A portion of the disclosure of this patent document contains material which is subject to copyright protection. This patent document may show and/or describe matter which is or may become trade dress of the owner. The copyright and trade dress owner has no objection to the facsimile reproduction by anyone of the patent disclosure as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright and trade dress rights whatsoever.
This disclosure relates to radio frequency filters using acoustic wave resonators, and specifically to filters for use in communications equipment.
A radio frequency (RF) filter is a two-port device configured to pass some frequencies and to stop other frequencies, where “pass” means transmit with relatively low insertion loss and “stop” means block or substantially attenuate. The range of frequencies passed by a filter is referred to as the “passband” of the filter. The range of frequencies stopped by such a filter is referred to as the “stop-band” of the filter. A typical RF filter has at least one passband and at least one stop-band. Specific requirements on a passband or stop-band depend on the specific application. For example, a “passband” may be defined as a frequency range where the insertion loss of a filter is less than a defined value such as one dB, two dB, or three dB. A “stop-band” may be defined as a frequency range where the insertion loss of a filter is greater than a defined value such as twenty dB, twenty-five dB, forty dB, or greater depending on application.
In this patent, the term “lower band limit” means the lowest frequency within the defined passband of a filter. The term “lower band edge” means the transition from high transmission to low transmission in the frequency range outside of the passband adjacent to the lower band limit. The term “higher band limit” means the highest frequency within the defined passband of a filter. The term “higher band edge” means the transition from high transmission to low transmission in the frequency range outside of the passband adjacent to the higher band limit.
RF filters are used in communications systems where information is transmitted over wireless links. For example, RF filters may be found in the RF front-ends of base stations, mobile telephone and computing devices, satellite transceivers and ground stations, IoT (Internet of Things) devices, laptop computers and tablets, fixed point radio links, and other communications systems. RF filters are also used in radar and electronic and information warfare systems.
RF filters typically require many design trade-offs to achieve, for each specific application, the best compromise between performance parameters such as insertion loss, rejection, isolation, power handling, linearity, size and cost. Specific design and manufacturing methods and enhancements can benefit simultaneously one or several of these requirements.
Performance enhancements to the RF filters in a wireless system can have broad impact to system performance. Improvements in RF filters can be leveraged to provide system performance improvements such as larger cell size, longer battery life, higher data rates, greater network capacity, lower cost, enhanced security, higher reliability, less noise, less distortion, less interference, etc. These improvements can be realized at many levels of the wireless system both separately and in combination, for example at the RF module, RF transceiver, mobile or fixed sub-system, or network levels.
Throughout this description, elements appearing in figures are assigned three-digit reference designators, where the two least significant digits are specific to the element and the one or two most significant digit is the figure number where the element is first introduced. An element that is not described in conjunction with a figure may be presumed to have the same characteristics and function as a previously-described element having the same reference designator.
Acoustic wave resonators, such as surface acoustic wave resonators (SAWs), bulk acoustic wave (BAW) resonators, and film bulk acoustic wave (FBAW) resonators, are commonly used in radio frequency filters for communications devices. The admittance between the input and output terminals of an acoustic wave resonator is highly frequency dependent. Acoustic wave resonators and some other mechanical resonators exhibit both a motional resonance where the admittance of the resonator is very high and an anti-resonance where the admittance of the resonator is very low. The basic behavior of acoustic wave resonators is commonly described using the Butterworth Van Dyke (BVD) circuit model 100 as shown in
The first primary resonance of the BVD model is the motional resonance modeled by the series combination of the motional inductance Lm, the motional capacitance Cm, and the motional resistance Rm. The second primary resonance of the BVD circuit model 100 is the anti-resonance modeled by the series combination of the motional inductance Lm, the motional capacitance Cm, and the motional resistance Rm in parallel with the series combination of the static capacitance C0 and the static resistance R0. In a lossless resonator (Rm=R0=0), the frequency Fr of the motional resonance is given by
The frequency Fa of the anti-resonance is given by
where γ=C0/Cm is a characteristic of the substrate upon which the SAW resonator is fabricated. γ is dependent on both the material and the orientation of the crystalline axes of the substrate, as well as the physical design of the resonator.
In subsequent figures, each resonator will be represented by the symbol 105 and modeled using the equivalent circuit 100.
Each acoustic wave resonator XS1 to XP3 may be a bulk acoustic wave (BAW) resonator, a film bulk acoustic wave (FBAW) resonator, a surface acoustic wave (SAW) resonator, a temperature compensated surface acoustic wave resonator (TC-SAW), a transversely-excited film bulk acoustic resonator (XBAR) as described in application Ser. No. 16/230,443, a solidly-mounted transversely-excited film bulk acoustic resonator (SM-XBAR) as described in application Ser. No. 16/438,141, or some other type of mechanical or acoustic wave resonator. All of the acoustic wave resonators XS1 to XP3 are typically, but not necessarily, the same type of resonator.
As shown in
In a typical ladder band-pass filter, the sharpness, or rate of change of transmission, of the upper edge of the passband is determined by the Q-factor and other characteristics of the series resonators near their anti-resonance frequencies. Some filter applications may require a very sharp upper passband edge, which is to say a transition from high transmission within the passband to high attenuation within a small frequency range proximate the upper limit of the passband. For some of these applications, the required upper band edge sharpness cannot be satisfied using a conventional acoustic wave resonator ladder filter circuit, as shown in
The two-port network 300 of
The two-port network 310 of
The two-port network 320 of
Acoustic wave resonators X1a, X1b, X2a, X2b, X3, X4a, X4b, and X5 may be SAW resonators, BAW resonators, FBARs, XBARs or some other acoustic wave resonator technology that can be modeled using the BVD circuit model 100 shown in
In the chart 400, the solid line 410 is a plot of |S2,1|2, which is the transmission through a two-port network, for a network (not shown) consisting of a single series resonator with the following component values:
In the chart 400, the dashed line 420 is a plot of transmission for an exemplary embodiment of the two-port network 300 of
As can be seen by comparing the solid line 410 and the dashed line 420, the effect of a capacitor bridging one or more series resonators is to lower the anti-resonance frequency without substantially changing the resonance frequency. In this example, the anti-resonance frequency is reduced from about 1847 MHz to about 1822 MHz.
The dot-dash line 430 is a plot of transmission for an exemplary embodiment of the two-port network 310 of
As can be seen by comparing the dot-dash line 430 with the solid line 410 and the dashed line 420, the effect of the bridge-T circuit is to significantly sharpen (i.e. make more vertical as plotted in
The dot-dot-dashed line 440 is a plot of transmission for an exemplary embodiment of the two-port network 320 of
As can be seen by comparing the dot-dot-dash line 440 with the solid line 410 and the dot-dash line 430, the two-port network 320 has a sharper transition from high transmission to low transmission for frequencies above 1800 MHz than the two-port network 310, but does not have the depth of rejection provided by the two-port network 310.
The filter circuit 500 is exemplary. A bridged-T circuit such as the bridge-T circuit 510 may be incorporated into ladder filters that have more or fewer resonators and/or are designed for other frequency ranges. In the filter circuit 500, the bridged-T circuit 510 is basically substituted for a portion of series resonator XS2 in the filter circuit 200. In other filters, a bridged-T circuit may be substituted for any series resonator.
Throughout this description, the embodiments and examples shown should be considered as exemplars, rather than limitations on the apparatus and procedures disclosed or claimed. Although many of the examples presented herein involve specific combinations of method acts or system elements, it should be understood that those acts and those elements may be combined in other ways to accomplish the same objectives. With regard to flowcharts, additional and fewer steps may be taken, and the steps as shown may be combined or further refined to achieve the methods described herein. Acts, elements and features discussed only in connection with one embodiment are not intended to be excluded from a similar role in other embodiments.
As used herein, “plurality” means a finite number greater than or equal to two. As used herein, a “set” of items may include one or more of such items. As used herein, whether in the written description or the claims, the terms “comprising”, “including”, “carrying”, “having”, “containing”, “involving”, and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of”, respectively, are closed or semi-closed transitional phrases with respect to claims. Use of ordinal terms such as “first”, “second”, “third”, etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements. As used herein, “and/or” means that the listed items are alternatives, but the alternatives also include any combination of the listed items.
This patent claims priority from the provisional patent application 62/773,884, filed Nov. 30, 2018, entitled BANDPASS FILTER WITH IMPROVED UPPER BAND EDGE SHARPNESS
Number | Name | Date | Kind |
---|---|---|---|
6377140 | Ehara et al. | Apr 2002 | B1 |
9118303 | Inoue | Aug 2015 | B2 |
20090201104 | Ueda | Aug 2009 | A1 |
20140289692 | Fenzi | Sep 2014 | A1 |
20170201235 | Freisleben | Jul 2017 | A1 |
20170331456 | Ono | Nov 2017 | A1 |
20200412335 | Takata | Dec 2020 | A1 |
Number | Date | Country | |
---|---|---|---|
20200177160 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
62773884 | Nov 2018 | US |