The invention will be better understood from a reading of the following detailed description in conjunction with the drawing figures in which like reference designators identify like elements, and in which:
For a bipolar transistor the first order equation for collector current related to Vbe is:
I
c
=AI
s(e(Vbe·q)/kT−1)
where:
q is charge on the electron; and
In the forward direction, even at very low bias, the (e(Vbe·q)/kT) term over-powers the −1 term. Therefore in the forward direction:
I
c
=I
s(e(Vbe·q)/kT)
, and
V
be=(kT/q)·ln(Ic/AIs)
Two junctions operating at different current densities will have a different Vbe related by the natural logs of their current densities.
From this it can be shown that the slope of Vbe vs. temperature must depend on current density. Vbe has a negative temperature coefficient. However, the difference in Vbe, called the ΔVbe, has a positive temperature coefficient.
ΔVbe=Vbe|1−Vbe|A=(kT/q)·[ln(I1/IS)−ln(I2/AIS)]
For I1=I2 and an area scale of A
ΔVbe=(kT/q)ln A
In the illustrative embodiment of the invention, a bandgap circuit is formed as part of a CMOS device of the type utilizing CMOS N-well process technology.
The most usable bipolar transistors available in the CMOS N-well process is the substrate PNP as shown in
There are several general topologies based on the standard CMOS process and its substrate PNP that can be used to create a bandgap circuit.
Bandgap voltage and slope with respect to temperature or temperature coefficient, TC, are sensitive to certain process and design variables.
With the foregoing in mind, considering all the variables, and making specific assumptions, a closed form for the bandgap voltage is:
Vbandgap=(kT/q)·{ln[((kT/q)·ln A/Rt)/Is]}+(1+R2/R1)(kT/q)·ln A
When m is correctly set, the temperature coefficient of Vref will be near zero. The resulting value of Vref will be near the bandgap voltage of silicon at 0° K., thus the name “bandgap circuit.”
However, Vbe for a bipolar transistor operating at constant current has a slight bow over temperature. The net result is that a plot of bandgap voltage Vref against temperature has a bow as shown by curve 401 in
In accordance with one aspect of the invention, a simple differential amplifier formed by transistors M1, M2 as shown in
Transistor M1 and transistor M2 compare the nearly zero temperature coefficient, TC, voltage V1 (derived from the bandgap) to the Vbe voltage of the unit size bipolar transistor Q2 in the bandgap. By adjusting the value of V1 the threshold temperature where the differential pair M1, M2 begins to switch and steer current provided by transistor M3 into the bandgap is moved. Voltage V1 is selected to begin adding current at the temperature where the bandgap begins to dip, e.g., 40° C. The width/length W/L ratio of transistors M1, M2 will define the amount of differential voltage necessary to switch all of the current from transistor M2 to transistor M1. The current I sets the maximum amount of current that can or will be added to the bandgap.
In accordance with the principles of the invention, by utilizing 3 transistors and 2 resistors the correction threshold, rate (vs. temperature) and amount of curvature (current) correction on the high temperature side can be corrected. The effect of this current injection is shown by curve 601 in
The comparator/current injection structure can be mirrored for curvature correction of the cold temperature side of the bandgap by providing current removal from the larger or A sized transistor Q1 of the bandgap circuit. The effect of such curvature correction on the cold side is shown by curve 701 in
A fully compensated bandgap circuit in accordance with the principles of the invention that provides both hot and cold temperature compensation is shown in
The circuit of
The compensated circuit of
Bandgap circuit 1001 comprising a transistor Q2 and a transistor Q1. The area of transistor Q1 is selected to be a predetermined multiple A of the area of transistor Q2. First and second serially connected resistors R1, R2 are connected between an output node Vbandgap and the emitter of transistor Q2. A third resistor is connected in series between output node Vref and the emitter of transistor Q1. A differential input amplifier AMP has a first input coupled to a first circuit node disposed between resistors R1, R2; and a second input coupled to a second node disposed between resistor R3 and the emitter of transistor Q1. Amplifier AMP has its output coupled to the output node Vbandgap.
A first switchable current source 1003 is coupled to said transistor Q2 to inject a first current into the emitter of transistor Q2. The current Iinj1 is selected to correct for one of hotter or colder temperatures, more specifically, in the illustrative embodiment, the current Iinj1 is injected at higher temperatures when the base emitter voltage across transistor Q2 to a first predetermined voltage Vset. The voltage Vset is determined by a resistance network formed by resistors R4, R5, R6.
A second switchable current source 1005 is coupled to transistor Q1 to remove a second current Iinj2 into the emitter of transistor Q1. The second current Iinj2 is selected to correct for the other of the hotter or colder temperatures, and more specifically for colder temperatures.
Bandgap circuit 1001, and switchable current injection circuits 1003, 1005 are formed on a single common substrate 1007.
The resistors R4, R5, and R6 are trimmable resistors and are utilized to select the voltages at which the current sources inject current from switchable current injection circuits 1003, 1005 into bandgap circuit 1001.
The invention has been described in terms of illustrative embodiments. It is not intended that the scope of the invention be limited in any way to the specific embodiments shown and described. It is intended that the invention be limited in scope only by the claims appended hereto, giving such claims the broadest interpretation and scope that they are entitled to under the law. It will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit or scope of the invention. It is intended that all such changes and modifications are encompassed in the invention as claimed.