Bandwidth sensitive data compression and decompression

Information

  • Patent Grant
  • 8054879
  • Patent Number
    8,054,879
  • Date Filed
    Friday, January 8, 2010
    15 years ago
  • Date Issued
    Tuesday, November 8, 2011
    13 years ago
Abstract
Data compression and decompression methods for compressing and decompressing data based on an actual or expected throughput (bandwidth) of a system. In one embodiment, multiple access profiles are utilized to assist in compressing data according to various compression rates and compression ratios.
Description
BACKGROUND

1. Technical Field


The present invention relates generally to data compression and decompression and, in particular, to a system and method for compressing and decompressing data based on an actual or expected throughput (bandwidth) of a system that employs data compression. Additionally the present invention relates to the subsequent storage, retrieval, and management of information in data storage devices utilizing either compression and/or accelerated data storage and retrieval bandwidth.


2. Description of Related Art


There are a variety of data compression algorithms that are currently available, both well defined and novel. Many compression algorithms define one or more parameters that can be varied, either dynamically or a-priori, to change the performance characteristics of the algorithm. For example, with a typical dictionary based compression algorithm such as Lempel-Ziv, the size of the dictionary can affect the performance of the algorithm. Indeed, a large dictionary may be employed to yield very good compression ratios but the algorithm may take a long time to execute. If speed were more important than compression ratio, then the algorithm can be limited by selecting a smaller dictionary, thereby obtaining a much faster compression time, but at the possible cost of a lower compression ratio. The desired performance of a compression algorithm and the system in which the data compression is employed, will vary depending on the application.


Thus, one challenge in employing data compression for a given application or system is selecting one or more optimal compression algorithms from the variety of available algorithms. Indeed, the desired balance between speed and efficiency is typically a significant factor that is considered in determining which algorithm to employ for a given set of data. Algorithms that compress particularly well usually take longer to execute whereas algorithms that execute quickly usually do not compress particularly well.


Accordingly, a system and method that would provide dynamic modification of compression system parameters so as to provide an optimal balance between execution speed of the algorithm (compression rate) and the resulting compression ratio, is highly desirable.


Yet another problem within the current art is data storage and retrieval bandwidth limitations. Modern computers utilize a hierarchy of memory devices. In order to achieve maximum performance levels, modern processors utilize onboard memory and on board cache to obtain high bandwidth access to both program and data. Limitations in process technologies currently prohibit placing a sufficient quantity of onboard memory for most applications. Thus, in order to offer sufficient memory for the operating system(s), application programs, and user data, computers often use various forms of popular off-processor high speed memory including static random access memory (SRAM), synchronous dynamic random access memory (SDRAM), synchronous burst static ram (SBSRAM). Due to the prohibitive cost of the high-speed random access memory, coupled with their power volatility, a third lower level of the hierarchy exists for non-volatile mass storage devices. While mass storage devices offer increased capacity and fairly economical data storage, their data storage and retrieval bandwidth is often much less in relation to the other elements of a computing system.


Computers systems represent information in a variety of manners. Discrete information such as text and numbers are easily represented in digital data. This type of data representation is known as symbolic digital data. Symbolic digital data is thus an absolute representation of data such as a letter, figure, character, mark, machine code, or drawing.


Continuous information such as speech, music, audio, images and video, frequently exists in the natural world as analog information. As is well known to those skilled in the art, recent advances in very large scale integration (VLSI) digital computer technology have enabled both discrete and analog information to be represented with digital data. Continuous information represented as digital data is often referred to as diffuse data. Diffuse digital data is thus a representation of data that is of low information density and is typically not easily recognizable to humans in its native form.


Modern computers utilize digital data representation because of its inherent advantages. For example, digital data is more readily processed, stored, and transmitted due to its inherently high noise immunity. In addition, the inclusion of redundancy in digital data representation enables error detection and/or correction. Error detection and/or correction capabilities are dependent upon the amount and type of data redundancy, available error detection and correction processing, and extent of data corruption.


One outcome of digital data representation is the continuing need for increased capacity in data processing, storage, and transmittal. This is especially true for diffuse data where increases in fidelity and resolution create exponentially greater quantities of data. Data compression is widely used to reduce the amount of data required to process, transmit, or store a given quantity of information. In general, there are two types of data compression techniques that may be utilized either separately or jointly to encode/decode data: lossless and lossy data compression.


Over the last decade, computer processor performance has improved by at least a factor of 50. During this same period, magnetic disk storage has only improved by a factor of 5. Thus one additional problem with the existing art is that memory storage devices severely limit the performance of consumer, entertainment, office, workstation, servers, and mainframe computers for all disk and memory intensive operations.


For example, magnetic disk mass storage devices currently employed in a variety of home, business, and scientific computing applications suffer from significant seek-time access delays along with profound read/write data rate limitations. Currently the fastest available (15,000) rpm disk drives support only a 40.0 Megabyte per second data rate (MB/sec). This is in stark contrast to the modern Personal Computer's Peripheral Component Interconnect (PCI) Bus's input/output capability of 512 MB/sec and internal local bus capability of 1600 MB/sec.


Another problem within the current art is that emergent high performance disk interface standards such as the Small Computer Systems Interface (SCSI-3), iSCSI, Fibre Channel, AT Attachment UltraDMA/100+, Serial Storage Architecture, and Universal Serial Bus offer only higher data transfer rates through intermediate data buffering in random access memory. These interconnect strategies do not address the fundamental problem that all modern magnetic disk storage devices for the personal computer marketplace are still limited by the same typical physical media restriction. In practice, faster disk access data rates are only achieved by the high cost solution of simultaneously accessing multiple disk drives with a technique known within the art as data striping and redundant array of independent disks (RAID).


RAID systems often afford the user the benefit of increased data bandwidth for data storage and retrieval. By simultaneously accessing two or more disk drives, data bandwidth may be increased at a maximum rate that is linear and directly proportional to the number of disks employed. Thus another problem with modern data storage systems utilizing RAID systems is that a linear increase in data bandwidth requires a proportional number of added disk storage devices.


Another problem with most modern mass storage devices is their inherent unreliability. Many modern mass storage devices utilize rotating assemblies and other types of electromechanical components that possess failure rates one or more orders of magnitude higher than equivalent solid state devices. RAID systems employ data redundancy distributed across multiple disks to enhance data storage and retrieval reliability. In the simplest case, data may be explicitly repeated on multiple places on a single disk drive, on multiple places on two or more independent disk drives. More complex techniques are also employed that support various trade-offs between data bandwidth and data reliability.


Standard types of RAID systems currently available include RAID Levels 0, 1, and 5. The configuration selected depends on the goals to be achieved. Specifically data reliability, data validation, data storage/retrieval bandwidth, and cost all play a role in defining the appropriate RAID data storage solution. RAID level 0 entails pure data striping across multiple disk drives. This increases data bandwidth at best linearly with the number of disk drives utilized. Data reliability and validation capability are decreased. A failure of a single drive results in a complete loss of all data. Thus another problem with RAID systems is that low cost improved bandwidth requires a significant decrease in reliability.


RAID Level 1 utilizes disk mirroring where data is duplicated on an independent disk subsystem. Validation of data amongst the two independent drives is possible if the data is simultaneously accessed on both disks and subsequently compared. This tends to decrease data bandwidth from even that of a single comparable disk drive. In systems that offer hot swap capability, the failed drive is removed and a replacement drive is inserted. The data on the failed drive is then copied in the background while the entire system continues to operate in a performance degraded but fully operational mode. Once the data rebuild is complete, normal operation resumes. Hence, another problem with RAID systems is the high cost of increased reliability and associated decrease in performance.


RAID Level 5 employs disk data striping and parity error detection to increase both data bandwidth and reliability simultaneously. A minimum of three disk drives is required for this technique. In the event of a single disk drive failure, that drive may be rebuilt from parity and other data encoded on disk remaining disk drives. In systems that offer hot swap capability, the failed drive is removed and a replacement drive is inserted. The data on the failed drive is then rebuilt in the background while the entire system continues to operate in a performance degraded but fully operational mode. Once the data rebuild is complete, normal operation resumes.


Thus another problem with redundant modern mass storage devices is the degradation of data bandwidth when a storage device fails. Additional problems with bandwidth limitations and reliability similarly occur within the art by all other forms of sequential, pseudo-random, and random access mass storage devices. Typically mass storage devices include magnetic and optical tape, magnetic and optical disks, and various solid-state mass storage devices. It should be noted that the present invention applies to all forms and manners of memory devices including storage devices utilizing magnetic, optical, neural and chemical techniques or any combination thereof.


Yet another problem within the current art is the application and use of various data compression techniques. It is well known within the current art that data compression provides several unique benefits. First, data compression can reduce the time to transmit data by more efficiently utilizing low bandwidth data links. Second, data compression economizes on data storage and allows more information to be stored for a fixed memory size by representing information more efficiently.


For purposes of discussion, data compression is canonically divided into lossy and lossless techniques. Lossy data compression techniques provide for an inexact representation of the original uncompressed data such that the decoded (or reconstructed) data differs from the original unencoded/uncompressed data. Lossy data compression is also known as irreversible or noisy compression. Negentropy is defined as the quantity of information in a given set of data. Thus, one obvious advantage of lossy data compression is that the compression ratios can be larger than that dictated by the negentropy limit, all at the expense of information content. Many lossy data compression techniques seek to exploit various traits within the human senses to eliminate otherwise imperceptible data. For example, lossy data compression of visual imagery might seek to delete information content in excess of the display resolution or contrast ratio of the target display device.


On the other hand, lossless data compression techniques provide an exact representation of the original uncompressed data. Simply stated, the decoded (or reconstructed) data is identical to the original unencoded/uncompressed data. Lossless data compression is also known as reversible or noiseless compression. Thus, lossless data compression has, as its current limit, a minimum representation defined by the entropy of a given data set.


A rich and highly diverse set of lossless data compression and decompression algorithms exist within the current art. These range from the simplest “adhoc” approaches to highly sophisticated formalized techniques that span the sciences of information theory, statistics, and artificial intelligence. One fundamental problem with almost all modern approaches is the compression ratio to encoding and decoding speed achieved. As previously stated, the current theoretical limit for data compression is the entropy limit of the data set to be encoded. However, in practice, many factors actually limit the compression ratio achieved. Most modern compression algorithms are highly content dependent. Content dependency exceeds the actual statistics of individual elements and often includes a variety of other factors including their spatial location within the data set.


Of popular compression techniques, arithmetic coding possesses the highest degree of algorithmic effectiveness, and as expected, is the slowest to execute. This is followed in turn by dictionary compression, Huffman coding, and run-length coding with respectively decreasing execute times. What is not apparent from these algorithms, that is also one major deficiency within the current art, is knowledge of their algorithmic efficiency. More specifically, given a compression ratio that is within the effectiveness of multiple algorithms, the question arises as their corresponding efficiency.


Within the current art there also presently exists a strong inverse relationship between achieving the maximum (current) theoretical compression ratio, which we define as algorithmic effectiveness, and requisite processing time. For a given single algorithm the effectiveness over a broad class of data sets including text, graphics, databases, and executable object code is highly dependent upon the processing effort applied. Given a baseline data set, processor operating speed and target architecture, along with its associated supporting memory and peripheral set, we define algorithmic efficiency as the time required to achieve a given compression ratio. Algorithmic efficiency assumes that a given algorithm is implemented in an optimum object code representation executing from the optimum places in memory. This is almost never achieved in practice due to limitations within modern optimizing software compilers. It should be further noted that an optimum algorithmic implementation for a given input data set may not be optimum for a different data set. Much work remains in developing a comprehensive set of metrics for measuring data compression algorithmic performance, however for present purposes the previously defined terms of algorithmic effectiveness and efficiency should suffice.


Various solutions to this problem of optimizing algorithmic implementation are found in U.S. Pat. Nos. 6,195,024 and 6,309,424, issued on Feb. 27, 2001 and Oct. 30, 2001, respectively, to James Fallon, both of which are entitled “Content Independent Data Compression Method and System,” and are incorporated herein by reference. These patents describe data compression methods that provide content-independent data compression, wherein an optimal compression ratio for an encoded stream can be achieved regardless of the data content of the input data stream. As more fully described in the above incorporated patents, a data compression protocol comprises applying an input data stream to each of a plurality of different encoders to, in effect, generate a plurality of encoded data streams. The plurality of encoders are preferably selected based on their ability to effectively encode different types of input data. The final compressed data stream is generated by selectively combining blocks of the compressed streams output from the plurality of encoders based on one or more factors such as the optimal compression ratios obtained by the plurality of decoders. The resulting compressed output stream can achieve the greatest possible compression, preferably in real-time, regardless of the data content.


Yet another problem within the current art relates to data management and the use of existing file management systems. Present computer operating systems utilize file management systems to store and retrieve information in a uniform, easily identifiable, format. Files are collections of executable programs and/or various data objects. Files occur in a wide variety of lengths and must be stored within a data storage device. Most storage devices, and in particular, mass storage devices, work most efficiently with specific quantities of data. For example, modern magnetic disks are often divided into cylinders, heads and sectors. This breakout arises from legacy electro-mechanical considerations with the format of an individual sector often some binary multiple of bytes (512, 1024, . . . ). A fixed or variable quantity of sectors housed on an individual track. The number of sectors permitted on a single track is limited by the number of reliable flux reversals that can be encoded on the storage media per linear inch, often referred to as linear bit density. In disk drives with multiple heads and disk media, a single cylinder is comprised of multiple tracks.


A file allocation table is often used to organize both used and unused space on a mass storage device. Since a file often comprises more than one sector of data, and individual sectors or contiguous strings of sectors may be widely dispersed over multiple tracks and cylinders, a file allocation table provides a methodology of retrieving a file or portion thereof. File allocation tables are usually comprised of strings of pointers or indices that identify where various portions of a file are stored.


In-order to provide greater flexibility in the management of disk storage at the media side of the interface, logical block addresses have been substituted for legacy cylinder, head, sector addressing. This permits the individual disk to optimize its mapping from the logical address space to the physical sectors on the disk drive. Advantages with this technique include faster disk accesses by allowing the disk manufacturer greater flexibility in managing data interleaves and other high-speed access techniques. In addition, the replacement of bad media sectors can take place at the physical level and need not be the concern of the file allocation table or host computer. Furthermore, these bad sector replacement maps are definable on a disk by disk basis.


Practical limitations in the size of the data required to both represent and process an individual data block address, along with the size of individual data blocks, governs the type of file allocation tables currently in use. For example, a 4096 byte logical block size (8 sectors) employed with 32 bit logical block addresses. This yields an addressable data space of 17.59 Terabytes. Smaller logical blocks permit more efficient use of disk space. Larger logical blocks support a larger addressable data space. Thus one limitation within the current art is that disk file allocation tables and associated file management systems are a compromise between efficient data storage, access speed, and addressable data space.


Data in a computer has various levels of information content. Even within a single file, many data types and formats are utilized. Each data representation has specific meaning and each may hold differing quantities of information. Within the current art, computers process data in a native, uncompressed, format. Thus compressed data must often be decompressed prior to performing various data processing functions or operations. Modern file systems have been designed to work with data in its native format. Thus another significant problem within the current art is that file systems are not able to randomly access compressed data in an efficient manner.


Further aggravating this problem is the fact that when data is decompressed, processed and recompressed it may not fit back into its original disk space, causing disk fragmentation or complex disk space reallocation requirements. Several solutions exist within the current art including file by file and block structured compressed data management.


In file by file compression, each file is compressed when stored on disk and decompressed when retrieved. For very small files this technique is often adequate, however for larger files the compression and decompression times are too slow, resulting in inadequate system level performance. In addition, the ability to access randomly access data within a specific file is lost. The one advantage to file by file compression techniques is that they are easy to develop and are compatible with existing file systems. Thus file by file compressed data management is not an adequate solution.


Block structured disk compression operates by compressing and decompressing fixed block sizes of data. Block sizes are often fixed, but may be variable in size. A single file usually is comprised of multiple blocks, however a file may be so small as to fit within a single block. Blocks are grouped together and stored in one or more disk sectors as a group of Blocks (GOBs). A group of blocks is compressed and decompressed as a unit, thus there exists practical limitations on the size of GOBs. Most compression algorithms achieve a higher level of algorithmic effectiveness when operating on larger quantities of data. Restated, the larger the quantity of data processed with a uniform information density, the higher the compressions ratio achieved. If GOBs are small compression ratios are low and processing time short. Conversely, when GOBS are large compression ratios are higher and processing time is longer. Large GOBs tend to perform in a manner analogous to file by file compression. The two obvious benefits to block structured disk compression are psuedo-random data access and reduced data compression/decompression processing time.


Several problems exist within the current art for the management of compressed blocks. One method for storage of compressed files on disk is by contiguously storing all GOBs corresponding to a single file. However as files are processed within the computers, files may grow or shrink in size. Inefficient disk storage results when a substantial file size reduction occurs. Conversely when a file grows substantially, the additional space required to store the data may not be available contiguously. The result of this process is substantial disk fragmentation and slower access times.


An alternate method is to map compressed GOBs into the next logical free space on the disk. One problem with this method is that average file access times are substantially increased by this technique due to the random data storage. Peak access delays may be reduced since the statistics behave with a more uniform white spectral density, however this is not guaranteed.


A further layer of complexity is encountered when compressed information is to be managed on more than one data storage device. Competing requirements of data access bandwidth, data reliability/redundancy, and efficiency of storage space are encountered.


These and other limitations within the current art are solved with the present invention.


SUMMARY OF THE INVENTION

The present invention is directed to a system and method for compressing and decompressing based on the actual or expected throughput (bandwidth) of a system employing data compression and a technique of optimizing based upon planned, expected, predicted, or actual usage.


In one aspect of the present invention, a system for providing bandwidth sensitive data compression comprises:


a data compression system for compressing and decompressing data input to the system;


a plurality of compression routines selectively utilized by the data compression system; and


a controller for tracking the throughput of the system and generating a control signal to select a compression routine based on the system throughput. In a preferred embodiment, when the controller determines that the system throughput falls below a predetermined throughput threshold, the controller commands the data compression engine to use a compression routine providing a faster rate of compression so as to increase the throughput.


In another aspect, a system for providing bandwidth sensitive data compression comprises a plurality of access profiles, operatively accessible by the controller that enables the controller to determine a compression routine that is associated with a data type of the data to be compressed. The access profiles comprise information that enables the controller to select a suitable compression algorithm that provides a desired balance between execution speed (rate of compression) and efficiency (compression ratio).


In yet another aspect, a system comprises a data storage controller for controlling the compression and storage of compressed data to a storage device and the retrieval and decompression of compressed data from the storage device. The system throughput tracked by the controller preferably comprises a number of pending access requests to a storage device.


In another aspect, the system comprises a data transmission controller for controlling the compression and transmission of compressed data, as well as the decompression of compressed data received over a communication channel. The system throughput tracked by the controller comprises a number of pending transmission requests over the communication channel.


In yet another aspect of the present invention, a method for providing bandwidth sensitive data compression in a data processing system, comprises the steps of:


compressing data using an first compression routine providing a first compression rate;


tracking the throughput of the data processing system to determine if the first compression rate provides a throughput that meets a predetermined throughput threshold; and


compressing data using a second compression routine providing a second compression rate that is greater than the first compression rate, if the tracked throughput does not meet the predetermined throughput threshold.


Preferably, the first compression routine comprises a default asymmetric routine and wherein the second compression routine comprises a symmetric routine.


In another aspect, the method comprises processing a user command to load a user-selected compression routine for compressing data.


In another aspect, the method further comprises processing a user command to compress user-provided data and automatically selecting a compression routine associated with a data type of the user-provided data.


These and other aspects, features and advantages of the present invention will become apparent from the following detailed description of preferred embodiments, which is to be read in connection with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a high-level block diagram of a system for providing bandwidth sensitive data compression/decompression according to an embodiment of the present invention.



FIG. 2 is a flow diagram of a method for providing bandwidth sensitive data compression/decompression according to one aspect of the present invention.



FIG. 3 is a block diagram of a preferred system for implementing a bandwidth sensitive data compression/decompression method according to an embodiment of the present invention.



FIG. 4
a is a diagram of a file system format of a virtual and/or physical disk according to an embodiment of the present invention.



FIG. 4
b is a diagram of a data structure of a sector map entry of a virtual block table according to an embodiment of the present invention.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention is directed to a system and method for compressing and decompressing based on the actual or expected throughput (bandwidth) of a system employing data compression. Although one of ordinary skill in the art could readily envision various implementations for the present invention, a preferred system in which this invention is employed comprises a data storage controller that preferably utilizes a real-time data compression system to provide “accelerated” data storage and retrieval bandwidths. The concept of “accelerated” data storage and retrieval was introduced in co-pending U.S. patent application Ser. No. 09/266,394, filed Mar. 11, 1999, entitled “System and Methods For Accelerated Data Storage and Retrieval” and co-pending U.S. patent application Ser. No. 09/481,243, filed Jan. 11, 2000, entitled “System and Methods For Accelerated Data Storage and Retrieval,” both of which are commonly assigned and incorporated herein by reference.


In general, as described in the above-incorporated applications, “accelerated” data storage comprises receiving a digital data stream at a data transmission rate which is greater than the data storage rate of a target storage device, compressing the input stream at a compression rate that increases the effective data storage rate of the target storage device and storing the compressed data in the target storage device. For instance, assume that a mass storage device (such as a hard disk) has a data storage rate of 20 megabytes per second. If a storage controller for the mass storage device is capable of compressing (in real time) an input data stream with an average compression rate of 3:1, then data can be stored in the mass storage device at a rate of 60 megabytes per second, thereby effectively increasing the storage bandwidth (“storewidth”) of the mass storage device by a factor of three. Similarly, accelerated data retrieval comprises retrieving a compressed digital data stream from a target storage device at the rate equal to, e.g., the data access rate of the target storage device and then decompressing the compressed data at a rate that increases the effective data access rate of the target storage device. Advantageously, providing accelerated data storage and retrieval at (or close to) real-time can reduce or eliminate traditional bottlenecks associated with, e.g., local and network disk accesses.


In a preferred embodiment, the present invention is implemented for providing accelerated data storage and retrieval. In one embodiment, a controller tracks and monitors the throughput (data storage and retrieval) of a data compression system and generates control signals to enable/disable different compression algorithms when, e.g., a bottleneck occurs so as to increase the throughput and eliminate the bottleneck.


In the following description of preferred embodiments, two categories of compression algorithms are defined—an “asymmetrical” data compression algorithm and a “symmetrical data compression algorithms. An asymmetrical data compression algorithm is referred to herein as one in which the execution time for the compression and decompression routines differ significantly. In particular, with an asymmetrical algorithm, either the compression routine is slow and the decompression routine is fast or the compression routine is fast and the decompression routine is slow. Examples of asymmetrical compression algorithms include dictionary-based compression schemes such as Lempel-Ziv.


On the other hand, a “symmetrical” data compression algorithm is referred to herein as one in which the execution time for the compression and the decompression routines are substantially similar. Examples of symmetrical algorithms include table-based compression schemes such as Huffman. For asymmetrical algorithms, the total execution time to perform one compress and one decompress of a data set is typically greater than the total execution time of symmetrical algorithms. But an asymmetrical algorithm typically achieves higher compression ratios than a symmetrical algorithm.


It is to be appreciated that in accordance with the present invention, symmetry may be defined in terms of overall effective bandwidth, compression ratio, or time or any combination thereof. In particular, in instances of frequent data read/writes, bandwidth is the optimal parameter for symmetry. In asymmetric applications such as operating systems and programs, the governing factor is net decompression bandwidth, which is a function of both compression speed, which governs data retrieval time, and decompression speed, wherein the total governs the net effective data read bandwidth. These factors work in an analogous manner for data storage where the governing factors are both compression ratio (storage time) and compression speed. The present invention applies to any combination or subset thereof, which is utilized to optimize overall bandwidth, storage space, or any operating point in between.


Referring now to FIG. 1, a high-level block diagram illustrates a system for providing bandwidth sensitive data compression/decompression according to an embodiment of the present invention. In particular, FIG. 1 depicts a host system 10 comprising a controller 11 (e.g., a file management system), a compression/decompression system 12, a plurality of compression algorithms 13, a storage medium 14, and a plurality of data profiles 15. The controller tracks and monitors the throughput (e.g., data storage and retrieval) of the data compression system 12 and generates control signals to enable/disable different compression algorithms 13 when the throughput falls below a predetermined threshold. In one embodiment, the system throughput that is tracked by the controller 11 preferably comprises a number of pending access requests to the memory system.


The compression system 12 is operatively connected to the storage medium 14 using suitable protocols to write and read compressed data to and from the storage medium 14. It is to be understood that the storage medium 14 may comprise any form of memory device including all forms of sequential, pseudo-random, and random access storage devices. The memory storage device 14 may be volatile or non-volatile in nature, or any combination thereof. Storage devices as known within the current art include all forms of random access memory, magnetic and optical tape, magnetic and optical disks, along with various other forms of solid-state mass storage devices. Thus it should be noted that the current invention applies to all forms and manners of memory devices including, but not limited to, storage devices utilizing magnetic, optical, and chemical techniques, or any combination thereof. The data compression system 12 preferably operates in real-time (or substantially real-time) to compress data to be stored on the storage device 14 and to decompress data that is retrieved from the storage device 14. In addition, the compression system 12 may receive data (compressed or not compressed) via an I/O (input/output) port 16 that is transmitted over a transmission line or communication channel from a remote location, and then process such data (e.g., decompress or compress the data). The compression system 12 may further transmit data (compressed or decompressed) via the I/O port 16 to another network device for remote processing or storage.


The controller 11 utilizes information comprising a plurality of data profiles 15 to determine which compression algorithms 13 should be used by the compression system 12. In a preferred embodiment, the compression algorithms 13 comprise one or more asymmetric algorithms. As noted above, with asymmetric algorithms, the compression ratio is typically greater than the compression ratios obtained using symmetrical algorithms. Preferably, a plurality of asymmetric algorithms are selected to provide one or more asymmetric algorithms comprising a slow compress and fast decompress routine, as well as one or more asymmetric algorithms comprising a fast compress and slow decompress routine.


The compression algorithms 13 further comprise one or more symmetric algorithms, each having a compression rate and corresponding decompression rate that is substantially equal. Preferably, a plurality of symmetric algorithms are selected to provide a desired range of compression and decompression rates for data to be processed by a symmetric algorithm.


In a preferred embodiment, the overall throughput (bandwidth) of the system 10 is one factor considered by the controller 11 in deciding whether to use an asymmetrical or symmetrical compression algorithm for processing data stored to, and retrieved from, the storage device 14. Another factor that is used to determine the compression algorithm is the type of data to be processed. In a preferred embodiment, the data profiles 15 comprise information regarding predetermined access profiles of different data sets, which enables the controller 11 to select a suitable compression algorithm based on the data type. For instance, the data profiles may comprise a map that associates different data types (based on, e.g., a file extension) with preferred one(s) of the compression algorithms 13. For example, preferred access profiles considered by the controller 11 are set forth in the following table.














Access Profile 1:
Access Profile 2
Access Profile 3







Data is written to a
Data is written
The amount of times data


storage medium once
to the storage
is read from and written


(or very few times)
medium often
to the storage medium is


but is read from the
but read few
substantially the same.


storage medium many
times


times









With Access Profile 1, the decompression routine would be executed significantly more times than the corresponding compression routine. This is typical with operating systems, applications and websites, for example. Indeed, an asymmetrical application can be used to (offline) compress an (OS) operating system, application or Website using a slow compression routine to achieve a high compression ratio. After the compressed OS, application or website is stored, the asymmetric algorithm is then used during runtime to decompress, at a significant rate, the OS, application or website launched or accessed by a user.


Therefore, with data sets falling within Access Profile 1, it is preferable to utilize an asymmetrical algorithm that provides a slow compression routine and a fast decompression routine so as to provide an increase in the overall system performance as compared the performance that would be obtained using a symmetrical algorithm. Further, the compression ratio obtained using the asymmetrical algorithm would likely be higher than that obtained using a symmetrical algorithm (thus effectively increasing the storage capacity of the storage device).


With Access Profile 2, the compression routine would be executed significantly more times than the decompression routine. This is typical with a system for automatically updating an inventory database, for example, wherein an asymmetric algorithm that provides a fast compression routine and a slow decompression routine would provide an overall faster (higher throughput) and efficient (higher compression ratio) system performance than would be obtained using a symmetrical algorithm.


With Access Profile 3, where data is accessed with a similar number of reads and writes, the compression routine would be executed approximately the same number of times as the decompression routine. This is typical of most user-generated data such as documents and spreadsheets. Therefore, it is preferable to utilize a symmetrical algorithm that provides a relatively fast compression and decompression routine. This would result in an overall system performance that would be faster as compared to using an asymmetrical algorithm (although the compression ratio achieved may be lower).


The following table summarizes the three data access profiles and the type of compression algorithm that would produce optimum throughput.

















Example Data
Compression
Compressed Data
Decompression


Access Profile
Types
Algorithm
Characteristics
Algorithm







1. Write
Operating
Asymmetrical
Very high
Asymmetrical


few, Read many
systems,
(Slow
compression
(Fast



Programs, Web
compress)
ratio
decompress)



sites


2. Write
Automatically
Asymmetrical
Very high
Asymmetrical


many,
updated
(Fast
compression
(Slow


Read few
inventory
compress)
ratio
decompress)



database


3. Similar
User generated
Symmetrical
Standard
Symmetrical


number of
documents

compression


Reads and


ratio


Writes









In accordance with the present invention, the access profile of a given data set is known a priori or determined prior to compression so that the optimum category of compression algorithm can be selected. As explained below, the selection process may be performed either manually or automatically by the controller 11 of the data compression system 12. Further, the decision regarding which routines will be used at compression time (write) and at decompression time (read) is preferably made before or at the time of compression. This is because once data is compressed using a certain algorithm, only the matching decompression routine can be used to decompress the data, regardless of how much processing time is available at the time of decompression.


Referring now to FIG. 2, a flow diagram illustrates a method for providing bandwidth sensitive data compression according to one aspect of the present invention. For purposes of illustration, it is assumed that the method depicted in FIG. 2 is implemented with a disk controller for providing accelerated data storage and retrieval from a hard disk on a PC (personal computer). The data compression system is initialized during a boot-up process after the PC is powered-on and a default compression/decompression routine is instantiated (step 20).


In a preferred embodiment, the default algorithm comprises an asymmetrical algorithm since an operating system and application programs will be read from hard disk memory and decompressed during the initial use of the system 10. Indeed, as discussed above, an asymmetric algorithm that provides slow compression and fast decompression is preferable for compressing operating systems and applications so as to obtain a high compression ratio (to effectively increase the storage capacity of the hard disk) and fast data access (to effectively increase the retrieval rate from the hard disk). The initial asymmetric routine that is applied (by, e.g., a vendor) to compress the operating system and applications is preferably set as the default. The operating system will be retrieved and then decompressed using the default asymmetric routine (step 21).


During initial runtime, the controller will maintain use the default algorithm until certain conditions are met. For instance, if a read command is received (affirmative result in step 22), the controller will determine whether the data to be read from disk can be compressed using the current routine (step 23). For this determination, the controller could, e.g., read a flag value that indicates the algorithm that was used to compress the file. If the data can be decompressed using the current algorithm (affirmative determination in step 23), then the file will be retrieved and decompressed (step 25). On the other hand, if the data cannot be decompressed using the current algorithm (negative determination in step 23), the controller will issue the appropriate control signal to the compression system to load the algorithm associated with the file (step 24) and, subsequently, decompress the file (step 25).


If a write command is received (affirmative result in step 26), the data to be stored will be compressed using the current algorithm (step 27). During the process of compression and storing the compressed data, the controller will track the throughput to determine whether the throughput is meeting a predetermined threshold (step 28). For example, the controller may track the number of pending disk accesses (access requests) to determine whether a bottleneck is occurring. If the throughput of the system is not meeting the desired threshold (e.g., the compression system cannot maintain the required or requested data rates)(negative determination in step 28), then the controller will command the data compression system to utilize a compression routine providing faster compression (e.g., a fast symmetric compression algorithm) (step 29) so as to mitigate or eliminate the bottleneck.


If, on the other hand, the system throughput is meeting or exceeding the threshold (affirmative determination in step 28) and the current algorithm being used is a symmetrical routine (affirmative determination in step 30), in an effort to achieve optimal compression ratios, the controller will command the data compression system to use an asymmetric compression algorithm (step 31) that may provide a slower rate of compression, but provide efficient compression.


This process is repeated such that whenever the controller determines that the compression system can maintain the required/requested data throughput using a slow (highly efficient) asymmetrical compression algorithm, the controller will allow the compression system to operate in the asymmetrical mode. This will allow the system to obtain maximum storage capacity on the disk. Further, the controller will command the compression system to use a symmetric routine comprising a fast compression routine when the desired throughput is not met. This will allow the system to, e.g., service the backlogged disk accesses. Then, when the controller determines that the required/requested data rates are subsequently lower and the compression system can maintain the data rate, the controller can command the compression system to use a slower (but more efficient) asymmetric compression algorithm.


With the above-described method depicted in FIG. 2, the selection of the compression routine is performed automatically by the controller so as to optimize system throughput. In another embodiment, a user that desires to install a program or text files, for example, can command the system (via a software utility) to utilize a desired compression routine for compressing and storing the compressed program or files to disk. For example, for a power user, a GUI menu can be displayed that allows the user to directly select a given algorithm. Alternatively, the system can detect the type of data being installed or stored to disk (via file extension, etc.) and automatically select an appropriate algorithm using the Access Profile information as described above. For instance, the user could indicate to the controller that the data being installed comprises an application program which the controller would determine falls under Access Profile 1. The controller would then command the compression engine to utilize an asymmetric compression algorithm employing a slow compression routine and a fast decompression routine. The result would be a one-time penalty during program installation (slow compression), but with fast access to the data on all subsequent executions (reads) of the program, as well as a high compression ratio.


It is to be appreciated that the present invention may be implemented in any data processing system, device, or apparatus using data compression. For instance, the present invention may be employed in a data transmission controller in a network environment to provide accelerated data transmission over a communication channel (i.e., effectively increase the transmission bandwidth by compressing the data at the source and decompressing data at the receiver, in real-time).


Further, the present invention can be implemented with a data storage controller utilizing data compression and decompression to provided accelerated data storage and retrieval from a mass storage device. Exemplary embodiments of preferred data storage controllers in which the present invention may be implemented are described, for example, in U.S. patent application Ser. No. 09/775,905, filed on Feb. 2, 2001, entitled “Data Storewidth Accelerator”, now issued as U.S. Pat. No. 6,748,455 on Jun. 8, 2004, which is commonly assigned and fully incorporated herein by reference.



FIG. 3 illustrates a preferred embodiment of a data storage controller 120 as described in the above-incorporated U.S. Ser. No. 09/775,905 now issued as U.S. Pat. No. 6,748,455on Jun. 8, 2004, for implementing a bandwidth sensitive data compression protocol as described herein. The storage controller 120 comprises a DSP (digital signal processor) 121 (or any other micro-processor device) that implements a data compression/decompression routine. The DSP 121 preferably employs a plurality of symmetric and asymmetric compression/decompression as described herein. The data storage controller 120 further comprises at least one programmable logic device 122 (or volatile logic device). The programmable logic device 122 preferably implements the logic (program code) for instantiating and driving both a disk interface 114 and a bus interface 115 and for providing full DMA (direct memory access) capability for the disk and bus interfaces 114, 115. Further, upon host computer power-up and/or assertion of a system-level “reset” (e.g., PCI Bus reset), the DSP 121 initializes and programs the programmable logic device 122 before of the completion of initialization of the host computer. This advantageously allows the data storage controller 120 to be ready to accept and process commands from the host computer (via the bus 116) and retrieve boot data from the disk (assuming the data storage controller 120 is implemented as the boot device and the hard disk stores the boot data (e.g., operating system, etc.))


The data storage controller 120 further comprises a plurality of memory devices including a RAM (random access memory) device 123 and a ROM (read only memory) device 124 (or FLASH memory or other types of non-volatile memory). The RAM device 123 is utilized as on-board cache and is preferably implemented as SDRAM. The ROM device 124 is utilized for non-volatile storage of logic code associated with the DSP 121 and configuration data used by the DSP 121 to program the programmable logic device 122.


The DSP 121 is operatively connected to the memory devices 123, 124 and the programmable logic device 122 via a local bus 125. The DSP 121 is also operatively connected to the programmable logic device 122 via an independent control bus 126. The programmable logic device 122 provides data flow control between the DSP 121 and the host computer system attached to the bus 116, as well as data flow control between the DSP 121 and the storage device. A plurality of external I/O ports 127 are included for data transmission and/or loading of one or more programmable logic devices. Preferably, the disk interface 114 driven by the programmable logic device 122 supports a plurality of hard drives.


The storage controller 120 further comprises computer reset and power up circuitry 128 (or “boot configuration circuit”) for controlling initialization (either cold or warm boots) of the host computer system and storage controller 120. A preferred boot configuration circuit and preferred computer initialization systems and protocols are described in U.S. patent application Ser. No. 09/775,897, filed on Feb. 2, 2001, entitled “System and Methods For Computer Initialization,” which is commonly assigned and incorporated herein by reference. Preferably, the boot configuration circuit 128 is employed for controlling the initializing and programming the programmable logic device 122 during configuration of the host computer system (i.e., while the CPU of the host is held in reset). The boot configuration circuit 128 ensures that the programmable logic device 122 (and possibly other volatile or partially volatile logic devices) is initialized and programmed before the bus 116 (such as a PCI bus) is fully reset. In particular, when power is first applied to the boot configuration circuit 128, the boot configuration circuit 28 generates a control signal to reset the local system (e.g., storage controller 120) devices such as a DSP, memory, and I/O interfaces. Once the local system is powered-up and reset, the controlling device (such as the DSP 121) will then proceed to automatically determine the system environment and configure the local system to work within that environment. By way of example, the DSP 121 of the disk storage controller 120 would sense that the data storage controller 120 is on a PCI computer bus (expansion bus) and has attached to it a hard disk on an IDE interface. The DSP 121 would then load the appropriate PCI and IDE interfaces into the programmable logic device 122 prior to completion of the host system reset. Once the programmable logic device 122 is configured for its environment, the boot device controller is reset and ready to accept commands over the computer/expansion bus 116.


It is to be understood that the data storage controller 120 may be utilized as a controller for transmitting data (compressed or uncompressed) to and from remote locations over the DSP I/O ports 127 or system bus 116, for example. Indeed, the I/O ports 127 of the DSP 121 may be used for transmitting data (compressed or uncompressed) that is either retrieved from the disk or received from the host system via the bus 116, to remote locations for processing and/or storage. Indeed, the I/O ports may be operatively connected to other data storage controllers or to a network communication channels. Likewise, the data storage controller 120 may receive data (compressed or uncompressed) over the I/O ports 127 of the DSP 121 from remote systems that are connected to the I/O ports 127 of the DSP, for local processing by the data storage controller 120. For instance, a remote system may remotely access the data storage controller 120 (via the I/O ports of the DSP or system bus 116) to utilize the data compression, in which case the data storage controller 120 would transmit the compressed data back to the system that requested compression.


In accordance with the present invention, the system (e.g., data storage controller 120) preferably boots-up in a mode using asymmetrical data compression. It is to be understood that the boot process would not be affected whether the system boots up defaulting to an asymmetrical mode or to a symmetrical mode. This is because during the boot process of the computer, it is reading the operating system from the disk, not writing. However, once data is written to the disk using a compression algorithm, it must retrieve and read the data using the corresponding decompression algorithm.


As the user creates, deletes and edits files, the disk controller 120 will preferably utilize an asymmetrical compression routine that provides slow compression and fast decompression. Since using the asymmetrical compression algorithm will provide slower compression than a symmetrical algorithm, the file system of the computer will track whether the disk controller 120 has disk accesses pending. If the disk controller 120 does have disk accesses pending and the system is starting to slow down, the file management system will command the disk controller 120 to use a faster symmetrical compression algorithm. If there are no disk access requests pending, the file management system will leave the disk controller in the mode of using the asymmetrical compression algorithm.


If the disk controller 120 was switched to using a symmetrical algorithm, the file management system will preferably signal the controller to switch back to a default asymmetrical algorithm when, e.g., the rate of the disk access requests slow to the point where there are no pending disk accesses.


At some point a user may decide to install software or load files onto the hard disk. Before installing the software, for example, as described above, the user could indicate to the disk controller 120 (via a software utility) to enter and remain in an asymmetric mode using an asymmetric compression algorithm with a slow compression routine and a very fast decompression routine. The disk controller would continue to use the asymmetrical algorithm until commanded otherwise, regardless of the number of pending disk accesses. Then, after completing the software installation, the user would then release the disk controller from this “asymmetrical only” mode of operation (via the software utility).


Again, when the user is not commanding the disk controller 120 to remain in a certain mode, the file management system will determine whether the disk controller should use the asymmetrical compression algorithms or the symmetrical compression algorithms based on the amount of backlogged disk activity. If the backlogged disk activity exceeds a threshold, then the file management system will preferably command the disk controller to use a faster compression algorithm, even though compression performance may suffer. Otherwise, the file management system will command the disk controller to use the asymmetrical algorithm that will yield greater compression performance.


It is to be appreciated that the data compression methods described herein by be integrated or otherwise implemented with the content independent data compression methods described in the above-incorporated U.S. Pat. Nos. 6,195,024 and 6,309,424.


In yet another embodiment of the present invention a virtual file management system is utilized to store, retrieve, or transmit compressed and/or accelerated data. In one embodiment of the present invention, a physical or virtual disk is utilized employing a representative file system format as illustrated in FIG. 4. As shown in FIG. 4, a virtual file system format comprises one or more data items. For instance, a “Superblock” denotes a grouping of configuration information necessary for the operation of the disk management system. The Superblock typically resides in the first sector of the disk. Additional copies of the Superblock are preferably maintained on the disk for backup purposes. The number of copies will depend on the size of the disk. One sector is preferably allocated for each copy of the Superblock on the disk, which allows storage to add additional parameters for various applications. The Superblock preferably comprises information such as (i) compress size; (ii) virtual block table address; (iii) virtual block table size; (iv) allocation size; (v) number of free sectors (approximate); (vi) ID (“Magic”) number; and (vii) checksum


The “compress size” refers to the maximum uncompressed size of data that is grouped together for compression (referred to as a “data chunk”). For example, if the compress size is set to 16 k and a 40 k data block is sent to the disk controller for storage, it would be divided into two 16 k chunks and one 8 k chunk. Each chunk would be compressed separately and possess it's own header. As noted above, for many compression algorithms, increasing the compression size will increase the compression ratio obtained. However, even when a single byte is needed from a compressed data chunk, the entire chunk must be decompressed, which is a tradeoff with respect to using a very large compression size.


The “virtual block table address” denotes the physical address of the virtual block table. The “virtual block table size” denotes the size of the virtual block table.


The “allocation size” refers to the minimum number of contiguous sectors on the disk to reserve for each new data entry. For example, assuming that 4 sectors are allowed for each allocation and that a compressed data entry requires only 1 sector, then the remaining 3 sectors would be left unused. Then, if that piece of data were to be appended, there would be room to increase the data while remaining contiguous on the disk. Indeed, by maintaining the data contiguously, the speed at which the disk can read and write the data will increase. Although the controller preferably attempts to keep these unused sectors available for expansion of the data, if the disk were to fill up, the controller could use such sectors to store new data entries. In this way, a system can be configured to achieve greater speed, while not sacrificing disk space. Setting the allocation size to 1 sector would effectively disable this feature.


The “number Of free sectors” denotes the number of physical free sectors remaining on the disk. The ID (“Magic) number” identifies this data as a Superblock. The “checksum” comprises a number that changes based on the data in the Superblock and is used for error checking. Preferably, this number is chosen so that all of the words in the Superblock (including the checksum) added up are equal to zero.


The “virtual block table” (VET) comprises a number of “sector map” entries, one for each grouping of compressed data (or chunks). The VET may reside anywhere on the disk. The size of the VBT will depend on how much data is on the disk. Each sector map entry comprises 8 bytes. Although there is preferably only one VBT on the disk, each chunk of compressed data will have a copy of its sector map entry in its header. If the VBT were to become corrupted, scanning the disk for all sector maps could create a new one.


The term “type” refers to the sector map type. For example, a value of “00” corresponds to this sector map definition. Other values are preferably reserved for future redefinitions of the sector map.


A “C Type” denotes a compression type. A value of “000” will correspond to no compression. Other values are defined as required depending on the application. This function supports the use of multiple compression algorithms along with the use of various forms of asymmetric data compression.


The “C Info” comprises the compression information needed for the given compression type. These values are defined depending on the application. In addition, the data may be tagged based on it's use—for example operating system “00”, Program “01”, or data“10”. Frequency of use or access codes may also be included. The size of this field may be greatly expanded to encode statistics supporting these items including, for example, cumulative number of times accessed, number of times accessed within a given time period or CPU clock cycles, and other related data.


The “sector count” comprises the number of physical sectors on the disk that are used for this chunk of compressed data. The “LBA” refers to the logical block address, or physical disk address, for this chunk of compressed data.


Referring back to FIG. 4a, each “Data” block represent each data chunk comprising a header and compressed data. The data chunk may up anywhere from 1 to 256 sectors on the disk. Each compressed chunk of data is preferably preceded on the disk by a data block header that preferably comprises the following information: (i) sector map; (ii) VBI; (iii) ID (“Magic”) Number; and (iv) checksum.


The “sector map” comprises a copy of the sector map entry in the VBT for this data chunk. The “VBI” is the Virtual Block Index, which is the index into the VBT that corresponds to this data chunk. The “ID (”Magic) Number” identifies this data as a data block header. The “checksum” number will change based on the data in the header and is used for error checking. This number is preferably chosen such that the addition of all the words in the header (including the checksum) will equal zero.


It should be noted that the present invention is not limited to checksums but may employ any manner of error detection and correction techniques, utilizing greatly expanded fields error detection and/or correction.


It should be further noted that additional fields may be employed to support encryption, specifically an identifier for encrypted or unencrypted data along with any parameters necessary for routing or processing the data to an appropriate decryption module or user.


The virtual size of the disk will depend on the physical size of the disk, the compress size selected, and the expected compression ratio. For example, assume there is a 75 GB disk with a selected compress size expecting a 3:1 compression ratio, the virtual disk size would be 225 GB. This will be the maximum amount of uncompressed data that the file system will be able to store on the disk.


If the number chosen is too small, then the entire disk will not be utilized. Consider the above example where a system comprises a 75 GB disk and a 225 GB virtual size. Assume that in actuality during operation the average compression ratio obtained is 5:1. Whereas this could theoretically allow 375 GB to be stored on the 75 GB disk, in practice, only 225 GB would be able to be stored on the disk before a “disk full” message is received. Indeed, with a 5:1 compression ratio, the 225 GB of data would only take up 45 GB on the disk leaving 30 GB unused. Since the operating system would think the disk is full, it would not attempt to write any more information to the disk.


On the other hand, if the number chosen is too large, then the disk will fill up when the operating system would still indicate that there was space available on the disk. Again consider the above example where a system comprises a 75 GB disk and a 225 GB virtual size. Assume further that during operation, the average compression ratio actually obtained is only 2:1. In this case, the physical disk would be full after writing 150 GB to it, but the operating system would still think there is 75 GB remaining. If the operating system tried to write more information to the disk, an error would occur.


Thus, in another embodiment of the present invention, the virtual size of the disk is dynamically altered based upon the achieved compression ratio. In one embodiment, a running average may be utilized to reallocate the virtual disk size. Alternatively, certain portions of the ratios may already be known—such as a preinstalled operating system and programs. Thus, this ratio is utilized for that portion of the disk, and predictive techniques are utilized for the balance of the disk or disks.


Yet in another embodiment, users are prompted for setup information and the computer selects the appropriate virtual disk(s) size or selects the best method of estimation based on, e.g., a high level menu of what is the purpose of this computer: home, home office, business, server. Another submenu may ask for the expected data mix, word, excel, video, music, etc. Then, based upon expected usage and associated compression ratios (or the use of already compressed data in the event of certain forms of music and video) the results are utilized to set the virtual disk size.


It should be noted that the present invention is independent of the number or types of physical or virtual disks, and indeed may be utilized with any type of storage.


It is to be understood that the systems and methods described herein may be implemented in various forms of hardware, software, firmware, special purpose processors, or a combination thereof. In particular, the present invention may be implemented as an application comprising program instructions that are tangibly embodied on a program storage device (e.g., magnetic floppy disk, RAM, ROM, CD ROM, etc.) and executable by any device or machine comprising suitable architecture. It is to be further understood that, because some of the constituent system components and process steps depicted in the accompanying Figures are preferably implemented in software, the actual connections between such components and steps may differ depending upon the manner in which the present invention is programmed. Given the teachings herein, one of ordinary skill in the related art will be able to contemplate these and similar implementations or configurations of the present invention.


Although illustrative embodiments have been described herein with reference to the accompanying drawings, it is to be understood that the present system and method is not limited to those precise embodiments, and that various other changes and modifications may be affected therein by one skilled in the art without departing from the scope or spirit of the invention. All such changes and modifications are intended to be included within the scope of the invention as defined by the appended claims.

Claims
  • 1. A method comprising: receiving a data block;determining a data type associated with the received data block;selecting an access profile from a plurality of access profiles based, at least in part, on a number of times in which the determined data type is written to a storage device relative to a number of times that the determined data type is read from the storage device;retrieving information from the selected access profile, wherein said information comprises a compression parameter; andcompressing said data block, to provide a compressed data block, based, at least in part, on said compression parameter.
  • 2. The method of claim 1, further comprising storing said compressed data block to the storage device.
  • 3. The method of claim 1, wherein said compression parameter is used to perform symmetric data compression.
  • 4. The method of claim 3, wherein the performed symmetric data compression includes a table-based compression scheme.
  • 5. The method of claim 1, wherein said compression parameter is used to perform asymmetric data compression.
  • 6. The method of claim 5, wherein said asymmetric data compression comprises a slow compress and a fast decompress routine.
  • 7. The method of claim 5, wherein said asymmetric data compression comprises a fast compress and a slow decompress routine.
  • 8. The method of claim 5, wherein the performed asymmetric data compression includes a dictionary-based compression scheme.
  • 9. The method of claim 1, further comprising: transmitting the compressed data block over a network communication channel.
  • 10. A system comprising: a data storage accelerator, wherein the data storage accelerator is configured to: receive a data block;determine a data type associated with the received data block;select an access profile from a plurality of access profiles based, at least in part, on a number of times that the determined data type is written to a storage device relative to a number of times that the determined data type is read from the storage device;retrieve information from the selected access profile, wherein said information comprises a compression parameter; andcompress said data block, to provide a compressed data block, based, at least in part, on said compression parameter.
  • 11. The system of claim 10, wherein the data storage accelerator is further configured to store said compressed data block to the storage device.
  • 12. The system of claim 10, wherein said compression parameter is used to perform symmetric data compression.
  • 13. The system of claim 12, wherein the performed symmetric data compression includes a table-based compression scheme.
  • 14. The system of claim 10, wherein said compression parameter is used to perform asymmetric data compression.
  • 15. The system of claim 14, wherein said asymmetric data compression comprises a slow compress and a fast decompress routine.
  • 16. The system of claim 14, wherein said asymmetric data compression comprises a fast compress and a slow decompress routine.
  • 17. The system of claim 14, wherein the performed asymmetric data compression includes a dictionary-based compression scheme.
  • 18. The system of claim 10, wherein the data storage accelerator is further configured to transmit the compressed data block over a network communication channel.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/132,399, filed Jun. 3, 2008, now abandoned, which is a continuation of U.S. patent application Ser. No. 10/076,013 filed Feb. 13, 2002 (now U.S. Pat. No. 7,386,046, issued Jun. 10, 2008), which claims the benefit of U.S. Provisional Patent Application No. 60/268,394, filed Feb. 13, 2001, each of which is fully incorporated herein by reference in its respective entirety.

US Referenced Citations (536)
Number Name Date Kind
3394352 Wernikoff et al. Jul 1968 A
3490690 Apple et al. Jan 1970 A
4021782 Hoerning May 1977 A
4032893 Moran Jun 1977 A
4054951 Jackson et al. Oct 1977 A
4127518 Coy et al. Nov 1978 A
4302775 Widergren et al. Nov 1981 A
4325085 Gooch Apr 1982 A
4360840 Wolfrun et al. Nov 1982 A
4386416 Giltner et al. May 1983 A
4394774 Widergren et al. Jul 1983 A
4464650 Eastman et al. Aug 1984 A
4494108 Langdon, Jr. et al. Jan 1985 A
4499499 Brickman et al. Feb 1985 A
4574351 Dang et al. Mar 1986 A
4593324 Ohkubo et al. Jun 1986 A
4626829 Hauck Dec 1986 A
4646061 Bledsoe Feb 1987 A
4682150 Mathes et al. Jul 1987 A
4701745 Waterworth Oct 1987 A
4729020 Schaphorst et al. Mar 1988 A
4730348 MacCrisken Mar 1988 A
4745559 Willis et al. May 1988 A
4748638 Freidman et al. May 1988 A
4750135 Boilen Jun 1988 A
4754351 Wright Jun 1988 A
4804959 Makansi et al. Feb 1989 A
4813040 Futato Mar 1989 A
4814746 Miller et al. Mar 1989 A
4862167 Copeland, III Aug 1989 A
4866601 DuLac et al. Sep 1989 A
4870415 Van Maren et al. Sep 1989 A
4872009 Tsukiyama et al. Oct 1989 A
4876541 Storer Oct 1989 A
4888812 Dinan et al. Dec 1989 A
4890282 Lambert et al. Dec 1989 A
4897717 Hamilton et al. Jan 1990 A
4906991 Fiala et al. Mar 1990 A
4906995 Swanson Mar 1990 A
4929946 O'Brien et al. May 1990 A
4953324 Hermann Sep 1990 A
4956808 Aakre et al. Sep 1990 A
4965675 Hori et al. Oct 1990 A
4988998 O'Brien Jan 1991 A
5003307 Whiting et al. Mar 1991 A
5016009 Whiting et al. May 1991 A
5027376 Friedman et al. Jun 1991 A
5028922 Huang Jul 1991 A
5045848 Fascenda Sep 1991 A
5045852 Mitchell et al. Sep 1991 A
5046027 Taaffe et al. Sep 1991 A
5049881 Gibson et al. Sep 1991 A
5079630 Golin Jan 1992 A
5091782 Krause et al. Feb 1992 A
5097261 Langdon, Jr. et al. Mar 1992 A
5103306 Weiman Apr 1992 A
5109226 MacLean, Jr. et al. Apr 1992 A
5109433 Notenboom Apr 1992 A
5113522 Dinwiddie, Jr. et al. May 1992 A
5115309 Hang May 1992 A
5121342 Szymborski Jun 1992 A
5126739 Whiting et al. Jun 1992 A
5128963 Akagiri Jul 1992 A
5132992 Yurt et al. Jul 1992 A
5146221 Whiting et al. Sep 1992 A
5150430 Chu Sep 1992 A
5155484 Chambers, IV Oct 1992 A
5159336 Rabin et al. Oct 1992 A
5167034 MacLean, Jr. et al. Nov 1992 A
5175543 Lantz Dec 1992 A
5179651 Taaffe et al. Jan 1993 A
5187793 Keith et al. Feb 1993 A
5191431 Hasegawa et al. Mar 1993 A
5204756 Chevion et al. Apr 1993 A
5209220 Hiyama et al. May 1993 A
5212742 Normile et al. May 1993 A
5226176 Westaway et al. Jul 1993 A
5227893 Ett Jul 1993 A
5231492 Dangi et al. Jul 1993 A
5237460 Miller et al. Aug 1993 A
5237675 Hannon, Jr. Aug 1993 A
5243341 Seroussi et al. Sep 1993 A
5243348 Jackson Sep 1993 A
5247638 O'Brien et al. Sep 1993 A
5247646 Osterlund et al. Sep 1993 A
5249053 Jain Sep 1993 A
5263168 Toms et al. Nov 1993 A
5267333 Aono et al. Nov 1993 A
5270832 Balkanski et al. Dec 1993 A
5280600 Van Maren et al. Jan 1994 A
5287420 Barrett Feb 1994 A
5289580 Latif et al. Feb 1994 A
5293379 Carr Mar 1994 A
5293576 Mihm, Jr. et al. Mar 1994 A
5307497 Feigenbaum et al. Apr 1994 A
5309555 Akins et al. May 1994 A
5319682 Clark Jun 1994 A
5341440 Earl et al. Aug 1994 A
5347600 Barnsley et al. Sep 1994 A
5353132 Katsuma Oct 1994 A
5354315 Armstrong Oct 1994 A
5355498 Provino et al. Oct 1994 A
5357614 Pattisam et al. Oct 1994 A
5367629 Chu et al. Nov 1994 A
5373290 Lempel et al. Dec 1994 A
5374916 Chu Dec 1994 A
5379036 Storer Jan 1995 A
5379757 Hiyama et al. Jan 1995 A
5381145 Allen et al. Jan 1995 A
5389922 Seroussi et al. Feb 1995 A
5394534 Kulakowski et al. Feb 1995 A
5396228 Garahi Mar 1995 A
5400401 Wasilewski et al. Mar 1995 A
5403639 Belsan et al. Apr 1995 A
5406278 Graybill et al. Apr 1995 A
5406279 Anderson et al. Apr 1995 A
5410671 Elgamal et al. Apr 1995 A
5412384 Chang et al. May 1995 A
5414850 Whiting May 1995 A
5420639 Perkins May 1995 A
5434983 Yaso et al. Jul 1995 A
5437020 Wells et al. Jul 1995 A
5452287 Dicecco et al. Sep 1995 A
5454079 Roper et al. Sep 1995 A
5454107 Lehman et al. Sep 1995 A
5455576 Clark, II et al. Oct 1995 A
5455578 Bhandari Oct 1995 A
5455680 Shin Oct 1995 A
5461679 Normile et al. Oct 1995 A
5463390 Whiting et al. Oct 1995 A
5467087 Chu Nov 1995 A
5471206 Allen et al. Nov 1995 A
5479587 Campbell et al. Dec 1995 A
5479633 Wells et al. Dec 1995 A
5483470 Alur et al. Jan 1996 A
5486826 Remillard Jan 1996 A
5488364 Cole Jan 1996 A
5488365 Seroussi et al. Jan 1996 A
5495244 Jeong et al. Feb 1996 A
5504842 Gentile Apr 1996 A
5506844 Rao Apr 1996 A
5506872 Mohler Apr 1996 A
5506944 Gentile Apr 1996 A
5521940 Lane et al. May 1996 A
5528628 Park et al. Jun 1996 A
5530845 Hiatt et al. Jun 1996 A
5533051 James Jul 1996 A
5535311 Zimmerman Jul 1996 A
5535356 Kim et al. Jul 1996 A
5535369 Wells et al. Jul 1996 A
5537658 Bakke et al. Jul 1996 A
5539865 Gentile Jul 1996 A
5542031 Douglass et al. Jul 1996 A
5544290 Gentile Aug 1996 A
5546395 Sharma et al. Aug 1996 A
5546475 Bolle et al. Aug 1996 A
5553160 Dawson Sep 1996 A
5557551 Craft Sep 1996 A
5557668 Brady Sep 1996 A
5557749 Norris Sep 1996 A
5561421 Smith et al. Oct 1996 A
5561824 Carreiro et al. Oct 1996 A
5563961 Rynderman et al. Oct 1996 A
5574952 Brady et al. Nov 1996 A
5574953 Rust et al. Nov 1996 A
5576953 Hugentobler Nov 1996 A
5577248 Chambers, IV Nov 1996 A
5581715 Verinsky et al. Dec 1996 A
5583500 Allen et al. Dec 1996 A
5586264 Belknap et al. Dec 1996 A
5586285 Hasbun et al. Dec 1996 A
5590306 Watanabe et al. Dec 1996 A
5596674 Bhandari et al. Jan 1997 A
5598388 Van Maren et al. Jan 1997 A
5604824 Chui et al. Feb 1997 A
5606706 Takamoto et al. Feb 1997 A
5610657 Zhang Mar 1997 A
5611024 Campbell et al. Mar 1997 A
5612788 Stone Mar 1997 A
5613069 Walker Mar 1997 A
5615017 Choi Mar 1997 A
5615287 Fu et al. Mar 1997 A
5619995 Lobodzinski Apr 1997 A
5621820 Rynderman et al. Apr 1997 A
5623623 Kim et al. Apr 1997 A
5623701 Bakke et al. Apr 1997 A
5627534 Craft May 1997 A
5627995 Miller et al. May 1997 A
5629732 Moskowitz et al. May 1997 A
5630092 Carreiro et al. May 1997 A
5635632 Fay et al. Jun 1997 A
5635932 Shinagawa et al. Jun 1997 A
5638498 Tyler et al. Jun 1997 A
5640158 Okayama et al. Jun 1997 A
5642506 Lee Jun 1997 A
5649032 Burt et al. Jul 1997 A
5652795 Dillon et al. Jul 1997 A
5652857 Shimoi et al. Jul 1997 A
5652917 Maupin et al. Jul 1997 A
5654703 Clark, II Aug 1997 A
5655138 Kikinis Aug 1997 A
5666560 Moertl et al. Sep 1997 A
5668737 Iler Sep 1997 A
5671355 Collins Sep 1997 A
5671389 Saliba Sep 1997 A
5671413 Shipman et al. Sep 1997 A
5673370 Laney Sep 1997 A
5675333 Boursier et al. Oct 1997 A
5675789 Ishii et al. Oct 1997 A
5686916 Bakhmutsky Nov 1997 A
5692159 Shand Nov 1997 A
5694619 Konno Dec 1997 A
5696927 MacDonald et al. Dec 1997 A
5703793 Wise et al. Dec 1997 A
5708511 Gandhi et al. Jan 1998 A
5715477 Kikinis Feb 1998 A
5717393 Nakano et al. Feb 1998 A
5717394 Schwartz et al. Feb 1998 A
5719862 Lee et al. Feb 1998 A
5721958 Kikinis Feb 1998 A
5724475 Kirsten Mar 1998 A
5729228 Franaszek et al. Mar 1998 A
5740395 Wells et al. Apr 1998 A
5742773 Blomfield-Brown et al. Apr 1998 A
5748904 Huang et al. May 1998 A
5757852 Jericevic et al. May 1998 A
5764774 Liu Jun 1998 A
5765027 Wang et al. Jun 1998 A
5767898 Urano et al. Jun 1998 A
5768445 Troeller et al. Jun 1998 A
5768525 Kralowetz et al. Jun 1998 A
5771340 Nakazato et al. Jun 1998 A
5774715 Madany et al. Jun 1998 A
5778411 DeMoss et al. Jul 1998 A
5781767 Inoue et al. Jul 1998 A
5784572 Rostoker et al. Jul 1998 A
5787487 Hashimoto et al. Jul 1998 A
5794229 French et al. Aug 1998 A
5796864 Callahan Aug 1998 A
5799110 Israelsen et al. Aug 1998 A
5805834 McKinley et al. Sep 1998 A
5805932 Kawashima et al. Sep 1998 A
5808660 Sekine et al. Sep 1998 A
5809176 Yajima Sep 1998 A
5809299 Cloutier et al. Sep 1998 A
5809337 Hannah et al. Sep 1998 A
5812195 Zhang Sep 1998 A
5812789 Diaz et al. Sep 1998 A
5818368 Langley Oct 1998 A
5818369 Withers Oct 1998 A
5818530 Canfield et al. Oct 1998 A
5819215 Dobson et al. Oct 1998 A
5822781 Wells et al. Oct 1998 A
5825424 Canfield et al. Oct 1998 A
5825830 Kopf Oct 1998 A
5832037 Park Nov 1998 A
5832126 Tanaka Nov 1998 A
5832443 Kolesnik et al. Nov 1998 A
5835788 Blumer et al. Nov 1998 A
5836003 Sadeh Nov 1998 A
5838821 Matsubara et al. Nov 1998 A
5838927 Gillon et al. Nov 1998 A
5838996 deCarmo Nov 1998 A
5839100 Wegener Nov 1998 A
5841979 Schulhof et al. Nov 1998 A
5847762 Canfield et al. Dec 1998 A
5850565 Wightman Dec 1998 A
5861824 Ryu et al. Jan 1999 A
5861920 Mead et al. Jan 1999 A
5864342 Kajiya et al. Jan 1999 A
5864678 Riddle Jan 1999 A
5867167 Deering Feb 1999 A
5867602 Zandi et al. Feb 1999 A
5870036 Franaszek et al. Feb 1999 A
5870087 Chau Feb 1999 A
5872530 Domyo et al. Feb 1999 A
5874907 Craft Feb 1999 A
5883975 Narita et al. Mar 1999 A
5884269 Cellier et al. Mar 1999 A
5886655 Rust Mar 1999 A
5887165 Martel et al. Mar 1999 A
5889961 Dobbek Mar 1999 A
5892847 Johnson Apr 1999 A
5907801 Albert et al. May 1999 A
5909557 Betker et al. Jun 1999 A
5909559 So Jun 1999 A
5915079 Vondran, Jr. et al. Jun 1999 A
5917438 Ando Jun 1999 A
5918068 Shafe Jun 1999 A
5918225 White et al. Jun 1999 A
5920326 Rentschler et al. Jul 1999 A
5923860 Olarig Jul 1999 A
5930358 Rao Jul 1999 A
5936616 Torborg, Jr. et al. Aug 1999 A
5938737 Smallcomb et al. Aug 1999 A
5943692 Marberg Aug 1999 A
5945933 Kalkstein Aug 1999 A
5949355 Panaoussis Sep 1999 A
5949968 Gentile Sep 1999 A
5951623 Reynar et al. Sep 1999 A
5955976 Heath Sep 1999 A
5956490 Buchholz et al. Sep 1999 A
5960465 Adams Sep 1999 A
5964842 Packard Oct 1999 A
5968149 Jaquette et al. Oct 1999 A
5969927 Schirmer et al. Oct 1999 A
5973630 Heath Oct 1999 A
5974235 Nunally et al. Oct 1999 A
5974387 Kageyama et al. Oct 1999 A
5974471 Belt Oct 1999 A
5978483 Thompson, Jr. et al. Nov 1999 A
5982360 Wu et al. Nov 1999 A
5982723 Kamatani Nov 1999 A
5982937 Accad Nov 1999 A
5987022 Geiger et al. Nov 1999 A
5987590 Wing So Nov 1999 A
5990884 Douma et al. Nov 1999 A
5991515 Fall et al. Nov 1999 A
5996033 Chiu-Hao Nov 1999 A
6000009 Brady Dec 1999 A
6002411 Dye Dec 1999 A
6003115 Spear et al. Dec 1999 A
6008743 Jaquette Dec 1999 A
6011901 Kirsten Jan 2000 A
6014694 Aharoni et al. Jan 2000 A
6021433 Payne et al. Feb 2000 A
6023755 Casselman Feb 2000 A
6026217 Adiletta Feb 2000 A
6028725 Blumenau Feb 2000 A
6031939 Gilbert et al. Feb 2000 A
6032148 Wilkes Feb 2000 A
6032197 Birdwell et al. Feb 2000 A
6058459 Owen et al. May 2000 A
6061398 Satoh et al. May 2000 A
6061473 Chen et al. May 2000 A
6070179 Craft May 2000 A
6073232 Kroeker et al. Jun 2000 A
6075470 Little et al. Jun 2000 A
6078958 Echeita et al. Jun 2000 A
6091777 Guetz et al. Jul 2000 A
6092123 Steffan et al. Jul 2000 A
6094634 Yahagi et al. Jul 2000 A
6097520 Kadnier Aug 2000 A
6098114 McDonald et al. Aug 2000 A
6104389 Ando Aug 2000 A
6105130 Wu et al. Aug 2000 A
6115384 Parzych Sep 2000 A
6128412 Satoh Oct 2000 A
6134631 Jennings, III Oct 2000 A
6141053 Saukkonen Oct 2000 A
6145020 Barnett Nov 2000 A
6145069 Dye Nov 2000 A
6169241 Shimizu Jan 2001 B1
6170007 Venkatraman et al. Jan 2001 B1
6170047 Dye Jan 2001 B1
6170049 So Jan 2001 B1
6172936 Kitazaki Jan 2001 B1
6173381 Dye Jan 2001 B1
6175650 Sindhu et al. Jan 2001 B1
6175856 Riddle Jan 2001 B1
6182125 Borella et al. Jan 2001 B1
6185625 Tso et al. Feb 2001 B1
6185659 Milillo et al. Feb 2001 B1
6192082 Moriarty et al. Feb 2001 B1
6192155 Fan Feb 2001 B1
6195024 Fallon Feb 2001 B1
6195465 Zandi et al. Feb 2001 B1
6198842 Yeo Mar 2001 B1
6198850 Banton Mar 2001 B1
6208273 Dye et al. Mar 2001 B1
6215904 Lavellee Apr 2001 B1
6219754 Belt et al. Apr 2001 B1
6222886 Yogeshwar Apr 2001 B1
6225922 Norton May 2001 B1
6226667 Matthews et al. May 2001 B1
6226740 Iga May 2001 B1
6230223 Olarig May 2001 B1
6237054 Freitag, Jr. May 2001 B1
6243829 Chan Jun 2001 B1
6253264 Sebastian Jun 2001 B1
6272178 Nieweglowski et al. Aug 2001 B1
6272627 Mann Aug 2001 B1
6272628 Aguilar et al. Aug 2001 B1
6282641 Christensen Aug 2001 B1
6285458 Yada Sep 2001 B1
6298408 Park Oct 2001 B1
6308311 Carmichael et al. Oct 2001 B1
6309424 Fallon Oct 2001 B1
6310563 Har et al. Oct 2001 B1
6317714 Del Castillo et al. Nov 2001 B1
6317818 Zwiegincew et al. Nov 2001 B1
6330622 Schaefer Dec 2001 B1
6333745 Shimomura et al. Dec 2001 B1
6345307 Booth Feb 2002 B1
6356589 Gebler et al. Mar 2002 B1
6356937 Montville et al. Mar 2002 B1
6388584 Dorward et al. May 2002 B1
6392567 Satoh May 2002 B2
6404931 Chen et al. Jun 2002 B1
6421387 Rhee Jul 2002 B1
6434168 Kari Aug 2002 B1
6434695 Esfahani et al. Aug 2002 B1
6442659 Blumenau Aug 2002 B1
6449658 Lafe et al. Sep 2002 B1
6449682 Toorians Sep 2002 B1
6452602 Morein Sep 2002 B1
6452933 Duffield et al. Sep 2002 B1
6459429 Deering Oct 2002 B1
6463509 Teoman et al. Oct 2002 B1
6487640 Lipasti Nov 2002 B1
6489902 Heath Dec 2002 B2
6505239 Kobata Jan 2003 B1
6513113 Kobayashi Jan 2003 B1
6523102 Dye et al. Feb 2003 B1
6526174 Graffagnino Feb 2003 B1
6529633 Easwar et al. Mar 2003 B1
6532121 Rust et al. Mar 2003 B1
6539438 Ledzius et al. Mar 2003 B1
6539456 Stewart Mar 2003 B2
6542644 Satoh Apr 2003 B1
6577254 Rasmussen Jun 2003 B2
6590609 Kitade et al. Jul 2003 B1
6597812 Fallon et al. Jul 2003 B1
6601104 Fallon Jul 2003 B1
6604040 Kawasaki et al. Aug 2003 B2
6604158 Fallon Aug 2003 B1
6606040 Abdat Aug 2003 B2
6606413 Zeineh Aug 2003 B1
6609223 Wolfgang Aug 2003 B1
6618728 Rail Sep 2003 B1
6624761 Fallon Sep 2003 B2
6633244 Avery et al. Oct 2003 B2
6633968 Zwiegincew et al. Oct 2003 B2
6650261 Nelson et al. Nov 2003 B2
6661839 Ishida et al. Dec 2003 B1
6661845 Herath Dec 2003 B1
6704840 Nalawadi et al. Mar 2004 B2
6708220 Olin Mar 2004 B1
6711709 York Mar 2004 B1
6717534 Yokose Apr 2004 B2
6731814 Zeck et al. May 2004 B2
6745282 Okada et al. Jun 2004 B2
6748457 Fallon et al. Jun 2004 B2
6756922 Ossia Jun 2004 B2
6768749 Osler et al. Jul 2004 B1
6792151 Barnes et al. Sep 2004 B1
6810434 Muthujumaraswathy et al. Oct 2004 B2
6813689 Baxter, III Nov 2004 B2
6819271 Geiger et al. Nov 2004 B2
6822589 Dye et al. Nov 2004 B1
6856651 Singh Feb 2005 B2
6862278 Chang et al. Mar 2005 B1
6879266 Dye et al. Apr 2005 B1
6885316 Mehring Apr 2005 B2
6885319 Geiger et al. Apr 2005 B2
6888893 Li et al. May 2005 B2
6909383 Shokrollahi et al. Jun 2005 B2
6944740 Abali et al. Sep 2005 B2
6952409 Jolitz Oct 2005 B2
6959359 Suzuki et al. Oct 2005 B1
6963608 Wu Nov 2005 B1
6990247 Schwartz Jan 2006 B2
6993597 Nakagawa et al. Jan 2006 B2
7007099 Donati et al. Feb 2006 B1
7024460 Koopmas et al. Apr 2006 B2
7054493 Schwartz May 2006 B2
7069342 Biederman Jun 2006 B1
7089391 Geiger et al. Aug 2006 B2
7102544 Liu Sep 2006 B1
7127518 Vange et al. Oct 2006 B2
7129860 Alvarez, II Oct 2006 B2
7130913 Fallon Oct 2006 B2
7161506 Fallon Jan 2007 B2
7181608 Fallon et al. Feb 2007 B2
7190284 Dye et al. Mar 2007 B1
7319667 Biederman Jan 2008 B1
7321937 Fallon Jan 2008 B2
RE40092 Kang Feb 2008 E
7330912 Fox et al. Feb 2008 B1
7352300 Fallon Apr 2008 B2
7358867 Fallon Apr 2008 B2
7376772 Fallon May 2008 B2
7378992 Fallon May 2008 B2
7386046 Fallon et al. Jun 2008 B2
7395345 Fallon Jul 2008 B2
7400274 Fallon et al. Jul 2008 B2
7415530 Fallon Aug 2008 B2
7417568 Fallon et al. Aug 2008 B2
7552069 Kepecs Jun 2009 B2
7565441 Romanik et al. Jul 2009 B2
7714747 Fallon May 2010 B2
7777651 Fallon et al. Aug 2010 B2
20010031092 Zeck et al. Oct 2001 A1
20010032128 Kepecs Oct 2001 A1
20010047473 Fallon Nov 2001 A1
20010052038 Fallon et al. Dec 2001 A1
20010054131 Alvarez, II et al. Dec 2001 A1
20020037035 Singh Mar 2002 A1
20020069354 Fallon et al. Jun 2002 A1
20020080871 Fallon et al. Jun 2002 A1
20020097172 Fallon Jul 2002 A1
20020101367 Geiger et al. Aug 2002 A1
20020104891 Otto Aug 2002 A1
20020126755 Li et al. Sep 2002 A1
20020191692 Fallon et al. Dec 2002 A1
20030030575 Frachtenberg et al. Feb 2003 A1
20030034905 Anton et al. Feb 2003 A1
20030084238 Okada et al. May 2003 A1
20030090397 Rasmussen May 2003 A1
20030142874 Schwartz Jul 2003 A1
20030191876 Fallon Oct 2003 A1
20040042506 Fallon et al. Mar 2004 A1
20040056783 Fallon Mar 2004 A1
20040073710 Fallon Apr 2004 A1
20040073746 Fallon Apr 2004 A1
20060015650 Fallon Jan 2006 A1
20060181441 Fallon Aug 2006 A1
20060181442 Fallon Aug 2006 A1
20060184687 Fallon Aug 2006 A1
20060190644 Fallon Aug 2006 A1
20060195601 Fallon Aug 2006 A1
20070043939 Fallon et al. Feb 2007 A1
20070050514 Fallon Mar 2007 A1
20070050515 Fallon Mar 2007 A1
20070067483 Fallon Mar 2007 A1
20070083746 Fallon et al. Apr 2007 A1
20070109154 Fallon May 2007 A1
20070109155 Fallon May 2007 A1
20070109156 Fallon May 2007 A1
20070174209 Fallon et al. Jul 2007 A1
20080232457 Fallon et al. Sep 2008 A1
20090154545 Fallon et al. Jun 2009 A1
20090287839 Fallon et al. Nov 2009 A1
20100318684 Fallon Dec 2010 A1
20100332700 Fallon Dec 2010 A1
20110037626 Fallon Feb 2011 A1
Foreign Referenced Citations (26)
Number Date Country
4127518 Feb 1992 DE
0 164677 Dec 1985 EP
0 185098 Jun 1986 EP
0283798 Sep 1988 EP
0405572 Jan 1991 EP
0493130 Jul 1992 EP
0587437 Mar 1994 EP
0595406 May 1994 EP
0718751 Jun 1996 EP
0 928 070 Jul 1999 EP
2162025 Jan 1986 GB
6051989 Feb 1994 JP
9188009 Jul 1997 JP
11149376 Jun 1999 JP
WO 9414273 Jun 1994 WO
WO 9429852 Dec 1994 WO
WO 9502873 Jan 1995 WO
WO 9529437 Nov 1995 WO
WO 9748212 Dec 1997 WO
WO 9839699 Sep 1998 WO
WO 9908186 Feb 1999 WO
WO 0036754 Jun 2000 WO
WO 0157642 Aug 2001 WO
WO 0157659 Aug 2001 WO
WO 0163772 Aug 2001 WO
WO 0239591 May 2002 WO
Related Publications (1)
Number Date Country
20100316114 A1 Dec 2010 US
Provisional Applications (1)
Number Date Country
60268394 Feb 2001 US
Continuations (2)
Number Date Country
Parent 12132399 Jun 2008 US
Child 12684624 US
Parent 10076013 Feb 2002 US
Child 12132399 US