The present invention relates to a banknote identifying machine and banknote identifying method, and more particularly to a banknote identifying machine and banknote identifying method, which enable accurate determination of the authenticity of banknote without depending on a condition of the banknote.
Generally, banknote is identified its denomination and authenticity by magnetically or optically extracting the features of the banknote, which is inserted by a user, by a magnetic sensor or an optical sensor.
For extraction of the optical characteristics of banknote by a photosensor, a design, dimensions, direction and the like of banknote are extracted by a transmission photosensor or a reflection photosensor to obtain its image pattern, which is then compared with a reference pattern of authentic banknote of each denomination to determine a denomination and authenticity of the inserted banknote.
Especially, the determination of authenticity of banknote by the transmission photosensor was performed by moving the banknote between a light-emitting element and a light-receiving element, which are disposed with a prescribed distance between them, to detect a contrast pattern of the transmitted light and comparing the detected contrast pattern with a previously stored reference contrast pattern of authentic banknote.
But, banknote includes just issued new ones and those contaminated, damaged or worn out in circulation, and even the same banknote is largely variable in optical characteristics, magnetic characteristics and the like which are factors used for identification of the banknote. Thus, the above-described existing method had difficulties in determining the authenticity.
Therefore, it is an object of the present invention to provide a banknote identifying machine and banknote identifying method which can stably determine the authenticity of banknote without being affected by a sensor or contamination on the banknote.
In order to achieve the above object, the banknote identifying machine of the present invention is a banknote identifying machine comprising pattern detecting means which moves relative to banknote to scan it and irradiates light to the banknote to detect patterns of amount of light transmitted through the banknote; and judging means which evaluates a pattern of the amount of transmitted light detected through a watermark portion of the banknote by the pattern detecting means by a maximum value of a pattern of the amount of transmitted light detected through ordinary design portions other than the watermark portion and determines the watermark of the banknote according to the evaluated value.
The banknote identifying machine of the present invention is a banknote identifying machine, comprising: a transmission photosensor which moves relative to banknote to scan it and radiates light to the banknote to detect a pattern of an amount of transmitted light through the banknote; data storage means which stores data output from the transmission photosensor by allocating serial addresses to the data; storage location address storage means which previously stores addresses of storage regions of the data storage means in which data output according to a watermark portion of the banknote is to be stored; and authenticity judging means which evaluates data stored in the storage regions of the storage means designated by the addresses stored in the storage location address storage means by data on a maximum value among data corresponding to portions other than the watermark and determines the authenticity of the banknote according to the evaluation.
And, the present invention relates to the above banknote identifying machine which further comprises determination means which determines a denomination of the banknote, wherein: the storage location address storage means previously stores the addresses of storage regions of the data storage means, in which the data output according to the watermark portion of the banknote is to be stored, according to the denomination of the banknote; and the authenticity judging means obtains addresses, which are stored in association with the denomination determined by the determination means, from the storage location address storage means, evaluates data, which is stored in the storage region of the data storage means designated by the obtained addresses, by the data on the maximum value among the data corresponding to the portions other than the watermark and determines the authenticity of the banknote according to the evaluation.
The present invention also relates to the above banknote identifying machine which further comprises determination means, which determines an inserted direction of the banknote, wherein: the storage location address storage means previously stores the addresses of storage regions of the data storage means, in which data output according to the watermark portion of the banknote is to be stored, according to the inserted direction of the banknote; and the authenticity judging means obtains addresses, which are stored in association with the inserted direction determined by the determination means, from the storage location address storage means, evaluates data, which is stored in the storage region of the data storage means designated by the obtained addresses, by the data on the maximum value among the data corresponding to the portions other than the watermark and determines the authenticity of the banknote according to the evaluation.
The present invention also relates to the above banknote identifying machine which further comprises determination means which determines a denomination and an inserted direction of the banknote, wherein: the storage location address storage means previously stores the addresses of storage regions of the data storage means, in which data output according to the watermark portion of the banknote is to be stored, according to the denomination and the inserted direction of the banknote; and the authenticity judging means obtains addresses, which are stored in association with the denomination and the inserted direction determined by the determination means, from the storage location address storage means, evaluates data, which is stored in the storage region of the data storage means designated by the obtained addresses, by the data on the maximum value among the data corresponding to the portions other than the watermark and determines the authenticity of the banknote according to the evaluation.
And, the present invention relates to the above banknote identifying machine, wherein the authenticity judging means determines the presence or not of the watermark on the banknote according to a difference between data on the maximum value output according to the watermark portion and data on the maximum value output according to the portions other than the watermark.
The present invention relates to the above banknote identifying machine, wherein the authenticity judging means counts a quantity of data which is output according to the watermark portion and larger than the data on the maximum value output according to the portions other than the watermark and determines the presence or not of a watermark on the banknote according to the counted quantity.
The present invention relates to the above banknote identifying machine, wherein the authenticity judging means determines the presence or not of the watermark on the banknote according to a total value of differences between data which is output according to the watermark portion and larger than data on the maximum value output according to the portions other than the watermark and data on the maximum value output according to the portions other than the watermark.
And, a banknote identifying method according to the present invention comprises scanning banknote by moving relative to the banknote, detecting a pattern of an amount of transmitted light through the banknote by irradiating light to the banknote, evaluating the pattern of the amount of transmitted light, which is detected from a watermark portion of the banknote, by a maximum value of the pattern of the amount of transmitted light, which is detected from an ordinary design portion other than the watermark, and determining the watermark of the banknote according to the evaluated value.
According to the present invention, the amount of transmitted light from the watermark of the banknote is evaluated by the amount of transmitted light from the portions other than the watermark. Specifically, the watermark portion and the other portions are subjected to relative comparison, so that the banknote can be stably determined its authenticity without being affected by a sensor or contamination on the banknote, and because the authenticity is determined based on the quality (thickness) of the banknote, the accuracy of determining counterfeit banknote which is virtually distinguishable from the real one can be improved.
a) to
An embodiment of the banknote identifying machine and banknote identifying method according to the present invention will be described in detail with reference to the accompanying drawings.
As shown in
Banknote inserted through the banknote insertion unit 2 is conveyed by the banknote conveying unit 3 which is driven by the drive unit 5. The banknote being conveyed by the banknote conveying unit 3 is determined its denomination and authenticity by the identification unit 6. The banknote which is judged as authentic is accepted by the banknote reception unit 4 as the drive unit 5 is controlled by the control unit 1.
In
The transmission photosensors 61a to 61c each comprise a pair of light-emitting element and light-receiving element, which is disposed to have the banknote conveying unit 3 between the pair and over each prescribed scanning line which passes over a watermark portion of banknote to be identified, irradiate light to the banknote being conveyed through the banknote conveying unit 3, and output an electric signal according to an amount of light passing through the banknote. The transmission photosensors 61 may also use infrared rays, ultraviolet rays or a visible ray.
The memory 62 sequentially stores, in a prescribed storage region thereof, a signal level of the electric signal output from each of the respective photosensors 61 at a prescribed time interval, allocates serial addresses to them, and temporarily stores as pattern data on banknote 7 on each scanning line.
The denomination/inserted direction judging section 63 judges a type of banknote and its inserted direction according to output from the transmission photosensors 61 and other unshown sensors (e.g., a magnetic sensor).
Based on reference data on genuine banknote, the data storage location address storage section 64 previously stores addresses of the start-point and end-point of a storage region, in which read data on a prescribed region including watermark portions of banknote is stored and addresses of the start-point and end-point of a storage region, in which read data on a prescribed region including an ordinary design portion other than the watermark is stored, as a watermark region storage location address and an ordinary design region storage location address for a denomination and inserted direction, respectively.
According to the denomination and inserted direction determined by the denomination/inserted direction judging section 63, the authenticity judging section 65 reads the watermark region storage location address and ordinary design region storage location address from the data storage location address storage section 64 and extracts pattern data corresponding to the watermark region and pattern data corresponding to the ordinary design region from the memory 62 based on the read watermark region storage location address and the ordinary design region storage location address. Then, the authenticity judging section 65 compares the above two pattern data by the method to be described later to determine whether the inserted banknote has a watermark, thereby determining the authenticity of the banknote.
a) is a plan view schematically showing banknote.
It is seen in
b) shows data obtained by scanning the banknote 7 along the scanning line L1 by the photosensor 61a, and
Generally, the watermark portions on the banknote are thinner than the other portions where the ordinary design is formed. Therefore, the watermark portions have a relatively higher light transmission level than those of other portions as indicated by reference numeral 1a in
The banknote 7 of
Then, the process of determining the authenticity of banknote by the authenticity judging section 65 will be described below.
When banknote is inserted through an unshown banknote insertion slot (YES in step 101), the banknote identifying machine reads the inserted banknote by the transmission photosensors 61 and other unshown various types of sensors (a magnetic sensor, etc.) (step 102). Here, signal data output from the respective transmission photosensors 61a to 61c are stored in respective prescribed regions in the memory 62. For a simplified description, an identifying process based on extracted data by a single photosensor will be described below.
First, the banknote identifying machine determines a denomination and inserted direction of the inserted banknote based on the extracted data by the various transmission photosensors 61 and other unshown sensors (step 103). If the denomination or the inserted direction cannot be determined (NO in step 104), the pertinent banknote is judged as counterfeit banknote, and the process is terminated (step 108).
When the inserted banknote can be determined its denomination and inserted direction in the step 103 (YES in step 104), an authenticity judging process is performed by the authenticity judging section 65 (step 105). The authenticity judging process will be described in detail later.
When the inserted banknote is determined as authentic banknote as a result of the authenticity judging process in the step 105 (YES in step 106), it is accepted by the banknote reception unit 4 (step 107), but when the inserted banknote is determined as counterfeit banknote (NO in step 106), the banknote is sent back by the banknote conveying unit 3 to return to the banknote insertion unit 2 (step 108).
The authenticity judging section 65 resets the reference transmission level MAX to the minimum value “0” and also retrieves a start-point address NSZON [KIN] of the storage region, in which data on the ordinary design portion must be stored, from the data storage location address storage section 64 based on the denomination and inserted direction judged in the step 103 and sets address number n by the address NSZON [KIN] (step 201). The KIN is an index which is determined according to a combination of the denomination and inserted direction of the inserted banknote judged in the step 103.
It is determined whether the value of data stored in a storage region SBUF [n] on the memory 62 specified by the present address number n is larger than the value of the reference transmission level MAX (step 202). When it is yes (YES in step 202), the value of data stored in the memory region SBUF [n] substitutes for the value of the reference transmission level MAX (step 203). Subsequently, the n is increased by one (step 204), and it is determined whether the n has become an end-point address NFZON [KIN] of the storage region in which the ordinary design portion is stored (step 205). If it has not become NFZON [KIN] (NO in step 205), the procedure returns to the step 202, and the process is repeated. Thus, the storage region SBUF [n] of the memory 62, in which data corresponding to the prescribed ordinary design portions are stored, is entirely checked for magnitudes of the values of the stored data, and a maximum value is determined as the reference transmission level MAX.
The value of a TOL indicating a total value of differences between the reference transmission level MAX, which was determined by the process up to the step 205, and the values of data indicating transmission levels higher than the reference transmission level MAX, the value of a quantity TPN of data indicating transmission levels higher than the reference transmission level MAX and the value of a maximum relative transmission level TPMAX which is obtained by relativizing the maximum transmission level in the watermark region by the reference transmission level MAX are reset to the minimum value “0”. And, a start-point address SSZON of the storage region, in which data of the watermark region must be stored, is retrieved from the data storage location address storage section 64 based on the denomination and inserted direction of the inserted banknote, and the address number n is determined by the SSZON [KIN] (step 206). The relativization by the reference transmission level MAX is subtraction of the value of the reference transmission level MAX from the value of data to be relativized.
Then, it is determined whether the value of data stored in the storage region SBUF [n] of the memory 62 specified by the present n is larger than the value of the reference transmission level MAX (step 207). If it is yes (YES in step 207), the value of the maximum transmission level MAX is subtracted from the value to be stored in the storage region SBUF [n] of the memory 62 specified by the present n, and the obtained difference is added to the total value TOL (TOL=TOL+SBUF [n]−MAX), and also 1 is added to the TPN (step 208). Here, the subtraction “SBUF [n]−MAX” is calculation to convert data stored in the storage region SBUF [n] of the memory 62 into data of the relative value to the reference transmission level MAX, and the calculation “TOL=TOL+SBUF [n]−MAX” is to determine a total of the relative value data (namely, to determine an area of the shaded portions shown in
Subsequently, it is determined whether the relative value data is larger than the value of the maximum relative transmission level TPMAX (step 209). If it is yes (YES in step 209), the relative value data “SBUF [n]−MAX” substitutes for the maximum relative transmission level TPMAX (step 210). Subsequently, the n is increased by one (step 211), and it is determined whether the n has become the end-point address SFZON [KIN] of the storage region in which data of the watermark portion must be stored (step 212). And, if it has not become SFZON [KIN] (NO in step 212), the procedure returns to the step 207, and the process is repeated.
Thus, the storage region SBUF [n] of the memory 62, in which data corresponding to the watermark portion is stored, is thoroughly checked for the magnitudes of the stored data values to determine a maximum value, and this maximum value is relativized by the reference transmission level MAX and determined as the maximum relative transmission level TPMAX. And, a quantity TPN of data indicating values larger than the value of the reference transmission level MAX is counted, the values of data indicating the values larger than the value of the reference transmission level MAX are relativized by the reference transmission level MAX, and a total TOL of the relativized values is determined.
Lastly, the obtained total TOL of the relativized value data, the maximum transmission level TPMAX and the quantity TPN of data indicating the values larger than the value of the reference transmission level MAX are compared with a threshold value determined for each of them to determine whether the banknote has a watermark so to determine whether the banknote is authentic. In other words, in
In the above embodiment, all of TOL, TPMAX and TPN are used to determine whether the banknote has a watermark, but only one or two of them may be used for judgment.
The above-described embodiment shows an example judgment of line data in synchronization with the movement of the banknote, but an area sensor may also be used to perform the same process.
And, the banknote authenticity judgment process in practice is not limited to the determination of authenticity by only the judging method according to the present invention, but it may be combined with another judging factor to make a final judgment.
The present invention provides a banknote identifying machine and banknote identifying method, which can stably determine the authenticity of banknote without being affected by a sensor or contamination on the banknote. According to the present invention, an amount of light transmitted through a watermark portion of the banknote is evaluated by an amount of light transmitted through the portions other than the watermark. In other words, the watermark portion and the other portions are subject to relative comparison, so that the banknote can be stably determined its authenticity without being affected by a sensor or contamination on the banknote. And, because the authenticity can be determined based on the quality (thickness) of the banknote, the accuracy of determining counterfeit banknote which is virtually distinguishable from the real one can be improved.
Number | Date | Country | Kind |
---|---|---|---|
2001-380106 | Dec 2001 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP02/11724 | 11/11/2002 | WO | 00 | 8/11/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/050772 | 6/19/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4296326 | Haslop et al. | Oct 1981 | A |
4881268 | Uchida et al. | Nov 1989 | A |
5295196 | Raterman et al. | Mar 1994 | A |
5845008 | Katoh et al. | Dec 1998 | A |
5923413 | Laskowski | Jul 1999 | A |
Number | Date | Country |
---|---|---|
61-32460 | Sep 1986 | JP |
10-162194 | Jun 1998 | JP |
2000-306136 | Nov 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20040151359 A1 | Aug 2004 | US |