BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will now be described with reference to the accompanying drawings in which:
FIG. 1 is a schematic showing a known bandgap voltage reference circuit.
FIG. 2 shows graphically how PTAT and CTAT voltages generated through the circuit of FIG. 1 may be combined to provide a reference voltage.
FIG. 3 illustrates how a typically bandgap voltage reference is trimmed for a “magic” voltage at one temperature.
FIG. 4 is an example of a known CMOS circuit for providing a bandgap voltage reference.
FIG. 5 shows graphically how a circuit in accordance with the teaching of the invention may be used to combine a shifted PTAT voltage and a CTAT voltage to provide a reference voltage.
FIG. 6 shows an implementation of a bandgap voltage reference circuit in accordance with the teaching of the invention.
FIG. 7 shows another implementation of the circuit according to FIG. 6, which is configured to provide a buffered output.
FIG. 8 shows how the circuit of FIG. 7 could be modified to generate an output having a value greater than 1 bandgap voltage.
FIG. 9 shows an alternative circuit to FIG. 8.
FIG. 10 shows a modification to the circuit of FIG. 7 for operation at very low supply voltage.
FIG. 11 shows simulated results for the performance of a circuit implemented according to the example of FIG. 7.
FIG. 12 is an equivalent circuit of FIG. 7 for the purpose of calculation the noise and supply voltage sensitivity.
DETAILED DESCRIPTION OF THE DRAWINGS
The prior art has been described with reference to FIGS. 1, 2, 3 and 4. Exemplary and non-limiting embodiments of implementations of the invention will now be described with reference to FIGS. 5 to 12.
The present invention addresses the problem of the prior art arrangements by reducing the number of unknown variables in the circuit in order to provide a more accurate voltage reference which is not dependant on process variations.
FIG. 5 provides a graphic representation of how circuit components or elements of a circuit in accordance with the teaching of the invention may be combined to provide a reference voltage. The invention provides for the compensation of the slope contributed by the V_CTAT component by removing that slope as opposed to the prior art arrangement where it was compensated by addition of a corresponding PTAT voltage. The teaching of the invention provides for the generation of a shifted PTAT voltage, V_PTAT, which is negative below a first temperature, typically room temperature, and positive above that temperature. By the phrase “shifted” it will be understood that the polarity of the output changes as one passes through a selected temperature value. In this way if one examines the PTAT voltage of FIG. 5, it will be observed that the PTAT voltage has been shifted downward on the Y axis as compared to that of FIG. 2, a portion of the voltage output has a negative polarity whereas the rest has a positive polarity. In FIG. 2, all the output had a positive polarity. The cross over point chosen which may be pres-selected by the user, point C, can be used to determine the value of the resultant voltage reference, Vref. The cancelling of the effect of one of the two unknown parameters from the prior art arrangements and then the adjustment of that unknown to a precise value enables the provision of an accurate sub-bandgap voltage reference.
It will be understood from an examination of FIG. 5 that the PTAT voltage generated has a polarity at absolute zero that is opposite that of the corresponding CTAT voltage. In known architectures, the PTAT and CTAT voltages have the same polarity (a positive polarity), just different slopes. The present invention provides for a generation of a PTAT voltage that has a first polarity at a first temperature and the opposite polarity at a second temperature, the second temperature being greater than the first temperature. In this way, the PTAT voltage generated undergoes a transition or crossover where its polarity will change. The point of this crossover is used, in accordance with the teaching of the invention to affect the absolute value of the reference voltage generated. It will be understood that if there is no crossover, i.e. that a PTAT voltage is provided with a polarity always opposite to that of the CTAT voltage with which it is combined that the reference output will be zero.
It will be further understood that the point of crossover of the PTAT is used to select the absolute value of the CTAT voltage that will form the basis of the reference output. Unless the crossover point is absolute zero, this CTAT value will be less than a bandgap voltage. Unless this value is them amplified or scaled in some other fashion the resultant reference voltage will be a value less than a bandgap voltage, i.e. a sub-bandgap voltage reference.
FIG. 6 shows in an exemplary fashion how such a combination of PTAT and CTAT voltages may be realised. It will be appreciated that this is provided as a generic implementation of a sub-bandgap voltage reference, in accordance with the teaching of the invention but it is not intended to limit the invention to such an arrangement. This circuit includes a substrate forward biased bipolar transistor Q1 whose base-emitter voltage is a CTAT voltage, two current sources, I1, I2, an amplifier, A1, a resistor Rf, and two switches, S1, S2. The current I1 is typically a PTAT current. The current I2 is a shifted PTAT current such that its output is zero at a pre-selected temperature value, which will typically be the reference (or room) temperature, T0. In normal operation S1 is closed and S2 is open. As a result, assuming that the amplifier has no offset voltage, the amplifier's output voltage will be the voltage drop of Q1 plus the feedback voltage drop across Rf due to the input current I2. For a given I2 current there is only one value of Rf for which the temperature slope of Q1 is completely compensated by the shifted voltage drop across Rf and the amplifier's output voltage is temperature insensitive. This voltage is the voltage drop of Q1 at temperature T0 as the feedback current is zero at T0. At temperature T0 the reference is trimmed in two steps.
1) First, for S1 open and S2 closed the output voltage of the amplifier is measured. The corresponding voltage will be the reference voltage. If this value is different from the desired value the current I2 is to be adjusted accordingly.
2) Second, S1 is closed and S2 is open and I2 is trimmed to zero such that the reference voltage value remains the desired value. At this stage the reference is trimmed only for absolute value. For temperature coefficient (TC) with S1 closed and S2 is open, the reference voltage is trimmed at a different temperature, usually higher by trimming Rf until the reference voltage remains the desired voltage. As the reference voltage variation vs. temperature is a straight line with two equal values at different temperatures the reference is temperature insensitive.
A very important feature of this reference circuit is that it is no longer dependent on the process used to fabricate the components of the circuit. The desired output value is under control as compared to the typical bandgap voltage reference, described previously with reference to the Background, which is based on summation of two voltages with opposite TC where the “magic” voltage is out of control.
It will be appreciated that the teaching of the invention overcomes the problem of the two unknown parameters which was present in the prior art arrangement by forcing Vbe of the diode to a desired value that is process independent and then using that value as the determining value for the remainder of the calibration steps. The desired voltage reference can either be a base-emitter voltage, a gained replica or an attenuated replica of this voltage.
It will be understood that the circuit and methodology rely on the provision of a shifted PTAT voltage or current. There are different arrangements or configurations that could be used to generate a shifted PTAT current through the feedback resistor of FIG. 6. While any one of these arrangements could be implemented within the context of the invention, it is always preferred to generate this current without using current mirrors as such mirrors may introduce errors in the output.
FIG. 7 shows an arrangement based on that presented in FIG. 6 which provides a sub-bandgap voltage reference at a node “a” and a desired or buffered reference voltage at a node “ref” neither of which are sensitive to process variations. It can be considered as being formed from a first and second set of circuit elements. The first set of elements provide the sub-bandgap voltage reference basic circuit and consists of three bipolar transistors, Q1, Q2 and Q3; two fixed value resistors, r1,r2; two variable resistors r3, r4; an operational amplifier A1, three current sources, I1, I2 and I3, two analog switches, S1, S2 and a logic inverter, Inv. Preferably Q1 is a unity emitter substrate bipolar transistor, Q2 and Q3 are each an area of n parallel unity emitter substrate bipolar transistors; I1 and I2 are PTAT (proportional to absolute temperature) currents and I3 is preferably a CTAT (complimentary to absolute temperature) current. By providing a bipolar transistor at the non-inverting input and a stack of two bipolar transistors via a resistor, r1, at the inverting input of the amplifier, the feedback current resultant is a difference of two currents, one CTAT and one PTAT. The resistor r3 has the role of forcing the feedback current to zero at a specific temperature. In this way the current of the form T/T0-1 which was shown in FIG. 6 is being generated trough the feedback resistor Rf. A current of this form has an output whose relationship with temperature is defined by T/T0-1. By trimming R3 it is possible to adjust the crossover point where the feedback current will changes it polarity. The variable resistor r4 can be trimmed to adjust the temperature coefficient (TC) response of the circuit.
As the voltage at the node “a” is related to the base emitter voltage of transistor Q1, it will be understood that the presence of a single resistor Q1 at the non-inverting node results in a sub-bandgap voltage being generated at this node.
The second set of circuit elements which provide the remainder of the circuit, are designed to generate a desired or buffered reference voltage from the output of the first set of circuit elements taken from node “a”. This buffered output at a node “ref” is generated by circuit components including an amplifier A2 and three resistors, r5, r6, r7, where r5 and r7 are fixed resistors and r6 is a variable resistor, all provided in a negative feedback configuration coupled to the inverting node of amplifier A2. The node “a” is coupled to the non-inverting node. A logic signal C will allow for the operation of the circuit in “test” mode, for C=1, when S1 is open and S2 is closed and in “normal” mode, for C=0, when S1 is closed and S2 is open. It will be understood that the trimming of resistor r6 may be used to scale the amplification of the output of the first set of circuit elements but that alternatively the emitter of Q1 could be forced to a desired value by replacing current source I1 with a variable current source—similar to what was shown in FIG. 6.
Examples of the types of circuitry that may be used to provide the PTAT and CTAT current generators are well known to those skilled in the art.
The sub-bandgap voltage reference output is a combination of the base-emitter voltage of Q1, plus the voltage drop across the feedback resistors from the inverting node of A1 to the tapping node, “a”.
The base-emitter voltage of a bipolar transistor has a temperature variation according to (3):
Here VG0 is base-emitter voltage at 0K, which is of the order of 1.2 V; Vbe0 is base-emitter voltage at room temperature; σ is the saturation current temperature exponent; Ic is the collector current at temperature T and Ic0 is the same current at a reference temperature T0. The first two terms in (3) show a linear drop in temperature and the last two a nonlinear variation which is usually called “curvature” voltage. The two curvature terms can be combined in a single one, depending on the temperature variation of the collector current.
Assuming that the collector currents of Q1 and Q2 are PTAT currents of the same value and collector current of Q3 is a CTAT current having at room temperature (T0) the same value as Q1 and Q2 then the base-emitter voltages for the three bipolar transistors are:
Here Vbe10, Vbe20, Vbe30, are the corresponding base-emitter voltage at reference or room temperature, T0, and c is an approximation coefficient equal to zero for constant current, −1, for PTAT current as (4) and (5) show, and about 0.8 for CTAT current.
As Q2 and Q3 have n times larger emitter area compared to Q1 at T0, the base-emitter voltage differences are:
At temperature T0 the feedback current is forced to zero by trimming r3. As a result the voltage at the sub-bandgap voltage reference is Vbe10. This condition sets up the ratio of r3 to r1 as equation (8) shows:
The sub-bandgap voltage reference is:
Where A is the bandgap voltage multiplication coefficient, B is temperature linear coefficient and D is “curvature” coefficient. These coefficients are:
In order to force a reference voltage temperature insensitive, B has to be set to zero. From (8) and (11) for B=0 we get:
The ratio of r2 to r3 can be found from (8) and (13):
For a submicron CMOS process Vg0 is about 1.205 V; the base-emitter voltage of a forward biased bipolar transistor at room temperature is about Vbe10=0.7 V; a typical ΔVbe0 voltage at room temperature is about 0.1 V; typical value for σ is 3.8.
For these values the resistor's ratios are:
Also the coefficient “c” for D=0, (12), is c=0.9, which indicates the right choice for biasing Q3 with CTAT current in order to compensate for “curvature” error. In this way it will be understood that the voltage output includes an inherent curvature correction element.
While implementations have been described heretofore with reference to the generation of sub-bandgap voltage references it will be understood that the teaching of the invention can be also used for bandgap references where it is desired to provide an output which is based on the combination of known parameters.
Such an arrangement is shown in FIG. 8, which is a modification of the arrangement of FIG. 7. In this arrangement a further base emitter voltage is generated at the output of amplifier A1, by coupling a bipolar transistor Q4 to resistor r4. By coupling the base of Q4 to the resistor r4 and changing accordingly the feedback resistor Rf, and the tapping node “a” to the emitter node of the transistor it is possible to provide at that node a voltage whose output is twice a Vbe
Another way to generate the multiple bandgap voltage at node “a” is shown In FIG. 9. In this configuration, transistors Q1 and Q3 are provided as a stack arrangements (Q1, Q1a, Q3, Q3a, where Q1a and Q3a represents a single or multiple transistors) coupled to the non-inverting node of amplifier A1. By providing a stack arrangement, the Vbe generated is a multiple of a single Vbe, which means that the resultant output at node “a” can be generated as a multiple sub-bandgap voltage. Here Q5 is compensating the stacked Q1 a such that across R3 only one base-emitter voltage is reflected and R3 remains reasonable low. This arrangement has the advantage that the power supply rejection ratio is less than prior art arrangements and also is generated using less unknown parameters.
The circuit of FIG. 9 needs a larger supply voltage compared to the circuits of FIG. 7 and FIG. 8 but is less sensitive to the amplifier's offset voltage as a larger ΔVbe is generated from two base-emitter voltages of high current density to the corresponding three base-emitter voltages of low current density.
FIG. 10 shows a sub-bandgap voltage reference able to operate at very low supply voltage. Here the non-inverting input of the amplifier A1 is connected to a fraction of the base-emitter voltage of the Q1 which is the high current density bipolar transistor. The non-inverting input of the amplifier A1 is connected via r1 to the emitter of Q2 operating at low current density. FIG. 10 may be used to provide more flexibility than that available using the configurations of FIG. 6 or FIG. 7 as the non-inverting input of the amplifier can be set to any value less than a base-emitter voltage. If r3=r4 then the voltage contributed from Q1 is half that of FIG. 6 and the reference voltage will be scaled down accordingly.
FIG. 11 shows results for a simulated sub-bandgap voltage reference according to the circuit of FIG. 7 for: unity emitter substrate bipolar Q1 biased with PTAT current of 8 uA at room temperature, Q2 with an emitter area of 31 compared to Q1 and biased with PTAT current of 3 uA at room temperature, Q3 with an emitter area of 31 compared to Q1 and biased with CTAT current of 4.2 uA at room temperature.
As the simulation shows the reference voltage has a variation of about 83 uV for the industrial temperature range (−40C to 85 c) which corresponds to a temperature coefficient (TC) of less than 1 ppm/C degree.
As will be apparent to those skilled in the art, a buffered reference voltage with a desired value will be provided at the “ref” node by trimming r6 so as to achieve the desired value, or as mentioned above by forcing the emitter of Q1 to a desired value.
FIG. 12 is a model schematic for the sub-bandgap voltage reference circuit of FIG. 7 (with r3 omitted) for the purpose of demonstrating how the sub-bandgap voltage reference circuit in accordance with the teaching of the invention reacts to offset voltage and noise injected from PMOS mirrors. As was evident from an examination of FIG. 7, the current sources I2 and I3 are coupled to Vdd and hence could be affected by noise on that line. The simplified arrangement presented in FIG. 12 is useable to ascertain the effect of that noise. In this schematic, in0 is a current source corresponding to the offset or noise current of 13 injected through a PMOS mirror; r1 and r2 are the same resistors as in FIG. 7; Q2 and Q3 from FIG. 7 are replaced by their resistors, 1/gm.
As the impedance thought the two 1/gm resistors is less than that through r1, the noise current, in0, is mainly dumped to ground via the two 1/gm resistors in series with a corresponding value of more than ten times. Assuming at room temperature the currents through r1 and Q2 and Q3 having the same value then the ratio of the current injected into the amplifier's non-inverting node, in1, to the total noise current in0 is:
Here Vt0 is kT0/q, or thermal voltage, of 26 mV at T=300 K. As Equation (16) shows more than 90% of the noise injected from PMOS mirrors is dumped to ground through Q2 and Q3 and less than 10% is diverted to the amplifier's inverting node such that the reference voltage is desensitized to the supply voltage variation and current mirrors mismatches and noise.
The advantages of the bandgap voltage references according to FIG. 4, FIG. 6 and FIG. 10 compared to typical CMOS bandgap voltage reference are numerous and include:
easy to trim for a desired value;
low noise;
tight distribution due to process variation;
high PSRR;
inherent curvature-correction;
low voltage operation.
It will be understood that what has been described herein is a circuit and methodology that provides a voltage reference whose output is independent of process variations. By providing circuitry that generates a PTAT voltage whose output at a preselected temperature can be chosen to be zero it is possible to reduce the number of unknown parameters that are used in generation of bandgap voltage references.
A bandgap voltage reference circuit according to the teaching of the invention includes a PTAT source whose polarity reverses at a determinable temperature. The PTAT source is combined with a CTAT source in a manner to remove the effects of the slope of the CTAT source such that a voltage reference may be generated.
It will be appreciated that another advantage provided by the methodology of the present invention arises from the fact that according to the teaching of the present invention, the reference voltage target is always the desired value at any trimming step as compared to the prior art arrangements where the voltage is changed from one step to another because TC and absolute value interact.
While the invention has been described with reference to specific exemplary embodiments it will be understood that these are provided for an understanding of the teaching of the invention and it is not intended to limit the invention in any way except as may be deemed necessary in the light of the appended claims. In this way modifications can be made to each of the Figures, and components described with reference to one embodiment can be interchanged with those of another without departing from the spirit and/or scope of the invention.
The words comprises/comprising when used in this specification are to specify the presence of stated features, integers, steps or components but does not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.