Reference voltages are used in many applications ranging from memory, analog, and mixed-mode to digital circuits. Bandgap reference (BGR) circuits are used for generating such reference voltages. Demand for low-power and low-voltage operation is increasing with the spread of battery-operated portable applications. The reference voltage of conventional BGR is 1.25 V, which is nearly the same voltage as the bandgap of silicon. This fixed output voltage of 1.25 V limits low voltage operation of BGR circuits.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
The following disclosure provides many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Traditional bandgap reference (BGR) circuits use, along with current mirrors, an array of bipolar junction transistors (BJT) to provide a desired reference voltage. Such traditional BJT based BGR circuits do not operate under 1.0V, since the voltage drop of the BJT is between 0.7-0.8V. Some traditional BGR circuits, therefore, use resistors to form a temperature independent current to provide sub-1.0V reference voltage. Such traditional BGR circuits are also referred to as a current-mode BGR circuits. However, in order to meet the low voltage specification, the impedance value of the resistors are high (i.e., greater than 200 mega ohms). Such high value resistors occupy a large area on the chip. In addition, the current mirrors of the current-mode BGR circuits operate near their sub-threshold region which degrades the performance of the current mirrors.
Another traditional approach to achieve the sub-1.0V reference voltage includes switched capacitor network (SCN) circuits. However, SCN circuits need additional clocks for operating the capacitors of the circuit and there is a voltage ripple (which varies with load current) on the reference voltage.
Consistent with embodiments of the present disclosure, a bandgap reference (BGR) circuit is disclosed. The BGR circuit disclosed herein includes a first plurality of current sources, a plurality of transistors, a plurality of resistive elements, a first comparator, and a current-shunt path. The current-shunt path includes a second plurality of current sources, a second comparator, and a resistive element. The current-shunt path is operable to regulate an amount of current that flows through at least one of the plurality of transistors. Thus, the transistors of the disclosed BGR circuit operate under 1.0 nA bias current. Moreover, the disclosed BGR circuit provides a reference voltage output of less than 0.7V. In addition, the current-shunt path enables the current sources of the disclosed BGR circuit to operate at a saturation region to provide good mismatch performance.
IM1=IM2=IM3 (1)
In example embodiments, the first current IM1 and the second current IM2 have an almost zero temperature coefficient. In example embodiments, first current source M1102, second current source M2104, and third current source M3106 are p-type metal oxide (PMOS) transistors. An example of a PMOS transistor may include a metal oxide semiconductor field effect transistor (MOSFET). However, it will be apparent to a person with ordinary skill in the art after reading the description that PMOS transistor is exemplary in nature, and other types of transistors, such as, bipolar junction transistors (BJT), field effect transistors (FET), diffusion transistors, etc., may be used for first current source M1102, second current source M2104, and third current source M3106.
As illustrated in
R1=R2 (2)
As illustrated in
A second end of second current source M2104 is connected to a first end of third resistor R3112. In example embodiments, the second end of second current source M2104 is connected to the first end of third resistor R3112 at a second node 126. A first end of a second register R2114 is also connected to second node 126. A voltage or potential of second node 126 is Vb.
A second end of second resistor R2114 is connected to ground. A second end of third resistor R3112 is connected to a first end of second transistor Q2120. For example, the second end of third register R3112 is connected to the first end of second transistor Q2120 at a third node 128. A second end of second transistor Q2120 is connected to the ground. In addition, the gate of first transistor Q1118 is connected to ground. In example embodiments, a voltage difference between second node 126 and third node 128 is referred to as dVBE. A second end of third current source M3106 is connected to a first end of a fourth resistor R4116 at a fourth node 130. A voltage or potential of fourth node 130 is the output voltage Vout (also referred to as the reference voltage or Vref) of BGR circuit 100. A second end of fourth resistor R4116 is connected to the ground.
BGR circuit 100 further includes a first comparator 108. In example embodiments, comparator 108 includes two inputs and one output. As illustrated in
In example embodiments, first comparator 108 is operable to compare the potentials of first node 124 and second node 126 (i.e. Va and Vb), and control outputs of first current source M1102 and second current source M2104 such that the potential at first node 124 is approximately equal to the potential at second node 126. That is:
Va=Vb (3)
The output of first comparator 108 is also connected to the gate of third current source M3106. Therefore, in accordance with an embodiment, first comparator 108 is operable to control each of the first current IM1, the second current IM2 and the third current IM3. In some embodiments, first comparator 108 is connected in a negative feedback mode. In example embodiments, first comparator 108 is an amplifier, such as, an operational amplifier (OPAMP). However, it will be apparent to a person with the ordinary skill in the art after reading the description that the OPAMP is exemplary in nature, and other types of comparators may be used.
As shown in
IA1=IA2 (4)
In example embodiments, a current through first resistor R1110, second resistor R2114, and third resistor R3112 is provided as IR1, IR2, and IR3 respectively. Moreover, a current through first transistor Q1118 and second transistor Q2120 is provided as IQ1 and IQ2 respectively. In example embodiments, since Va is approximately equal to Vb (equation (3)) and the resistance value of first resistor R1110 is approximately equal to the resistance value of second resistor R2114 (equation (2)), the current through first resistor R1110 is approximately equal to the current through second resistor R2114. That is:
IR1=IR2 (5)
In example embodiments, and as provided in equation (4), the first shunt current IA1 is substantially equal to the second shunt current IA2. Therefore, currents through second resistor R2114 and third resistor R3112 (i.e. IR2 and IR3) are determined as:
where VBE is the potential at second node 126 and dVBE is the potential difference between second node 126 and third node 128. In addition, the output voltage Vout for BGR circuit 100 is determined as:
As illustrated in equation (7), the output voltage of BGR circuit 100 is adjusted by adjusting the potential of second node 126 (i.e. VBE) and the potential difference between second node 16 and third node 128 (i.e. dVBE).
In example embodiments, the potential of second node 126 and the potential difference between second node 126 and third node 128 is adjusted by adjusting the currents IR3 and IQ2. For example, the potential difference between second node 126 and third node 128 can be increased or decreased by increasing or decreasing the current IR3. In example embodiments, current-shunt path 122 is operable to adjust the currents IR3 and IQ2. In some examples, currents IQ1 and IQ2 are referred to as first and second bias currents IQ1 and IQ2.
A first end of fifth resistor R5208 is connected to fifth node 132. A second end of fifth resistor R5208 is connected to a first input of second comparator 206. As shown in
A first end of fourth current source M4202 is connected to a second end of second comparator 206. In example embodiments, the first end of fourth current source M4202 is connected to a second end of second comparator 206 at seventh node 212. The potential of seventh node 212 is referred to as Vd. Seventh node 212 is connected to third node 128.
Second comparator 206 of current-shunt path 122 includes two inputs and one output. The output of second comparator 206 is connected to the gates of both fourth current source M4202 and fifth current source M5204. In example embodiments, second comparator 206 is operable to maintain the voltages at the first input and second input is substantially equal. For example, second comparator 206 is operable to continuously compare the voltages Vc and Vd. Based on the comparison, second comparator 206 is configured to control the amount of currents IM4 and IM5 such that the voltages Vc and Vd are substantially equal. That is:
Vc=Vd (8)
In example embodiments, fourth current source M4202 and fifth current source M5204 are operable to provide a fourth current IM4 and fifth current IM5 respectively. In example embodiments, fourth current source M4202 and fifth current source M5204 are mirrored or matched current sources operable to provide substantially same amount of currents. Hence, the fourth current IM4 is approximately equal to the fifth current IM5. That is:
IM4=IM5 (9)
In example embodiments, the current IR3 of BGR circuit 100 is determined as:
As illustrated by equation (10), the current IR3 can be adjusted by adjusting the current IQ2 or the resistance value of fifth resistor R5208. The current IQ2 is determined as:
As shown in equation (11), the bias current IQ2 for second transistor Q2120 of BGR circuit 100 depends on the resistance value of fifth resistor R5208 and third resistor R3112. Hence, according to embodiments, the bias current IQ2 can be increased or decreased by increasing or decreasing the resistance value of fifth resistor R5208. Second transistor Q2120 is, thus, configurable to operate under 1.0 nA bias range to have less than 0.7V voltage drop. In addition, each first current source M1102, second current source M2104, and third current source M3106 is operated at a saturation region for a better performance using current shunt path 122. For example, each of first current source M1102, second current source M2104, and third current source M3106 is operated at approximately 0.2 uA.
In example embodiments, and as discussed above, current-shunt path 122 includes second comparator 206 in a negative feedback and a low value fifth resistor R5208 to decrease the second bias current IQ2 flowing into second transistor Q2120. In addition, current-shunt path 122 decreases resistance values of first resistor R1110, second resistor R2114, and third resistor R3112.
In example embodiments, after selection of the resistance value of first resistor R1110, second resistor R2114, and third resistor R3112 and of first current source M1102, second current source M2104, and third current source M3106, the resistance value of fifth resistor R5208 can be selected to determine the shunt current and keep the output voltage Vout whose temperature dependence becomes negligently small.
At operation 410 of method 400, a second current source operable to generate a second current is provided. The generated second current is sinked to another transistor via a resistive element. For example, second current source M2104 is provided which is operable to generate second current IM2. The second current IM2 is sinked to second transistor Q2120 via third resistor R3112 which is connected to second current source M2104 at second node 126. Third resistor R3112 is connected to second transistor Q2120 at third node 128.
At operation 415 of method 400, a third current source operable to generate a third current is provided. The generated third current source is sinked to a resistive element. For example, third current source M3106 is provided which is operable to generate third current IM3. The third current IM3 is sinked to fourth resistor R4116. Fourth resistor R4116 is connected to third current source M3106 at fourth node 130.
At operation 420 of method 400, a first comparator operable to equalize a potential of the first node and the second node is provided. For example, first comparator 108 is operable to continuously compare the potential of first node 124 and second node 126. First comparator 108 is then operable to alter either the first current IM1 or the second current IM2 such that the potential of first node 124 is approximately equal to the potential of second node 126.
At operation 425 of method 400, a first shunt current is sinked at the first node though a current shunt path. For example, current-shunt path 122 is operable to sink the first shunt current IA1 at first node 124. At operation 430 of method 400, a second shunt current is sinked at the third node through the current shunt path. For example, current-shunt path 122 is operable to sink the second shunt current IA2 at third node 128.
At operation 435 of method 400, a bias current of the second transistor is regulated by regulating at least one of the first shunt current and the second shunt current. For example, bias current IQ2 of second transistor Q2120 is regulated by providing current-shunt path 122 between first node 124 and third node 128 thereby reducing the bias current IQ2. The reference voltage is provided at fourth node 130.
In example embodiments, compared to traditional current-mode BGR circuits, the resistance value of the resistors of BGR circuit 100 (i.e., first resistor R1112, second resistor R2116, and third resistor 116) are smaller because of current-shunt path 122. In addition, the current mirrors of BGR circuit 100 (i.e., first current source M1102, second current source M2104, and third current source M3106) operate in saturation range and meet the variation specifications. Moreover, unlike switched capacitor networks (CSN) circuits, BGR circuit 100 does not require additional clocks and does not exhibit a voltage ripple in the output voltage. Therefore, BGR circuit 100 does not require an output capacitor to stabilize the output voltage.
In accordance with an embodiment, a circuit includes a bandgap reference (BGR) circuit comprises a first node, a second node, and a third node, the first resistive element being connected between the second node and the third node, and the BGR circuit being operative to provide a reference voltage as an output; and a current shunt path connected between the first node and the third node, the current shunt path being operable to regulate a voltage drop across the first resistive element.
In accordance with an embodiment, a circuit includes a bandgap reference (BGR) circuit which includes a first node, a second node, a third node, and a fourth node. The BGR circuit is operable to: approximately equalize a potential difference between the first node and the second node and provide a predetermined reference voltage at the fourth node. The BGR circuit further includes a current shunt path operable to regulate an amount of a bias current of a first transistor of the BGR circuit, the first transistor being operative to sink the bias current at the third node, and the third node being connected to the second node.
In accordance with an embodiment, a method for providing a reference voltage is disclosed. The method includes providing a bandgap reference (BGR) circuit comprising a first node, a second node, a third node, and a fourth node, the BGR circuit being operable to provide a reference voltage output at the fourth node; injecting a first shunt current at the first node though a current shunt path; injecting a second shunt current at the third node through the current shunt path; and regulating a bias current of a transistor of the BGR circuit by regulating at least one of the following: the first shunt current and the second shunt current.
The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
This application is a continuation of and claims priority to co-pending application U.S. patent application Ser. No. 16/682,683 titled “Bandgap Reference Circuit” filed Nov. 13, 2019, which is a continuation of and claims priority to U.S. application Ser. No. 16/195,176 titled “Bandgap Reference Circuit” filed Nov. 19, 2018, now U.S. Pat. No. 10,520,972, which claims priority to U.S. Provisional Patent Application No. 62/592,544 titled “Bandgap Reference Circuit” filed Nov. 30, 2017, the disclosures of which are hereby incorporated in entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
5063342 | Hughes | Nov 1991 | A |
5291122 | Audy | Mar 1994 | A |
5686823 | Rapp | Nov 1997 | A |
6906581 | Kang et al. | Jun 2005 | B2 |
7119620 | Pan | Oct 2006 | B2 |
7301321 | Uang | Nov 2007 | B1 |
8058863 | Cho | Nov 2011 | B2 |
8482342 | Conte | Jul 2013 | B2 |
8704588 | Carvalho | Apr 2014 | B2 |
8878511 | Iacob et al. | Nov 2014 | B2 |
9235229 | Zhang | Jan 2016 | B2 |
10061340 | Rao | Aug 2018 | B1 |
10520972 | Horng | Dec 2019 | B2 |
20050231270 | Washburn | Oct 2005 | A1 |
20060043957 | Carvalho | Mar 2006 | A1 |
20060197584 | Hsu | Sep 2006 | A1 |
20120306370 | Van De Ven et al. | Dec 2012 | A1 |
20160154415 | Biziitu et al. | Jun 2016 | A1 |
20190101948 | Eberlein | Apr 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20210365062 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
62592544 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16682683 | Nov 2019 | US |
Child | 17396981 | US | |
Parent | 16195176 | Nov 2018 | US |
Child | 16682683 | US |