting and Tightening of the Lower Face and Neck. |
U.S. Appl. No. 13/246,112, filed Sep. 27, 2011, Tissue Imaging and Treatment Method. |
U.S. Appl. No. 14/193,234, filed Feb. 28, 2014, Devices and Methods for Multi-Focus Ultrasound Therapy. |
U.S. Appl. No. 16/541,476, filed Aug. 15, 2019, Devices and Methods for Multi-Focus Ultrasound Therapy. |
U.S. Appl. No. 15/302,436, filed Oct. 6, 2016, Band Transducer Ultrasound Therapy. |
U.S. Appl. No. 15/855,949, filed Dec. 27, 2017, Band Transducer Ultrasound Therapy. |
U.S. Appl. No. 15/562,384, filed Oct. 27, 2017, Systems and Methods for Cosmetic Ultrasound Treatment of Skin. |
U.S. Appl. No. 16/069,319, filed Jul. 11, 2018, Compact ultrasound device having annular ultrasound array peripherally electrically connected to flexible printed circuit board and method of assembly thereof. |
U.S. Appl. No. 08/950,353, filed Oct. 14, 1997, Imaging, Therapy and Temperature Monitoring Ultrasonic System. |
U.S. Appl. No. 09/502,174, filed Feb. 10, 2000, Imaging, Therapy and Temperature Monitoring Ultrasonic System. |
U.S. Appl. No. 10/193,419, filed Jul. 10, 2002, Imaging, Therapy and Temperature Monitoring Ultrasonic System. |
U.S. Appl. No. 10/944,499, filed Sep. 16, 2004, Method and System for Ultrasound Treatment With a Multi-Directional Transducer. |
U.S. Appl. No. 11/163,177, filed Oct. 7, 2005, Method and System for Treating Acne and Sebaceous Glands. |
U.S. Appl. No. 10/950,112, filed Sep. 24, 2004, Method and System for Combined Ultrasound Treatment. |
U.S. Appl. No. 11/163,178, filed Oct. 7, 2005, Method and System for Treating Stretch Marks. |
U.S. Appl. No. 11/245,999, filed Oct. 6, 2005, System and Method for Ultra-High Frequency Ultrasound Treatment. |
U.S. Appl. No. 10/944,500, filed Sep. 16, 2004, System and Method for Variable Depth Ultrasound Treatment. |
U.S. Appl. No. 11/744,655, filed May 4, 2007, Imaging, Therapy and Temperature Monitoring Ultrasonic System. |
U.S. Appl. No. 13/937,190, filed Jul. 8, 2013, Imaging, Therapy and Temperature Monitoring Ultrasonic System. |
U.S. Appl. No. 12/135,962, filed Jun. 9, 2008, Method and System for Ultrasound Treatment With a Multi-Directional Transducer. |
U.S. Appl. No. 12/792,934, filed Jun. 3, 2010, System and Method for Ultra-High Frequency Ultrasound Treatment. |
U.S. Appl. No. 13/914,945, filed Jun. 11, 2013, System and Method for Ultra-High Frequency Ultrasound Treatment. |
U.S. Appl. No. 12/834,754, filed Jul. 12, 2010, System and Method for Variable Depth Ultrasound Treatment. |
U.S. Appl. No. 14/264,732, filed Apr. 29, 2014, System and Method for Variable Depth Ultrasound Treatment. |
U.S. Appl. No. 11/126,760, filed May 11, 2005, Method and System for Three-Dimensional Scanning and Imaging. |
U.S. Appl. No. 13/564,552, filed Aug. 1, 2012, Method and System for Controlled Scanning, Imaging and/or Therapy. |
U.S. Appl. No. 12/437,726, filed May 8, 2009, Method and System for Combined Ultrasound Treatment. |
U.S. Appl. No. 11/163,148, filed Oct. 6, 2005, Method and System for Controlled Thermal Injury of Human Superficial Tissue. |
U.S. Appl. No. 13/444,688, filed Apr. 11, 2012, Customized Cosmetic Treatment. |
U.S. Appl. No. 16/427,969, filed May 31, 2019, Customized Cosmetic Treatment. |
U.S. Appl. No. 11/163,152, filed Oct. 6, 2005, Method and System for Treatment of Sweat Glands. |
U.S. Appl. No. 13/444,485, filed Apr. 11, 2012, Methods for Treatment of Sweat Glands. |
U.S. Appl. No. 13/603,159, filed Sep. 4, 2012, Methods for Treatment of Hyperhidrosis. |
U.S. Appl. No. 13/603,279, filed Sep. 4, 2012, Energy Based Hyperhidrosis Treatment. |
U.S. Appl. No. 13/950,728, filed Jul. 25, 2013, Energy Based Hyperhidrosis Treatment. |
U.S. Appl. No. 14/571,835, filed Dec. 16, 2014, Energy Based Hyperhidrosis Treatment. |
U.S. Appl. No. 15/243,081, filed Aug. 22, 2016, Energy Based Hyperhidrosis Treatment. |
U.S. Appl. No. 16/049,365, filed Jul. 30, 2018, Energy Based Hyperhidrosis Treatment. |
U.S. Appl. No. 11/163,151, filed Oct. 6, 2005, Method and System for Noninvasive Face Lifts and Deep Tissue Tightening. |
U.S. Appl. No. 13/444,336, filed Apr. 11, 2012, Treatment of Sub-Dermal Regions for Cosmetic Effects. |
U.S. Appl. No. 13/679,430, filed Nov. 16, 2012, Ultrasound Treatment of Sub-Dermal Tissue for Cosmetic Effects. |
U.S. Appl. No. 13/924,376, filed Jun. 21, 2013, Noninvasive Tissue Tightening for Cosmetic Effects. |
U.S. Appl. No. 13/924,355, filed Jun. 21, 2013, Noninvasive Aesthetic Treatment for Tightening Tissue. |
U.S. Appl. No. 13/924,323, filed Jun. 21, 2013, Energy-Based Tissue Tightening. |
U.S. Appl. No. 14/200,852, filed Mar. 7, 2014, Noninvasive Tissue Tightening System. |
U.S. Appl. No. 14/200,961, filed Mar. 7, 2014, Energy-Based Tissue Tightening System. |
U.S. Appl. No. 16/543,137, filed Aug. 16, 2019, Noninvasive Tissue Tightening System. |
U.S. Appl. No. 12/028,636, filed Feb. 8, 2008, Method and System for Noninvasive Face Lifts and Deep Tissue Tightening. |
U.S. Appl. No. 13/964,820, filed Aug. 12, 2013, Methods for Noninvasive Skin Tightening. |
U.S. Appl. No. 14/201,256, filed Mar. 7, 2014, System for Noninvasive Skin Tightening. |
U.S. Appl. No. 15/098,139, filed Apr. 13, 2016, System and Method for Noninvasive Skin Tightening. |
U.S. Appl. No. 15/958,939, filed Apr. 20, 2018, System and Method for Noninvasive Skin Tightening. |
U.S. Appl. No. 16/698,122, filed Nov. 27, 2019, System and Method for Noninvasive Skin Tightening. |
U.S. Appl. No. 14/685,390, filed Apr. 13, 2015, Energy-Based Tissue Tightening System. |
U.S. Appl. No. 11/163,150, filed Oct. 6, 2005, Method and System for Photoaged Tissue. |
U.S. Appl. No. 13/230,498, filed Sep. 12, 2011, Method and System for Photoaged Tissue. |
U.S. Appl. No. 14/169,709, filed Jan. 31, 2014, Methods for Treating Skin Laxity. |
U.S. Appl. No. 14/692,114, filed Apr. 21, 2015, Systems for Treating Skin Laxity. |
U.S. Appl. No. 15/248,407, filed Aug. 26, 2016, Systems for Treating Skin Laxity. |
U.S. Appl. No. 15/625,700, filed Jun. 16, 2017, Systems for Treating Skin Laxity. |
U.S. Appl. No. 15/821,070, filed Nov. 22, 2017, Ultrasound Probe for Treating Skin Laxity. |
U.S. Appl. No. 15/996,255, filed Jun. 1, 2018, Ultrasound Probe for Treating Skin Laxity. |
U.S. Appl. No. 16/284,907, filed Feb. 25, 2019, Ultrasound Probe for Treating Skin Laxity. |
U.S. Appl. No. 11/163,176, filed Oct. 7, 2005, Method and System for Treating Blood Vessel Disorders. |
U.S. Appl. No. 13/601,742, filed Aug. 31, 2012, Method and System for Treating Blood Vessel Disorders. |
U.S. Appl. No. 12/574,512, filed Oct. 6, 2009, Method and System for Treating Stretch Marks. |
U.S. Appl. No. 14/554,668, filed Nov. 26, 2014, Method and System for Treating Stretch Marks. |
U.S. Appl. No. 15/260,825, filed Sep. 12, 2016, Method and System for Ultrasound Treatment of Skin. |
U.S. Appl. No. 15/625,818, filed Jun. 16, 2017, Method and System for Ultrasound Treatment of Skin. |
U.S. Appl. No. 15/829,182, filed Dec. 1, 2017, Ultrasound Probe for Treatment of Skin. |
U.S. Appl. No. 15/996,263, filed Jun. 1, 2018, Ultrasound Probe for Treatment of Skin. |
U.S. Appl. No. 16/284,920, filed Feb. 25, 2019, Ultrasound Probe for Treatment of Skin. |
U.S. Appl. No. 11/857,989, filed Sep. 19, 2007, Method and System for Treating Muscle, Tendon, Ligament and Cartilage Tissue. |
U.S. Appl. No. 13/494,856, filed Jun. 12, 2012, Method and System for Treating Muscle, Tendon, Ligament and Cartilage Tissue. |
U.S. Appl. No. 16/835,635, filed Mar. 15, 2013, Methods for Face and Neck Lifts. |
U.S. Appl. No. 13/965,471, filed Aug. 13, 2013, Methods for Preheating Tissue for Cosmetic Treatment of the Face and Body. |
U.S. Appl. No. 14/740,092, filed Jun. 15, 2015, Methods for Rejuvenating Skin by Heating Tissue for Cosmetic Treatment of the Face and Body. |
U.S. Appl. No. 15/862,400, filed Jan. 4, 2018, Rejuvenating Skin by Heating Tissue for Cosmetic Treatment of the Face and Body. |
U.S. Appl. No. 16/409,678, filed May 10, 2019, Rejuvenating Skin by Heating Tissue for Cosmetic Treatment of the Face and Body. |
U.S. Appl. No. 14/628,198, filed Feb. 20, 2015, System and Method for Treating Cartilage and Injuries to Joints and Connective Tissue. |
U.S. Appl. No. 14/554,571, filed Nov. 26, 2014, Methods for Face and Neck Lifts. |
U.S. Appl. No. 15/248,454, filed Aug. 26, 2016, Methods for Face and Neck Lifts. |
U.S. Appl. No. 16/049,293, filed Jul. 30, 2018, Methods for Face and Neck Lifts. |
U.S. Appl. No. 16/697,970, filed Nov. 27, 2019, Methods for Lifting Skin Tissue. |
U.S. Appl. No. 12/954,484, filed Nov. 24, 2010, Methods and Systems for Generating Thermal Bubbles for Improved Ultrasound Imaging and Therapy. |
U.S. Appl. No. 12/350,383, filed Jan. 8, 2009, Method and System for Treating Acne and Sebaceous Glands. |
U.S. Appl. No. 12/116,845, filed May 7, 2008, Method and System for Combined Energy Profile. |
U.S. Appl. No. 14/643,749, filed Mar. 10, 2015, Method and System for Combined Energy Profile. |
U.S. Appl. No. 08/766,083, filed Dec. 16, 1996, Method and Apparatus for Surface Ultrasound Imaging. |
U.S. Appl. No. 09/113,227, filed Jul. 10, 1998, Method and Apparatus for Three Dimensional Ultrasound Imaging. |
U.S. Appl. No. 08/944,261, filed Oct. 6, 1997, Wideband Acoustic Transducer. |
U.S. Appl. No. 09/434,078, filed Nov. 5, 1999, Method and Apparatus for Three Dimensional Ultrasound Imaging. |
U.S. Appl. No. 09/523,890, filed Mar. 13, 2000, Method and Apparatus for Three Dimensional Ultrasound Imaging. |
U.S. Appl. No. 09/419,543, filed Oct. 18, 1999, Peripheral Ultrasound Imaging System. |
U.S. Appl. No. 09/750,816, filed Dec. 28, 2000, Visual Imaging System for Ultrasonic Probe. |
U.S. Appl. No. 10/358,110, filed Feb. 4, 2003, Visual Imaging System for Ultrasonic Probe. |
U.S. Appl. No. 11/380,161, filed Apr. 25, 2006, Method and System for Enhancing Computer Peripheral Safety. |
U.S. Appl. No. 11/554,272, filed Oct. 30, 2006, Visual Imaging System for Ultrasonic Probe. |
U.S. Appl. No. 13/071,298, filed Mar. 24, 2011, Visual Imaging System for Ultrasonic Probe. |
U.S. Appl. No. 13/854,936, filed Mar. 25, 2013, Visual Imaging System for Ultrasonic Probe. |
U.S. Appl. No. 12/509,254, filed Jul. 24, 2009, Method and System for Enhancing Computer Peripheral Safety. |
U.S. Appl. No. 13/453,847, filed Apr. 23, 2012, Method and System for Enhancing Computer Peripheral Safety. |
U.S. Appl. No. 11/538,794, filed Oct. 4, 2006, Ultrasound System and Method for Imaging and/or Measuring Displacement of Moving Tissue and Fluid. |
U.S. Appl. No. 09/502,175, filed Feb. 10, 2000, Method and Apparatus for Safely Delivering Medicants to a Region of Tissue, Using Imaging, Therapy and Temperature Monitoring. |
U.S. Appl. No. 08/943,728, filed Oct. 3, 1997, Method and Apparatus for Safely Delivering Medicants to a Region of Tissue Using Ultrasound. |
U.S. Appl. No. 12/415,945, filed Mar. 31, 2009, Method and System for Noninvasive Mastopexy. |
U.S. Appl. No. 11/163,155, filed Oct. 6, 2005, Method and System for Noninvasive Mastopexy. |
U.S. Appl. No. 11/163,154, filed Oct. 6, 2005, Method and System for Treatment of Cellulite. |
U.S. Appl. No. 13/356,405, filed Jan. 23, 2012, Method and System for Treatment of Cellulite. |
U.S. Appl. No. 13/789,562, filed Mar. 7, 2013, Method and System for Ultrasound Treatment of Fat. |
U.S. Appl. No. 14/164,598, filed Jan. 27, 2013, Method for Fat and Cellulite Reduction. |
U.S. Appl. No. 14/550,720, filed Nov. 21, 2014, System and Method for Fat and Cellulite Reduction. |
U.S. Appl. No. 15/041,829, filed Feb. 11, 2016, System and Method for Fat and Cellulite Reduction. |
U.S. Appl. No. 15/374,918, filed Dec. 9, 2016, System and Method for Fat and Cellulite Reduction. |
U.S. Appl. No. 15/650,246, filed Jul. 14, 2017, System and Method for Fat and Cellulite Reduction. |
U.S. Appl. No. 15/821,281, filed Nov. 22, 2017, Ultrasound Probe for Fat and Cellulite Reduction. |
U.S. Appl. No. 15/996,295, filed Jun. 1, 2018, Ultrasound Probe for Fat and Cellulite Reduction. |
U.S. Appl. No. 16/272,453, filed Feb. 11, 2019, Ultrasound Probe for Tissue Treatment. |
U.S. Appl. No. 16/794,717, filed Feb. 19, 2020, Ultrasound Probe for Tissue Treatment. |
U.S. Appl. No. 11/738,682, filed Apr. 23, 2007, Method and System for Non-Ablative Acne Treatment and Prevention. |
U.S. Appl. No. 12/116,810, filed May 7, 2008, Methods and Systems for Modulating Medicants Using Acoustic Energy. |
U.S. Appl. No. 12/116,828, filed May 7, 2008, Methods and Systems for Coupling and Focusing Acoustic Energy Using a Coupler Member. |
U.S. Appl. No. 12/646,609, filed Dec. 23, 2009, Methods and System for Fat Reduction and/or Cellulite Treatment. |
U.S. Appl. No. 14/192,520, filed Feb. 27, 2014, Energy Based Fat Reduction. |
U.S. Appl. No. 14/550,772, filed Nov. 21, 2014, Energy Based Fat Reduction. |
U.S. Appl. No. 15/401,804, filed Feb. 11, 2016, Energy Based Fat Reduction. |
U.S. Appl. No. 15/380,267, filed Dec. 15, 2016, Energy Based Fat Reduction. |
U.S. Appl. No. 15/650,525, filed Jul. 18, 2017, Energy Based Fat Reduction. |
U.S. Appl. No. 15/829,175, filed Dec. 1, 2017, Energy Based Fat Reduction. |
U.S. Appl. No. 15/996,249, filed Jun. 1, 2018, Energy Based Fat Reduction. |
U.S. Appl. No. 16/272,427, filed Feb. 11, 2019, Energy Based Fat Reduction. |
U.S. Appl. No. 13/291,312, filed Nov. 11, 2011, Devices and Methods for Acoustic Shielding. |
U.S. Appl. No. 14/487,504, filed Sep. 16, 2014, Devices and Methods for Acoustic Shielding. |
U.S. Appl. No. 13/136,538, filed Aug. 2, 2011, Systems and Methods for Treating Acute and/or Chronic Injuries in Soft Tissue. |
U.S. Appl. No. 13/136,542, filed Aug. 2, 2011, System and Method for Treating Cartilage. |
U.S. Appl. No. 13/163,541, filed Aug. 2, 2011, Methods and Systems for Treating Plantar Fascia. |
U.S. Appl. No. 13/136,544, filed Aug. 2, 2011, Systems and Methods for Ultrasound Treatment. |
U.S. Appl. No. 13/547,023, filed Jul. 11, 2012, Systems and Methods for Coupling an Ultrasound Source to Tissue. |
U.S. Appl. No. 13/545,931, filed Jul. 10, 2012, Methods and Systems for Controlling Acoustic Energy Deposition Into a Medium. |
U.S. Appl. No. 13/545,953, filed Jul. 10, 2012, Systems and Methods for Accelerating Healing of Implanted Material and/or Native Tissue. |
U.S. Appl. No. 13/547,011, filed Jul. 11, 2012, Systems and Methods for Monitoring and Controlling Ultrasound Power Output and Stability. |
U.S. Appl. No. 13/545,954, filed Jul. 10, 2012, Systems and Methods for Improving an Outside Appearance of Skin Using Ultrasound as an Energy Source. |
U.S. Appl. No. 13/545,945, filed Jul. 10, 2012, Systems and Methods for Treating Injuries to Joints and Connective Tissue. |
U.S. Appl. No. 13/545,929, filed Jul. 10, 2012, Methods and Systems for Ultrasound Treatment. |
U.S. Appl. No. 13/863,249, filed Apr. 15, 2013, Systems for Cosmetic Treatment. |
U.S. Appl. No. 13/863,281, filed Apr. 15, 2013, Methods for Non-invasive Cosmetic Treatment. |
U.S. Appl. No. 14/847,626, filed Sep. 8, 2015, Systems for Cosmetic Treatment. |
U.S. Appl. No. 13/863,362, filed Apr. 15, 2013, Thick Film Transducer Arrays. |
U.S. Appl. No. 14/217,110, filed Mar. 17, 2014, Ultrasound Treatment Device and Method of Use. |
U.S. Appl. No. 14/217,382, filed Mar. 17, 2014, Ultrasound Treatment Device and Method of Use. |
U.S. Appl. No. 14/225,189, filed Mar. 25, 2014, Reflective Ultrasound Technology for Dermatological Treatments. |
U.S. Appl. No. 15/345,908, filed Nov. 8, 2016, Reflective Ultrasound Technology for Dermatological Treatments. |
U.S. Appl. No. 15/719,377, filed Sep. 28, 2017, Reflective Ultrasound Technology for Dermatological Treatments. |
U.S. Appl. No. 14/270,859, filed May 6, 2014, Methods and Systems for Generating Thermal Bubbles for Improved Ultrasound Imaging and Therapy. |
U.S. Appl. No. 14/679,494, filed Apr. 6, 2015, Methods and Systems for Generating Thermal Bubbles for Improved Ultrasound Imaging and Therapy. |
U.S. Appl. No. 14/405,368, filed Dec. 3, 2014, Devices and Methods for Ultrasound Focal Depth Control. |
U.S. Appl. No. 14/568,954, filed Dec. 12, 2014, System and Method for Cosmetic Enhancement of Lips. |
U.S. Appl. No. 14/569,001, filed Dec. 12, 2014, System and Method for Non-Invasive Treatment With Improved Efficiency. |
U.S. Appl. No. 14/600,782, filed Jan. 20, 2015, Methods and Systems for Controlling and Acoustic Energy Deposition in Various Media. |
U.S. Appl. No. 14/738,420, filed Jun. 12, 2015, Systems and Methods for Fast Ultrasound Treatment. |
U.S. Appl. No. 14/751,349, filed Jun. 26, 2015, Methods and Systems for Tattoo Removal. |
U.S. Appl. No. 15/001,712, filed Jan. 20, 2016, Methods and Systems for Removal of a Targeted Tissue from a Body. |
U.S. Appl. No. 15/001,621, filed Jan. 20, 2016, Methods and Systems for Removal of a Foreign Object from Tissue. |
U.S. Appl. No. 15/059,773, filed Mar. 3, 2016, Methods and Systems for Material Transport Across an Impermeable or Semi-Permeable Membrane via Artificially Created Microchannels. |
U.S. Appl. No. 15/094,774, filed Apr. 8, 2016, System and Method for Increased Control of Ultrasound Treatments. |
Adams et al., “High Intensity Focused Ultrasound Ablation of Rabbit Kidney Tumors” Sonablate High-Intensity Focused Ultrasound device; Journal of Endourology vol. 10, No. 1, (Feb. 1996). |
Agren, Magnus S. et al., Collagenase in Wound Healing: Effect of Wound Age and Type. The Journal of Investigative Dermatology, vol. 99/No. 6, (Dec. 1992). |
Alam, M., “The future of noninvasive procedural dermatology”. Semin Cutan Med Surg. Mar. 2013; 32(1):59-61. |
Alam, M., et al., “Ultrasound tightening of facial and neck skin: a rater-blinded prospective cohort study”. J Am Acad Dermatol, 2010. 62(2): p. 262-9. |
Alexiades-Armenakas, M., “Ultrasound Technologies for Dermatologic Techniques”. J Drugs Derm. 2014. 12 (11): p. 1305. |
Alster, T.S., et. al., “Noninvasive lifting of arm, thigh, and knee skin with transcutaneousintense focused ultrasound”. Dermatol Surg, 2012. 38(5): p. 754-9. |
Alster, Tinas S., Tanzi, Elizabeth L., “Cellulite Treatment using a Novel Combination Radiofrequency, Infrared Light, and Mechanical Tissue Manipulation Device,” Journal of Cosmetic & Laser Therapy, Jun. 2005, vol. 7, Issue 2, pp. 81-85. |
Arosarena, O., “Options and Challenges for Facial Rejuvenation in Patients With Higher Fitzpatrick Skin Phototypes”. JAMA Facial Plastic Surgery, 2015. |
Arthur et al., “Non-invasive estimation of hyperthermia temperatures with ultrasound,” Int. J. Hyperthermia, Sep. 2005, 21(6), pp. 589-600. |
Barthe et al., “Ultrasound therapy system and ablation results utilizing miniature imaging/therapy arrays,” Ultrasonics Symposium, 2004 IEEE, Aug. 23, 2004, pp. 1792-1795, vol. 3. |
Bozec, Laurent et al., Thermal Denaturation Studies of Collagen by Microthermal Analysis and Atomic Force Microscopy, Biophysical Journal, vol. 101, pp. 228-236. (Jul. 2001). |
Brobst, R.W., et. al., “Noninvasive Treatment of the Neck”. Facial Plast Surg Clin North Am, 2014. 22(2): p. 191-202. |
Brobst, R.W., et., al., “Ulthera: initial and six month results”. Facial Plast Surg Clin North Am, 2012. 20(2): p. 163-76. |
Brown J A et al: “Fabrication and performance of 40-60 MHz annular arrays”, 2003 IEEE Ultrasonics Symposium Proceedings. Honolulu, Hawaii, Oct. 5-8, 2003; [IEEE Ultrasonics Symposium Proceedings], New York, NY : IEEE, US, vol. 1, Oct. 5, 2003 (Oct. 5, 2003), pp. 869-872. |
Calderhead et al., “One Mechanism Behind LED Photo-Therapy for Wound Healing and Skin Rejuvenation: Key Role of the Mast Cell” Laser Therapy 17.3: 141-148 (2008). |
Carruthers et al., “Consensus Recommendations for Combined Aesthetic Interventions in the Face Using Botulinum Toxin, Fillers,and Energy-Based Devices” Dermatol Surg 2016 (pp. 1-12). |
Casabona, G., et. al., “Microfocused Ultrasound with Visualization and Calcium Hydroxylapatite for Improving Skin Laxity and Cellulite Appearance”; Plast Reconstr Surg Glob Open. Jul. 25, 2017;5(7):e1388, 8 pages. |
Casabona, G., et. al., “Microfocused Ultrasound With Visualization and Fillers for Increased Neocollagenesis: Clinical and Histological Evaluation”. Dermatol Surg 2014;40:S194-S198. |
Chan, N.P., et al., “Safety study of transcutaneous focused ultrasound for non-invasive skin tightening in Asians”. Lasers Surg Med, 2011. 43(5): p. 366-75. |
Chapelon et al., “Effects of Cavitation In The High Intensity Therapeutic Ultrasound”, Ultrasonics Symposium—1357 (1991). |
Chapelon, et al., “Thresholds for Tissue Ablation by Focused Ultrasound” (1990). |
Chen, L. et al., “Effect of Blood Perfusion on the ablation of liver parenchyma with high intensity focused ultrasound,” Phys. Med. Biol; 38:1661-1673; 1993b. |
Coon, Joshua et al., “Protein identification using sequential ion/ion reactions and tandem mass spectrometry” Proceedings of the National Academy of Sciences of the USA, vol. 102, No. 27, Jul. 27, 2005, pp. 9463-9468. |
Corry, Peter M., et al., “Human Cancer Treatment with Ultrasound”, IEEE Transactions on Sonics and Ultrasonics, vol. SU-31, No. 5, Sep. 1984, pp. 444, 456. |
Damianou et al., “Application of the Thermal Dose Concept for Predicting the Necrosed Tissue Volume During Ultrasound Surgery,” 1993 IEEE Ultrasound Symposium, pp. 1199-1202. |
Daum et al., Design and Evaluation of a Feedback Based Phased Array System for Ultrasound Surgery, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 45, No. 2, Mar. 1998, pp. 431-438. |
Davis, Brian J., et al., “An Acoustic Phase Shift Technique for the Non-lnvasive Measurement of Temperature Changes in Tissues”, 1985 Ultrasonics Symposium, pp. 921-924. |
Dayan, S.H., et al., “Prospective, Multi-Center, Pivotal Trial Evaluating the Safety and Effectiveness of Micro-Focused Ultrasound with Visualization (MFU-V) for Improvement in Lines and Wrinkles of the Decolletage”. Plast Reconstr Surg. Oct. 2014; 134(4 Suppl 1):123-4. |
Decision of the Korean Intellectual Property Tribunal dated Jun. 28, 2013 regarding Korean Patent No. 10-1142108, which is related to the pending application and/or an application identified in the Table on pp. 1-4 of the Information Disclosure Statement herein (English translation, English translation certification, and Korean decision included). |
Delon Martin, C., et al., “Venous Thrombosis Generation by Means of High-Intensity Focused Ultrasound” Ultrasound in Med. & Biol., vol. 21, No. 1, pp. 113-119 (1995). |
Dierickx, Christine C., “The Role of Deep Heating for Noninvasive Skin Rejuvenation” Lasers in Surgery and Medicine 38:799-807 (2006). |
Dobke, M.K., et al., “Tissue restructuring by energy-based surgical tools”. Clin Plast Surg, 2012. 39(4): p. 399-408. |
Dong, Yuan-Lin et al., “Effect of Ibuprofen on the Inflammatory Response to Surgical Wounds” The Journal of Trauma, vol. 35, No. 3. (1993). |
Driller et al., “Therapeutic Applications of Ultrasound: A Review” IEEE Engineering in Medicine and Biology; (Dec. 1987) pp. 33-40. |
Dvivedi, Sanjay, et al. “Effect of Ibuprofen and diclofenac sodium on experimental wound healing” Indian Journal of Experimental Biology, vol. 35, pp. 1243-1245. (Nov. 1997). |
Fabi, S.G., “Microfocused Ultrasound With Visualization for Skin Tightening and Lifting: My Experience and a Review of the Literature”. Dermatol Surg. Dec. 2014; 40 Suppl 12:S164-7. |
Fabi, S.G., “Noninvasive skin tightening: focus on new ultrasound techniques”. Clin Cosmet Investig Dermatol. Feb. 5, 2015; 8:47-52. |
Fabi, S.G., et. al., “A prospective multicenter pilot study of the safety and efficacy of microfocused ultrasound with visualization for improving lines and wrinkles of the decollete”. Dermatol Surg. Mar. 2015; 41(3):327-35. |
Fabi, S.G., et. al., “Evaluation of microfocused ultrasound with visualization for lifting, tightening, and wrinkle reduction of the decolletage”. J Am Acad Dermatol, 2013. 69(6): p. 965-71. |
Fabi, S.G., et. al., “Future directions in cutaneous laser surgery”. Dermatol Clin, 2014. 32(1): p. 61-9. |
Fabi, S.G., et. al., “Retrospective Evaluation of Micro-focused Ultrasound for Lifting and Tightening the Face and Neck”. Dermatol Surg, 2014. |
Friedmann D.P., “Comments on evaluation of microfocused ultrasound system for improving skin laxity and tightening in the lower face”. Aesthet Surg J. Mar. 2015;35(3):NP81-2. |
Friedmann, D.P., et. al., “Combination of intense pulsed light, Sculptra, and Ultherapy for treatment of the aging face”. J Cosmet Dermatol, 2014. 13(2): p. 109-18. |
Fry, W.J et al., “Production of Focal Destructive Lesions in the Central Nervous System with Ultrasound,” J. Neurosurg., 11:471-478; 1954. |
Fujimoto, et al., “A New Cavitation Suppression Technique for Local Ablation Using High-Intensity Focused Ultrasound” Ultrasonics Symposium—1629 (1995). |
Gliklich et al., Clinical Pilot Study of Intense Ultrasound therapy to Deep Dermal Facial Skin and Subcutaneous Tissues, Arch Facial Plastic Surgery, Mar. 1, 2007, vol. 9, No. 1. |
Gold, M.H., et. al., “Use of Micro-Focused Ultrasound with Visualization to Lift and Tighten Lax Knee Skin”. J Cosmet Laser Ther, 2014: p. 1-15. |
Goldberg, D.J., et. al., “Safety and Efficacy of Microfocused Ultrasound to Lift, Tighten, and Smooth the Buttocks”. Dermatol Surg 2014; 40:1113-1117. |
Greene, R.M., et al., “Skin tightening technologies”. Facial Plast Surg. Feb. 2014; 30(1):62-7. |
Greenhalgh, David G., “Wound healing and diabetes mellitus” Clinics in Plastic Surgery 30; 37-45. (2003). |
Guo, S et al., “Factors Affecting Wound Healing” Critical Reviews in Oral Biology & Medicine, J Dent Res 89(3), pp. 219-229. (2010). |
Haar, G.R. et al., “Tissue Destruction with Focused Ultrasound in Vivo,” Eur. Urol. 23(suppl. 1):8-11; 1993. |
Hantash, Basil M. et al., “Bipolar Fractional Radiofrequency Treatment Induces Neoelastogenesis and Neocollagenesis” Lasers in Surgery and Medicine 41:1-9 (2009). |
Hantash, Basil M. et al., “In Vivo Histological Evaluation of a Novel Ablative Fractional Resurfacing Device” Lasers in Surgery and Medicine 39:96-107 (2007). |
Harris, M.O., “Safety of Microfocused Ultrasound With Visualization in Patients With Fitzpatrick Skin Phototypes III to VI”. JAMA Facial Plast. Surg, 2015. |
Hart, et. al., “Current Concepts in the Use of PLLA:Clinical Synergy Noted with Combined Use of Microfocused Ultrasound and Poly-l-Lactic Acid on the Face, Neck, and Decolletage”. Amer. Soc. Plast. Surg. 2015. 136; 180-187S. |
Hassan et al., “Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods,” advanced in Polymer Science, 2000, pp. 37-65, vol. 153. |
Hassan et al., “Structure and Morphology of Freeze/Thawed PVA Hydrogels,” Macromolecules, Mar. 11, 2000, pp. 2472-2479, vol. 33, No. 7. |
Hexsel et al., “A Validated Photonumeric Cellulite Severity Scale”; J Eur Acad Dermatol Venereol. May 2009; 23(5):523-8, 6 pages. |
Hitchcock, T.M et. al., “Review of the safety profile for microfocused ultrasound with Visualization”. Journal of Cosmetic Dermatology, 13, 329-335. (2014). |
Husseini et al., “The Role of Cavitation in Acoustically Activated Drug Delivery,” J. Control Release, Oct. 3, 2005, pp. 253-261, vol. 107(2). |
Husseini et al. “Investigating the mechanism of acoustically activated uptake of drugs from Pluronic micelles,” BMD Cancer 2002, 2:20k, Aug. 30, 2002, pp. 1-6. |
Hynynen et al., Temperature Distributions During Local Ultrasound Induced Hyperthermia In Vivo, Ultrasonics Symposium—745 (1982). |
Jeffers et al., “Evaluation of the Effect of Cavitation Activity on Drug-Ultrasound Synergisms,” 1993 IEEE Ultrasonics Symposium, pp. 925-928. |
Jenne, J., et al., “Temperature Mapping for High Energy US-Therapy”, 1994 Ultrasonics Symposium, pp. 1879-1882. |
Jeong, K.H., et al., “Neurologic complication associated with intense focused ultrasound”. J Cosmet Laser Ther, 2013. |
Johnson, S.A., et al., “Non-Intrusive Measurement of Microwave and Ultrasound-Induced Hyperthermia by Acoustic Temperature Tomography”, Ultrasonics Symposium Proceedings, pp. 977-982. (1977). |
Ketterling J. A. et al.: “Design and fabrication of a 40-MHz annular array transducer”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, IEEE, US, vol. 52, No. 4, Apr. 1, 2005 (Apr. 1, 2005), pp. 672-681. |
Kim, H.J., et al., “Coagulation and ablation patterns of high-intensity focused ultrasound on a tissue mimicking phantom and cadaveric skin”. Laser Med Sci. Sep. 4, 2015. |
Kornstein, A.N., “Ulthera for silicone lip correction”. Plast Reconstr Surg, 2012. 129(6): p. 1014e-1015e. |
Kornstein, A.N., “Ultherapy shrinks nasal skin after rhinoplasty following failure of conservative measures”. Plast Reconstr Surg, 2013. 131(4): p. 664e-6e. |
Krischak, G.D., et al., “The effects of non-steroidal anti-inflammatory drug application on incisional wound healing in rats” Journal of Wound Care, vol. 6, No. 2, (Feb. 2007). |
Laubach, H.J., et. al., “Confined Thermal Damage with Intense Ultrasound (IUS)” [abstr.] American Society for Laser Medicine and Surgery Abstracts, p. 15 #43 (Apr. 2006). |
Laubach, H.J., et. al., “Intense focused ultrasound: evaluation of a new treatment modality for precise microcoagulation within the skin”. Dermatol Surg, 2008. 34(5): p. 727-34. |
Lee, H.J., et. al., “The efficacy and safety of intense focused ultrasound in the treatment of enlarged facial pores in Asian skin”. J Dermatolog Treat, 2014. |
Lee, H.S., et. al., “Multiple Pass Ultrasound Tightening of Skin Laxity of the Lower Face and Neck”. Dermatol Surg, 2011. |
Lin, Sung-Jan, et al., “Monitoring the thermally induced structural transitions of collagen by use of second-harmonic generation microscopy” Optics Letters, vol. 30, No. 6, (Mar. 15, 2005). |
Macgregor J.L., et. al., “Microfocused Ultrasound for Skin Tightening”. Semin Cutan Med Surg 32:18-25. (2013). |
Madersbacher, S. et al., “Tissue Ablation in Benign Prostatic Hyperplasia with High Intensity Focused Ultrasound,” Dur. Urol., 23 (suppl. 1):39-43; 1993. |
Makin et al, “B-Scan Imaging and Thermal Lesion Monitoring Using Miniaturized Dual-Functionality Ultrasound Arrays,” Ultrasonics Symposium, 2004 IEEE, Aug. 23, 2004, pp. 1788-1791, vol. 3. |
Makin et al., “Confirmed Bulk Ablation and Therapy Monitoring Using Intracorporeal Image-Treat Ultrasound Arrays,” 4th International Symposium on Therapeutic Ultrasound, Sep. 19, 2004. |
Makin et al., “Miniaturized Ultrasound Arrays for Interstitial Ablation and Imaging,” UltraSound Med. Biol. 2005, Nov. 1, 2005, pp. 1539-1550, vol. 31(11). |
Manohar et al., “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” Journal of Biomedical Optics, Nov./Dec. 2004, pp. 1172-1181, vol. 9, No. 6. |
Mast et al, “Bulk Ablation of Soft Tissue with Intense Ultrasound; Modeling and Experiments,” J. Acoust. Soc. Am., Oct. 1, 2005, pp. 2715-2724, vol. 118(4). |
Meshkinpour, Azin, et al., “Treatment of Hypertrophic Scars and Keloids With a Radiofrequency Device: A Study of Collagen Effects” Lasers in Surgery and Medicine 37:343-349 (2005). |
Microchip microID 125 kHz EFID System Design Guide, Microchip Technology Inc. (2004). |
Minkis, K., et. al., “Ultrasound skin tightening”. Dermatol Clin, 2014. 32(1): p. 71-7. |
Mitragotri, S., “Healing sound: the use of ultrasound in drug delivery and other therapeutic applications,” Nature Reviews; Drug Delivery, pp. 255-260, vol. 4 (Mar. 2005). |
Mosser, David M. et al., “Exploring the full spectrum of macrophage activation” Nat Rev Immunol; 8(12): 958-969. (Dec. 2008). |
Murota, Sei-Itsu, et al., “Stimulatory Effect of Prostaglandins on the Production of Hexosamine-Containing Substances by Cultured Fibroblasts (3) Induction of Hyaluronic Acid Synthetase by Prostaglandin” Department of Pharmacology, Tokyo Metropolitan Institute of Gerontology, Itabashiku, Tokyo-173, Japan. (Nov. 1977, vol. 14, No. 5). |
Murota, Sei-Itsu, et al., “The Stimulatory Effect of Prostaglandins on Production of Hexosamine-Containing Substances by Cultured Fibroblasts” Department of Pharmacology, Tokyo Metropolitan Institute of Gerontology, Itabashiku, Tokyo-173, Japan. (Aug. 1976, vol. 12, No. 2). |
Nestor, M.S. et. al., “Safety and Efficacy of Micro-focused Ultrasound Plus Visualization for the Treatment of Axillary Hyperhidrosis”. J Clin Aesthet Dermatol, 2014. 7(4): p. 14-21. |
Oni, G., et. al. “Response to ‘comments on evaluation of microfocused ultrasound system for improving skin laxity and tightening in the lower face’”. Aesthet Surg J. Mar. 2015;35(3):NP83-4. |
Oni, G., et. al., “Evaluation of a Microfocused Ultrasound System for Improving Skin Laxity and Tightening in the Lower Face”. Aesthet Surg J, 2014. 38:861-868. |
Pak, C.S., et. al., “Safety and Efficacy of Ulthera in the Rejuvenation of Aging Lower Eyelids: A Pivotal Clinical Trial”. Aesthetic Plast Surg, 2014. |
Paradossi et al., “Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications,” Journal of Materials Science: Materials in Medicine, 2003, pp. 687-691, vol. 14. |
Pritzker, R.N., et. al., “Updates in noninvasive and minimally invasive skin tightening”. Semin Cutan Med Surg. Dec. 2014;33(4):182-7. |
Pritzker, R.N., et. al., “Comparison of different technologies for noninvasive skin tightening”. Journal of Cosmetic Dermatology, 13, 315-323. (2014). |
Rappolee, Daniel A., et al., “Wound Macrophages Express TGF and Other Growth Factors in Vivo: Analysis by mRNA Phenotyping” Science, vol. 241, No. 4866 (Aug. 1988). |
Reid, Gavin, et al., “Tandem Mass spectrometry of ribonuclease A and B: N-linked glycosylation site analysis of whole protein ions,” Analytical Chemistry. Feb. 1, 2002, vol. 74, No. 3, pp. 577-583. |
Righetti et al, “Elastographic Characterization of HIFU-lnduced Lesions in Canine Livers,” 1999, Ultrasound in Med & Bio, vol. 25, No. 7, pp. 1099-1113. |
Rokhsar, C., et. al., “Safety and efficacy of microfocused ultrasound in tightening of lax elbow skin”. Dermatol Surg. 2015; 41(7):821 -6. |
Rosenberg, Carol S. “Wound Healing in the Patient with Diabetes Mellitus” Nursing Clinics of North America, vol. 25, No. 1, (Mar. 1990). |
Saad et al., “Ultrasound-Enhanced Effects of Adriamycin Against Murine Tumors,” Ultrasound in Med. & Biol. vol. 18, No. 8, pp. 715-723 (1992). |
Sabet-Peyman, E.J. et. al., “Complications Using Intense Ultrasound Therapy to TreatDeep Dermal Facial Skin and Subcutaneous Tissues”. Dermatol Surg 2014; 40:1108-1112. |
Sandulache, Vlad C. et al., “Prostaglandin E2 inhibition of keloid fibroblast migration, contraction, and transforming growth factor (TGF)-B1-induced collagen synthesis” Wound Rep Reg 15 122-133, 2007. (2007). |
Sanghvi, N.T., et al., “Transrectal Ablation of Prostate Tissue Using Focused Ultrasound,” 1993 Ultrasonics Symposium, IEEE, pp. 1207-1210. |
Sasaki, G.H. et. al., “Clinical Efficacy and Safety of Focused-lmage Ultrasonography: A 2-Year Experience”. Aesthet Surg J, 2012. |
Sasaki, G.H et al., “Microfocused Ultrasound for Nonablative Skin and Subdermal Tightening to the Periorbitum and Body Sites: Preliminary Report on Eighty-Two Patients”. Journal of Cosmetics, Dermatological Sciences and Applications, 2012, 2, 108-116. |
Sassen, Sander, “ATI's R520 architecture, the new king of the hill?” http://www.hardwareanalysis.com/content/article/1813, Sep. 16, 2005, 2 pages. |
Seip, Ralf, et al., “Noninvasive Detection of Thermal Effects Due to Highly Focused Ultrasonic Fields,” IEEE Symposium, pp. 1229-1232, vol. 2, Oct. 3-Nov. 1993. |
Seip, Ralf, et al., “Noninvasive Estimation of Tissue Temperature Response to Heating Fields Using Diagnostic Ultrasound,” IEEE Transactions on Biomedical Engineering, vol. 42, No. 8, Aug. 1995, pp. 828-839. |
Simon et al., “Applications of Lipid-Coated Microbubble Ultrasonic Contrast to Tumor Therapy,” Ultrasound in Med. & Biol. vol. 19, No. 2, pp. 123-125 (1993). |
Sklar, L.R., et. al., “Use of transcutaneous ultrasound for lipolysis and skin tightening: a review”. Aesthetic Plast Surg, 2014. 38(2): p. 429-41. |
Smith, Nadine Barrie, et al., “Non-invasive In Vivo Temperature Mapping of Ultrasound Heating Using Magnetic Resonance Techniques”, 1994 Ultrasonics Symposium, pp. 1829-1832, vol. 3. |
Sonocare, Inc. Therapeutic Ultrasound System Model CST-100 Instruction Manual (1985). |
Suh, D.H., et. al., “A intense-focused ultrasound tightening for the treatment of infraorbital laxity”. J Cosmet Laser Ther, 2012. 14(6): p. 290-5. |
Suh, D.H., et. al., “Comparative histometric analysis of the effects of high-intensity focused ultrasound and radiofrequency on skin”. J Cosmet Laser Ther. Mar. 24, 2015:1 -7. |
Suh, D.H., et. al., “Intense Focused Ultrasound Tightening in Asian Skin: Clinical and Pathologic Results” American Society for Dermatologic Surgery, Inc.; 37:1595-1602. (2011). |
Surry et al., “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol., Dec. 6, 2004, pp. 5529-5546, vol. 49. |
Syka J. E. P. et al., “Peptide and Protein Sequence Analysis by Electron Transfer Dissociation Mass Spectrometry,” Proceedings of the National Academy of Sciences of USA, National Academy of Science, Washington, DC, vol. 101, No. 26, Jun. 29, 2004, pp. 9528-9533. |
Talbert, D. G., “An Add-On Modification for Linear Array Real-Time Ultrasound Scanners to Produce 3D Displays,” UTS Int'l 1977 Brighton, England (Jun. 28-30, 1977) pp. 57-67. |
Tata et al., “Interaction of Ultrasound and Model Membrane Systems: Analyses and Predictions,” American Chemical Society, Phys. Chem. 1992, 96, pp. 3548-3555. |
Ueno, S., et al., “Ultrasound Thermometry in Hyperthermia”, 1990 Ultrasonic Symposium, pp. 1645-1652. |
Verhofstad, Michiel H.J. et al., “Collagen Synthesis in rat skin and ileum fibroblasts is affected differently by diabetes-related factors” Int. J. Exp. Path. (1998), 79, 321-328. |
Wang, H., et al., “Limits on Focused Ultrasound for Deep Hyperthermia”, 1994 Ultrasonic Symposium, Nov. 1-4, 1994, pp. 1869-1872, vol. 3. |
Wasson, Scott, “NVIDIA's GeForce 7800 GTX graphics processor Power MADD,” http://techreport.com/reviews/2005q2/geforce-7800gtx/index.x?pg=1, Jun. 22, 2005, 4 pages. |
Webster et al. “The role of ultrasound-induced cavitation in the ‘in vitro’ stimulation of collagen synthesis in human fibroblasts”; Ultrasonics pp. 33-37(Jan. 1980). |
Weiss, M., “Commentary: noninvasive skin tightening: ultrasound and other technologies: where are we in 2011?” Dermatol Surg, 2012. 38(1): p. 28-30. |
White et al “Selective Creating of Thermal Injury Zones in the Superficial Musculoaponeurotic System Using Intense Ultrasound Therapy,” Arch Facial Plastic Surgery, Jan./Feb. 2007, vol. 9, No. 1 (pp. 22-29). |
White, W. M., et al., “Selective Transcutaneous Delivery of Energy to Facial Subdermal Tissues Using the Ultrasound Therapy System” [abstr], American Society for Laser Medicine and Surgery Abstracts, p. 37 #113 (Apr. 2006). |
White, W. Matthew, et al., “Selective Transcutaneous Delivery of Energy to Porcine Soft Tissues Using Intense Ultrasound (IUS)” Lasers in Surgery and Medicine 40:67-75 (2008). |
Woodward, J.A., et. al. “Safety and Efficacy of Combining Microfocused Ultrasound With Fractional CO2 Laser Resurfacing for Lifting and Tightening the Face and Neck”. Dermatol Surg, Dec. 2014 40:S190-S193. |
Zelickson, Brian D. et al., “Histological and Ultrastructural Evaluation of the Effects of a Radiofrequency-Based Nonablative Dermal Remodeling Device, A Pilot Study” Arch Dermatol, vol. 140, (Feb. 2004). |
Ulthera, Inc., Petition for Inter Partes Review filed Jul. 19, 2016 in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 63 pages (Filed Jul. 19, 2016). |
Ulthera Exhibit 1001, U.S. Pat. No. 6,113,559 to Klopotek, filed Jul. 19, 2016 in re IPR2016-01459. |
Ulthera Exhibit 1002, Patent file history of U.S. Pat. No. 6,113,559 Klopotek filed Jul. 19, 2016 in re IPR2016-01459. |
Ulthera Exhibit 1003, Declaration of Expert Witness Mark E. Schafer, Ph.D. filed Jul. 19, 2016 in re IPR2016-01459. |
Ulthera Exhibit 1004, Curriculum Vitae of Mark E. Schafer, Ph.D. filed Jul. 19, 2016 in re IPR2016-01459. |
Ulthera Exhibit 1005, International PCT Publication WO96/34568 Knowlton filed Jul. 19, 2016 in re IPR2016-01459. |
Ulthera Exhibit 1006, French Patent No. 2,672,486, Technomed patent filed Jul. 19, 2016 in re IPR2016-01459. |
Ulthera Exhibit 1007, English translation of French Patent No. 2,672,486, Technomed filed Jul. 19, 2016 in re IPR2016-01459. |
Ulthera Exhibit 1008, International PCT Publication WO93/12742, Technomed PCT filed Jul. 19, 2016 in re IPR2016-01459. |
Ulthera Exhibit 1009, English translation of International PCT Publication W093/12742, Technomed PCT filed Jul. 19, 2016 in re IPR2016-01459. |
Ulthera Exhibit 1010, U.S. Pat. No. 5,601,526, which claims priority to Technomed PCT filed Jul. 19, 2016 in re IPR2016-01459. |
Ulthera Exhibit 1011, Patent file history for European Patent Application No. 98964890.2, Klopotek filed Jul. 19, 2016 in re IPR2016-01459. |
Ulthera Exhibit 1012, Translator Declaration filed Jul. 19, 2016 in re IPR2016-01459. |
Ulthera Exhibit 1013, U.S. Pat. No. 5,230,334 to Klopotek filed Jul. 19, 2016 in re IPR2016-01459. |
Ulthera Exhibit 1014, U.S. Pat. No. 5,755,753 to Knowlton filed Jul. 19, 2016 in re IPR2016-01459. |
Ulthera Exhibit 1015, Excerpts from The American Medical Association Encyclopedia of Medicine (1989) filed Jul. 19, 2016 in re IPR2016-01459. |
Ulthera Exhibit 1016, The Simultaneous Study of Light Emissions and Shock Waves Produced by Cavitation Bubbles, G. Gimenez, J. Acoust. Soc. Am. 71(4), Apr. 1982, pp. 839-847 (filed Jul. 19, 2016 in re IPR2016-01459). |
Ulthera Exhibit 1017, Excerpts from Gray's Anatomy (1995) (filed Jul. 19, 2016 in re IPR2016-01459). |
Ulthera Exhibit 1018, Anatomy of the Superficial Venous System, Comjen G.M., Dermatol. Surg., 1995; 21:35-45 (filed Jul. 19, 2016 in re IPR2016-01459). |
Ulthera Exhibit 1019, Section 2.6 from Ultrasonics Theory and Application, by G.L. Gooberman (Hart Publishing Co., 1969) (filed Jul. 19, 2016 in re IPR2016-01459). |
Ulthera Exhibit 1020, Deep Local Hyperthermia for Cancer Therapy: External Electromagnetic and Ultrasound Techniques, A.Y. Cheung and A. Neyzari, Cancer Research (Suppl.), vol. 44, pp. 4736-4744 (1984) (filed Jul. 19, 2016 in re IPR2016-01459). |
Decision on Institution of Inter Partes Review in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 20 pages [011] (Dated Jan. 23, 2017). |
DermaFocus Response to Institution of Inter Partes Review in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 73 pages [018] (Dated Apr. 26, 2017). |
DermaFocus Exhibit List in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 5 pages [019] (Dated Apr. 26, 2017). |
DermaFocus Exhibit 2002, Declaration of Mark Palmeri, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 136 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2003, Deposition of Dr. Mark Schafer, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 327 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2004, Amendment No. 4 to Ulthera Form S-1, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 308 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2005, Excerpt from Churchill Livingstone, Gray's Anatomy (38th ed. 1995), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 7 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2006, Bo Eklof et al., “Revision of the CEAP Classification for Chronic Venous Disorders: Consensus Statement,” ACTA FAC MED NAISS, vol. 25, No. 1 (2008), 3-10 in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 7 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2007, WebMD, “Varicose Veins and Spider Veins” downloaded from http://www.webmd.com/skin-problems-andtreatments/guide/varicose-spider-veins#1 in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 3 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2008, John M. Porter et al., “Reporting Standards in Venous Disease: An Update,” Journal of Vascular Surgery, vol. 21, No. 4 (1995), 635-645 in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 11 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2009, Kullervo Hynynen, “Review of Ultrasound Therapy,” 1997 Ultrasonics Symposium (1997), 1305-1313, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 9 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2010, A.G. Visioli et al., “Prelimiary Results of a Phase I Dose Escalation Clinical Trial Using Focused Ultrasound in the Treatment of Localised Tumours,” European Journal of Ultrasound, vol. 9 (1999), 11-18, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 8 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2011, U.S. Pat. No. 5,143,063, issued on Sep. 1, 1992, Fellner, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 6 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2012, Hugh G. Beebe et al., “Consensus Statement: Classification and Grading of Chronic Venous Disease in the Lower Limbs,” European Journal of Vascular and Endovascular Surgery, vol. 12 (1996), 487-492, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 6 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2013, Excerpt from Mosby's Medical Dictionary (3rd ed. 1990), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 4 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2014, Excerpt from Miller-Keane Encyclopedia & Dictionary of Medicine, Nursing, & Allied Health (5th ed. 1992), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 6 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2015, David J. Tibbs et al, Varicose Veins, Venous Disorders, and Lymphatic Problems in the Lower Limbs (1997), Chapter 4: Clinical Patterns of Venous Disorder I, 47-67, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 24 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2016, Mitchel P. Goldman et al., Varicose Veins and Telangiectasias (2nd ed. 1999), Chapter 22: Treatment of Leg Telangiectasias with Laser and High-Intensity Pulsed Light, 470-497, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 31 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2017, Email from Anderson to Klopotek dated May 25, 2004, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 1 page (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2018, List of Klopotek Patents, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 411 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2019, Declaration of Peter Klopotek Civil Action 15-cv-654-SLR, dated Nov. 2, 2016, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 1 page (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2020, “Our Technology,” downloaded from http://jobs.ulthera.com/about on Apr. 10, 2017, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 4 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2021, C. Damianou and K. Hynynen, “Focal Spacing and Near-Field Heating During Pulsed High Temperature Ultrasound Therapy,” Ultrasound in Medicine & Biology, vol. 19, No. 9 (1993), 777-787, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 11 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2022, Excerpt from Mosby's Medical Dictionary (5th ed. 1997), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 5 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2023, Excerpt from Miller-Keane Encyclopedia & Dictionary of Medicine, Nursing, & Allied Health (6th ed. 1997), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 7 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2024, Excerpt from Stedman's Concise Medical Dictionary (3 rd ed. 1997), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 4 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2025, Excerpt from Taber's Cyclopedic Medical Dictionary (18th ed. 1997), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 9 pages (Filed Apr. 26, 2017). |
DermaFocus Exhibit 2026, Bo Eklof et al., “Revision of the CEAP Classification for Chronic Venous Disorders: Consensus Statement,” Journal of Vascular Surgery, vol. 40, No. 6 (2004), 1248-1252.el, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 6 pages (Filed Apr. 26, 2017). |
Ulthera, Inc., Reply in Support of Petition for Inter Partes Review in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 33 pages (Filed Aug. 2, 2017). |
Ulthera Exhibit 1022, Use of the Argon and Carbon Dioxide Lasers for Treatment of Superficial Venous Varicosities of the Lower Extremity, D. Apfelberg et al., Lasers in Surgery and Medicine, vol. 4.3, pp. 221-231 (1984) (filed Aug. 2, 2017 in re IPR2016-01459). |
Ulthera Exhibit 1023, 532-Nanometer Green Laser Beam Treatment of Superficial Varicosities of the Lower Extremities, T. Smith et al., Lasers in Surgery and Medicine, vol. 8.2, pp. 130-134 (1988) (filed Aug. 2, 2017 in re IPR2016-01459). |
Ulthera Exhibit 1024, Deposition Transcript of Dr. Mark Palmeri on Jul. 11, 2017 (filed Aug. 2, 2017 in re IPR2016-01459). |
Ulthera Exhibit 1025, Ulthera Oral Proceeding Demonstrative Slides (filed Oct. 2, 2017 in re IPR2016-01459). |
DermaFocus Exhibit 2027, DermaFocus Oral Proceeding Demonstrative Slides (filed Oct. 2, 2017 in re IPR2016-01459). |
PTAB Record of Oral Hearing held Oct. 4, 2017 in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 67 pages (PTAB Document sent to Ulthera on Nov. 1, 2017). |
Final Written Decision of Inter Partes Review in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 37 pages [030] (Entered Jan. 19, 2018). |
Ulthera, Inc., Petitioner Notice of Appeal to Federal Circuit 2018-1542 re: IPR2016-01459; 4 pages from [001] (No. appendices) (Filed Feb. 9, 2018). |
Federal Circuit Order Granting Ulthera Motion to Remand, re: 2018-1542; 4 pages [022] (Dated May 25, 2018). |
Ulthera Brief (Corrected), Fed. Cir. Appeal Case 19-1006 from re: IPR2016-01459; 136 pages [030] (Dated Apr. 3, 2019). |
DermaFocus Brief (Corrected), Fed. Cir. Appeal Case 19-1006 from re: IPR2016-01459; 73 pages [032] (Dated Apr. 4, 2019). |
PCT/US2015/025581 International Search Report dated Jul. 14, 2015. |
Supplemental European Search Report in EP15780378 dated Nov. 21, 2017. |
Number | Date | Country | |
---|---|---|---|
20200188705 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
61981660 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15855949 | Dec 2017 | US |
Child | 16797393 | US | |
Parent | 15302436 | US | |
Child | 15855949 | US |