The invention relates to a bar for securing a wristlet on a watch.
The invention also relates to a wristwatch comprising at least one such bar.
In the field of wristwatches, it is known to secure the wristlet on the watch by means of at least one spring bar. The spring bar is for example provided at its ends with two pivots, one of which is retractable in order to make it possible to separate the wristlet and the watch. The spring bar is inserted in a guide of the wristlet, and each pivot is designed to be introduced into a corresponding receptacle of a respective horn of the watch case, thus allowing the wristlet to be secured on the watch. A bar of this type is described for example in patent document CH 327838 A. The bar comprises a hollow body provided with a longitudinal groove; two pivots arranged in the hollow body; a spring disposed in the hollow body, supported between the pivots; and a lug. The two pivots can slide in a respective end of the hollow body. The spring pushes the pivots back in order to make their outer ends each penetrate in corresponding receptacles in the horns of the watch case. The lug is integral with one of the pivots, and extends through the longitudinal groove. The lug can slide along the longitudinal groove, allowing the pivot with which it is rendered integral to slide in the hollow body. The lug can be actuated by means of a specific tool, which a user introduces into an end of the wristlet, in order to displace the lug against the action of the spring and make the pivot exit from the corresponding receptacle of the horn of the watch case.
However, a disadvantage of a spring bar of this type is that it does not allow a user to be able to retract the two pivots easily with a single movement and without a tool. The use of a bar of this type is therefore restrictive for a user, and does not allow the user to separate the wristlet and the watch easily.
The objective of the invention is therefore to provide a bar for securing a wristlet on a watch, which allows a user to be able to retract the two pivots easily with a single movement, preferably with a single finger, and without a tool.
For this purpose, the invention relates to a bar for securing a wristlet on a watch, which comprises the characteristics described in the independent claim 1.
Particular forms of the bar are defined in the dependent claims 2 to 10.
An advantage of the bar according to the invention consists in the fact that it comprises a hollow inner tube which is arranged in the hollow body, and is configured to cooperate with the first pivot and the second pivot. The second pivot and the spring are inserted in the hollow inner tube. Thanks to the fact that the hollow body and the hollow inner tube are configured such that a displacement of the lug along the longitudinal groove towards the second pivot gives rise to a displacement of the second pivot, in the hollow inner tube, towards the lug, the user can easily retract the two pivots by manual action on the lug, with a single movement of a finger, and without a tool. In fact, since the lug is integral with the first pivot, this action by the user tends to bring the first and second pivots towards one another inside the hollow body.
A bar of this type according to the invention is also simple to produce and assemble.
Advantageously, on the second pivot side, the hollow inner tube comprises a first helical groove; on the second pivot side, the hollow body comprises an additional groove; and the shaft also comprises a tenon which is integral with the second pivot, the tenon extending through the first helical groove and through the additional groove in the hollow body, and being able to slide along the said first helical groove and the said additional groove; the hollow body and the hollow inner tube being configured such that a displacement of the lug along the longitudinal groove towards the tenon gives rise to a displacement of the tenon along the additional groove towards the lug, such as to bring the first and second pivots inside the hollow body.
According to a first embodiment of the invention, the additional groove in the hollow body is a second helical groove, the second helical groove having a length which is shorter than that of the first helical groove, the helicoid defined by the second helical groove having an angle of inclination, relative to a plane perpendicular to a longitudinal direction in which the hollow inner tube extends, which is smaller than an angle of inclination formed by the helicoid defined by the first helical groove relative to this same plane.
According to a second embodiment of the invention, the additional groove in the hollow body is a second longitudinal groove; and the hollow inner tube comprises, on the side opposite the second pivot, a second helical groove, the lug also extending through the second helical groove, and being able to slide along the second helical groove, the second helical groove having a length which is longer than that of the first helical groove, the helicoid defined by the second helical groove winding on the hollow inner tube in a direction opposite that of the helicoid defined by the first helical groove.
For this purpose, the invention also relates to a wristwatch comprising at least one securing bar as described above, and comprising the characteristics described in the dependent claim 11.
The objectives, advantages and characteristics of the bar for securing a wristlet on a watch according to the invention, as well as the wristwatch comprising it, will become more apparent from the following description on the basis of at least one non-limiting embodiment illustrated by the drawings in which:
The bar 1 comprises a hollow body 2, a first pivot 4 arranged in the hollow body 2, and a shaft 6 which is arranged in the hollow body 2, and is provided with a second pivot 8. The bar 1 is designed to be inserted in a guide of the wristlet, each of the first and second pivots 4, 8 being introduced into a corresponding receptacle of a respective horn of the watch case, thus allowing the wristlet to be secured on the watch. The bar 1 also comprises a spring 10, a lug 12 and a hollow inner tube 14 which is provided with a helical groove 22. The spring 10 and the hollow inner tube 14 are arranged in the hollow body 2.
Each of the first and second pivots 4, 8 can slide in a respective end 15A, 15B of the hollow body 2. On the first pivot 4 side, the hollow body 2 is provided with a longitudinal groove 16, the longitudinal direction being taken as the largest direction in which the hollow body 2 extends. The longitudinal groove 16 forms an opening in the surface of the hollow body 2. On the second pivot 8 side, the hollow body 2 also comprises an additional groove 18. In the particular embodiment illustrated in
The shaft 6 also comprises a tenon 20 which is integral with the second pivot 8. The tenon 20 extends from an outer surface of the second pivot 8, substantially perpendicularly to the longitudinal direction in which the second pivot 8 extends. The second pivot 8 and the spring 10 are inserted in the hollow inner tube 14. The spring 10 is retained supported between the first and second pivots 4, 8. As illustrated in
The lug 12 extends from an outer surface of the hollow inner tube 14, substantially perpendicularly to the longitudinal direction in which the hollow inner tube 14 extends. The lug 12 extends through the longitudinal groove 16, and can slide along this longitudinal groove 16. The lug 12 is designed to be manipulated by a user of the watch, and thus constitutes a unit for actuation of the bar 1, permitting the retraction of the first and second pivots 4, 8, as will be described in detail hereinafter.
The hollow inner tube 14 is configured to co-operate with the first pivot 4 and with the second pivot 8. More specifically, the hollow inner tube 14 comprises a helical groove 22 on the second pivot 8 side. The helical groove 22 forms an opening in the surface of the hollow inner tube 14. The tenon 20, which is integral with the second pivot 8, extends both through the helical groove 22 in the hollow inner tube 14, and through the helical groove 18 in the hollow body 2, and can slide along these two grooves 18, 22. In addition, as illustrated in
The hollow body 2 and the hollow inner tube 14 are thus configured such that a displacement of the lug 12 along the longitudinal groove 16 towards the second pivot 8 gives rise to a displacement of the second pivot 8 in the hollow inner tube 14 towards the lug 12. This makes it possible to bring the first and second pivots 4, 8 towards one another inside the hollow body 2, as shown in
The operation of the bar 1 according to the first embodiment of the invention will now be described with reference to
When a user of the watch pushes the lug 12 with a finger in the direction of the centre of the bar 1, in addition to the retraction of the first pivot 4, an inner helical surface 26 of the helical groove 22 in the hollow inner tube 14, shown in
When the user of the watch releases the lug 12, the spring 10 exerts a force which tends to push back the hollow inner tube 14 and the shaft 6, and thus the first and second pivots 4, 8, in opposite directions. The position of rest of the bar 1 is then regained.
A bar 30 for securing a wristlet on a watch according to a second embodiment of the invention will now be described with reference to
The bar 30 comprises a hollow body 32, a first shaft 33 which is arranged in the hollow body 32 and is provided with a first pivot 34, and a second shaft 36 which is arranged in the hollow body 32 and provided with a second pivot 38. The bar 30 is designed to be inserted in a guide of the wristlet, each of the first and second pivots 34, 38 being introduced into a corresponding receptacle of a respective horn of the watch case, thus allowing the wristlet to be secured on the watch. The bar 30 additionally comprises a spring 40 and a hollow inner tube 44. The spring 40 and the hollow inner tube 44 are arranged in the hollow body 32.
Each of the first and second pivots 34, 38 can slide in a respective end 15A, 15B of the hollow body 32. The hollow body 32 is provided on the first pivot 34 side with a first longitudinal groove 46, the longitudinal direction being taken as the largest direction in which the hollow body 32 extends. The first longitudinal groove 46 forms an opening in the surface of the hollow body 32. On the second pivot 38 side, the hollow body 32 also comprises an additional groove 48. In the particular embodiment illustrated in
The first shaft 33 also comprises a lug 52 which is integral with the first pivot 34. The lug 52 extends from an outer surface of the first pivot 34, substantially perpendicularly to the longitudinal direction in which the first pivot 34 extends. The lug 52 is designed to be manipulated by a user of the watch, and thus constitutes a unit for actuation of the bar 30, permitting the retraction of the first and second pivots 34, 38, as will be described in detail hereinafter.
The second shaft 36 also comprises a tenon 54 which is integral with the second pivot 38. The tenon 54 extends from an outer surface of the second pivot 38, substantially perpendicularly to the longitudinal direction in which the second pivot 38 extends. The first pivot 34, the second pivot 38 and the spring 40 are inserted in the hollow inner tube 44. The spring 40 is retained supported between the first and second pivots 34, 38. As illustrated in
The hollow inner tube 44 is configured to cooperate with the first pivot 34 and with the second pivot 38. More specifically, on the first pivot 34 side, the hollow inner tube 44 comprises a first helical groove 56, and, on the second pivot 38 side, it comprises a second helical groove 58. The first and second helical grooves 56, 58 form respective openings in the surface of the hollow inner tube 44. The first helical groove 56 has a length which is longer than that of the second helical groove 58. The helicoid defined by the first helical groove 56 is wound on the hollow inner tube 44 in a direction opposite that of the helicoid defined by the second helical groove 58. Preferably, the helicoid defined by the first helical groove 56 has an angle of inclination relative to a plane P1 perpendicular to the longitudinal direction in which the hollow inner tube 44 extends, the absolute value of which is different from, for example greater than, the absolute value of an angle of inclination formed by the helicoid defined by the second helical groove 58 relative to the plane P1. The lug 52, which is integral with the first pivot 34, extends both through the first helical groove 56 in the hollow inner tube 44, and through the first longitudinal groove 46 in the hollow body 32, and can slide along these two grooves 46, 56. The tenon 54, which is integral with the second pivot 38, extends both through the second helical groove 58 in the hollow inner tube 44, and through the second longitudinal groove 48 in the hollow body 32, and can slide along these two grooves 48, 58.
The hollow inner tube 44 can turn around its longitudinal direction inside the hollow body 32.
The hollow body 32 and the hollow inner tube 44 are thus configured such that a displacement of the lug 52 along the first longitudinal groove 56 towards the second pivot 38 gives rise to a displacement of the second pivot 38 in the hollow inner tube 44, towards the lug 52. This makes it possible to bring the first and second pivots 34, 38 towards one another inside the hollow body 32, as shown in
The operation of the bar 30 according to the second embodiment of the invention will now be described with reference to
When a user of the watch pushes the lug 52 with a finger in the direction of the centre of the bar 30, in addition to the retraction of the first pivot 34, the rubbing of the base of the lug 52 against an inner helical surface 60 of the first helical groove 56, shown in
When the user of the watch releases the lug 52, the spring 40 exerts a force which tends to push the first and second shafts 33, 36 back, and therefore the first and second pivots 34, 38, in opposite directions. The position of rest of the bar 30 is then regained.
Number | Date | Country | Kind |
---|---|---|---|
18168777.3 | Apr 2018 | EP | regional |