The present invention is related to banknote validators and in particular, to improvements in the drive and sensing of the banknote through a validating head.
Banknote validators are now commonly used in different types of vending machines for receiving banknotes, determining denominations and the authenticity thereof. Accepted banknotes are stored in a banknote cassette and the vending machine is authorized to proceed with delivery of product in accordance with the credit value provided the customer. Banknote validators are also commonly used in gaming machines.
Banknotes of most major currencies on average have a useful life of approximately six months. The condition of the banknote greatly varies between a clean crisp banknote and a banknote that is relatively dirty with a deteriorated substrate. Banknotes have a series of security features which are examined by the validator and a prediction of the authenticity of the banknote is made. It can be appreciated that the validator must make an appropriate determination of a received banknote, however, as the condition of the banknote deteriorates, the evaluation is more difficult.
In addition, it has been found that deterioration of a banknote increases, the likelihood of the banknote being jammed in the validator, either during insertion and/or rejection of the banknote is much higher. This jamming of banknotes is a significant problem as validators are often used in an unmanned location and this causes user inconvenience and frustration. As the location is unmanned the user may seek to damage the device for not functioning properly and it is also inconvenient for the operator as a service call is required and a customer's complaint must be dealt with. If a banknote is to be rejected the validator must operate with a high probability of being capable of returning the banknote to the customer.
It can be further appreciated that a validator must operate with minimal instructions and be tolerant to a significant variation with respect to feeding of the banknote to the validator. Typically users are not particularly precise and thus a wide variation occurs. Therefore, the drive of the banknote through an evaluation passageway must properly align a banknote and move a banknote at a fairly high speed through the pathway while also being capable of returning a banknote should it be necessary. Jamming of the banknote either as it is processed through the device or as it is rejected from the device, should be minimized.
Prior art banknotes have used a series of three drive rollers for moving of a banknote through a curved banknote evaluation pathway where a series of sensors are disposed in the walls of the pathway for evaluation of the banknote as it moves therepast. Different validators have used optical sensors in combination with induction and capacitance sensors. These validators typically include an optical sensor for determining that a banknote has been inserted in the validator to activate the validator, and an optical sensor is used for determining that a banknote is about to leave the validating head and enter the banknote cassette. Banknotes typically become jammed at a large transition in the direction of the banknote pathway and adjacent the discharge of the banknote from the validating head.
The present invention provides an improved banknote validator which is less prone to banknote jamming and provides effective evaluation of the banknote as it is moved through the validating head.
A banknote validator according to the present invention comprises the validating head and an elongate power drive arrangement extending downwardly from one side of the validating head. The validating head has a bill receiving bezel with an inlet through the bezel connected to a banknote pathway through the validating head. The pathway is defined between an inner body portion and an outer body portion with the outer body portion being movable between an in use position defining said pathway between said inner and outer body portions and a service position exposing both sides of the pathway for service. The pathway includes a first straight section leading away from the bezel inlet and joining with a first curved transition. The first curved transition joins with a second straight section which forms an acute angle with the first straight section such that the pathway is partially reversed upon itself. The second straight section leads to a secured curved transition which terminates in a discharge outlet. The inner body portion has two sets of inlet drive rollers associated with the first straight section with one set of drive rollers protruding into the pathway adjacent a junction between the bezel and the inner body portion and the other set of inlet rollers protruding into the pathway adjacent the first transition. The inner body portion has two sets of discharged drive rollers adjacent a junction of the second straight section and said second curved transition. One set of the discharge rollers protrudes into the pathway in the second straight section and the other set of discharge rollers protrudes into the pathway within the second curved transition.
According to an aspect of the invention, the inlet drive rollers and the discharge drive rollers are interconnected by a gear train.
According to a further aspect of the invention, the inlet drive rollers and the discharge drive rollers are driven at the same speed by a common motor.
In yet a further aspect of the invention, the drive wheels are driven by the motor to advance the banknote through the pathway at speeds in excess of 200 mm per second.
In yet a further aspect of the invention, the pathway adjacent the inlet includes two optical sensors spaced on opposite sides of the pathway for detecting the insertion of a banknote.
In yet a further aspect of the invention each optical sensor includes an emitter and receptor on one side of the pathway and a light guide on the opposite side of the pathway. The light guide serves to return light received from the emitter to the receiver when a banknote is not in the pathway between the emitter and the light guide.
In yet a further aspect of the invention the validator includes a further optical sensor adjacent to the inlet. This further optical sensor has a light emitter at one edge of the pathway and a light receptor at an opposite edge of the pathway. The emitter emits a beam of light across the pathway to the light receptor. This light is interrupted by a banknote or the presence of any other object extending in the length of the pathway.
In yet a further aspect of the invention the emitter and receiver of the optical sensor are all provided on said inner body portion.
In yet a further aspect of the invention the passive wave guide component is provided on the outer body portion.
According to yet a further aspect of the invention the drive rollers include spring loaded idler rollers opposite the drive rollers and supported in the outer body portion. In a preferred aspect of the invention these idler rollers include a twin armed spring member with a slot between the arms for receiving the idler roller.
In yet a further aspect of the invention the validating head includes a series of sensors on each side of the pathway in said second straight section and the series of sensors on each side of the pathway are mounted on a common PC board.
In yet a further aspect of the invention one of the sensors in the second straight section is a barcode sensor.
In yet a further aspect of the invention the motor drive components of the validator are provided in the elongate power drive arrangement and motors provided in the elongate power drive arrangement have a PC board closely positioned adjacent to the motors to avoid electromagnetic interference.
In yet a further aspect of the invention the elongate power drive arrangement also include processing hardware and software for evaluating the signals of the sensors and making a prediction with respect to authenticity of the banknote. A memory receiving device is provided in the elongate power drive arrangement for receiving a removable memory stick. This allows for updating of the software of the validator by insertion of an appropriately programmed memory stick.
Preferred embodiments of the invention are shown in the drawings, wherein:
The validator 2 shown in the drawings has a validating head 4 which receives banknotes and moves banknotes along a banknote pathway 14 towards the releasable banknote cassette 6. The banknotes are fed through the bezel 8 provided at the front edge of the validating head 4 with the banknotes fed through the inlet 10. The inlet 10 connects with the banknote pathway 12.
The banknotes are moved along the banknote pathway by means of a series of drive rollers 12 which protrude into the pathway and are all driven at the same speed. A series of gears 16, 18, 20 and 22 form a gear train and interconnect with the drive rollers 14. Idler rollers 26, 28, 30, 32 and 34 are spring bias in the outer body portions comprising components 72 and 74 (see FIG. 7). These outer body portions form one side of the banknote pathway with the inner body portion 70 defining the opposite side of the pathway.
As shown in
As shown in
If a decision is made that the banknote should be rejected the two rollers at the discharge at the bottom of the second straight section can force the banknote in the opposite direction through the pathway to be engaged by the set of drive rollers at the end of the first straight section 100. Jamming of the banknote in the sensor section of the second straight section 104 is effectively avoided as the back edge of the banknote has not cleared the sensors. The banknote is basically free to float in the pathway and does not have to move a substantial distance before it is engaged by the next set of drive rollers at the end of the first straight section 104. Once it is engaged by these drive rollers the banknote can then continue to be driven out through the pathway and through the inlet 10.
It has been found that this arrangement of drive rollers is very effective in avoiding jamming of banknotes which previously occurred in the validator particularly adjacent the second straight portion of the banknote pathway 12. Furthermore, as shown in
The initial set of drive rollers 14 provided at the input to the validating head have three sets of drive rollers across the banknote pathway. The center roller has conventional idler roller and is always active. The two outer rollers and there special clear rollers 200 are only active during rejection of a banknote.
As can be appreciated the motor 60 is operating as the banknote is advanced through the banknote pathway and the evaluation of the banknote is being conducted as the banknote is moving through the pathway. Drive rollers typically move the banknote at speeds between 200 and 340 millimeters per second and the validator can make a determination in most cases as the banknote moves through the validator. It is also possible to collect information as the banknote moves through the validator, stop the banknote with the trailing portion thereof still in the second straight section, and thereafter start the calculators for determining authenticity.
For most applications, the banknote is stopped in the second straight section and held in this section awaiting a confirmation signed from the host machine, for example a vending machine, or gaming machine, to accept the bill or reject it. This decision is made by the host machine which sends a signal to the validator. The validator typically sends a signal to the host machine regarding the denomination after confirming authenticity and awaits further instructions from the host machine.
As the processing is carried out as the banknote moves along the pathway the motor 60 is operating. The provision of the driver arrangement for the motor on the printed circuit board closely associated with the motor, assists in maintaining a high quality signal of various sensors by reducing extraneous electrical signals which occur with long lead lines.
It can also be seen from the various exploded views of the drawings that the sensing is provided on opposite sides of the pathway in the second straight section. The sensors mounted on their own common PC board on each side of the pathway as clearly shown in FIG. 1. The one set of sensors include the PC board 15 and the sensors provided on the inner body portion are mounted on the common PC board 17.
The exploded perspective view of
The light emitter 270 sends a beam of light across the width of the pathway to be received by the photo receiver 272. The photo receiver 272 is connected to the printed circuit board 274 by electrical leads 277. It is also possible to position the receiver at 272 directly on the board 274 and use a light guide to direct the received light to the photo receiver. This across the pathway light beam serves to detect conditions which may indicate a fraudulent activity. It is known to attach a string or tape or other elongate member to a banknote as it is being received by the validator. It is typically attached to the back edge. Once the banknote validator has approved the banknote, the user quickly tries to pull the banknote back out of the validator. The beam of light directed across the banknote pathway serves to detect the presence of these types of tapes, threads or strings after the back edge of the banknote has passed the sensor.
The banknote validator as shown in the drawings effectively processes banknotes in an accurate manner at high speeds and can be used with a wide range of banknotes having different security characteristics. Speeds of 300 millimeters per second have proven quite effective in providing fast processing of bills in combination with good evaluation of the authenticity of the banknotes. The particular arrangements of drive rollers and idler rollers also serve to reduce banknote jams and provide effective and positive drive of a rejected banknote out of the validator.
Although various preferred embodiments of the present invention have been described herein in detail, it will be appreciated by those skilled in the art, that variations may be made thereto without departing from the spirit of the invention or the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5420406 | Izawa et al. | May 1995 | A |
5632367 | Bergeron et al. | May 1997 | A |
5657846 | Schwartz | Aug 1997 | A |
5887695 | Hatamachi et al. | Mar 1999 | A |
6457586 | Yasuda et al. | Oct 2002 | B2 |
Number | Date | Country | |
---|---|---|---|
20040016798 A1 | Jan 2004 | US |