The present invention relates to a prosthetic knit equipped with barbs, capable of being rolled up on itself, then unrolled effortlessly. Such a knit can particularly be used for producing wall-reinforcing prostheses intended to be introduced into a patient by coelioscopy.
Wall-reinforcing prostheses, for example prostheses for reinforcing the abdominal wall, are widely used in the surgical field. These prostheses are intended to treat hernias by temporarily or permanently filling a tissue defect. These prostheses are generally made of biocompatible prosthetic fabric and can have a number of shapes, for example rectangular, circular or oval, depending on the anatomical structure to which they are to be fitted. Some of these prostheses are made from entirely bioresorbable yarns and are intended to disappear after having carried out their reinforcing role while cell colonization takes place and tissue rehabilitation takes over. Other prostheses comprise non-bioresorbable yarns and are intended to remain permanently in the body of the patient.
Some of these prostheses are made from an arrangement of yarns, a knit, a woven fabric or non-woven fabric, comprising barbs that protrude outwards from one face of the prosthesis: these barbs constitute hooks that are able to fix themselves either in another prosthetic fabric, belonging to the same prosthesis or not, or directly in the biological tissues, for example the abdominal wall.
Furthermore, for the sake of minimizing the traumatisms subsequent to any surgical operation, patients are increasingly often operated on via coelioscopic surgery when the type of operation carried out permits it. Coelioscopic surgery requires only very small incisions, through which a trocar is passed, within which the prosthesis is conveyed to the implantation site. Thus open surgery is avoided and the patient can leave hospital rapidly. Coelioscopic surgery is particularly popular in surgical operations carried out in the abdomen, such as for example the treatment of hernias.
However, the trocars used in coelioscopic surgery generally have a relatively small calibrated diameter, which may vary, for example, from 5 to 15 mm, in order to reduce the size of the incision made as much as possible. The prosthesis must therefore be conveyed within a channel of reduced diameter and it must then be deployed at the implantation site.
In order to carry out this step, the prosthesis is generally rolled up on itself in order to make it slide in the channel of the trocar or directly introduced by force. However, when the prosthetic fabric forming the prosthesis comprises barbs on one face, it may happen that these barbs become entangled in the body of the fabric and upset the subsequent deployment of the prosthesis at the implantation site. Furthermore, due to the fact that they are not protected, the barbs may be damaged during the unrolling of the prosthesis or during its transportation through the trocar to the implantation site.
Thus, there remains the need for a prosthetic fabric comprising barbs, that can be used for manufacturing prostheses, such as for example abdominal wall reinforcements, capable of being rolled up on itself in order to be conveyed within a channel such as that of a trocar, without damaging the barbs, and then capable of being completely deployed, and preferably in an easy manner, once it has reached the implantation site in the body of the patient.
The present invention aims to meet such a need.
A first aspect of the invention is a prosthetic knit based on at least a first yarn of biocompatible polymer material defining first and second opposite and openwork faces, and on at least a second biocompatible and heat-fusible monofilament yarn, forming barbs that protrude outwards from at least said first face and are obtained by melting loops generated by said second yarn, the chart followed for the knitting of said first and second yarns on a warp knitting machine having three guide bars B1, B2, B3 being the following, according to the ISO 11676 standard:
The knit according to the invention has both openwork faces, which favour cell recolonization, and barbs, suitable for hooking into biological tissues or any other textile, and an ability to be rolled up on itself, then unrolled effortlessly.
The knit according to the invention can be used as is in order to constitute a reinforcing prosthesis for repairing a hernia, or it may constitute one part of a reinforcing prosthesis for repairing hernias: for example, it may be partially or completely coated over part or all of its faces with a coating made of a biocompatible, for example non-stick, material; alternatively or in combination, the knit according to the invention may be combined with another textile in order to form a composite reinforcing prosthesis.
In the present application, the expression “openwork face” is understood to mean that said face comprises openings or pores: these openings or pores are in particular generated by the chart followed for the knitting of the yarns of the knit according to the invention, and may correspond to the various meshes of said knit.
The barbs of the knit according to the invention may protrude from the first face substantially perpendicular to the plane of said face or alternatively along one or more planes that are inclined relative to the plane of said face. These barbs are intended to function as fastening means, either by becoming entangled in one or more arrangements of yarns, fibres, filaments and/or multifilaments of another prosthetic fabric, for example in order to form a composite reinforcing prosthesis, or by anchoring directly in the biological tissues, such as for example an abdominal wall, once the prosthesis comprising this knit or constituted of this knit is implanted. Generally, these barbs have the shape of a shaft, having the diameter of the yarn used for their formation, surmounted by a head having a diameter greater than that of the shaft.
In the knit according to the invention, the chart followed for the knitting of the yarns of the knit generates a particular structure of the knit, that is to say a specific arrangement between the various openings of the faces of the knit, the respective size of these various openings and the position and distribution of the barbs being such that, even if some of the barbs present on the first face are caused to be trapped within some of the openings present on the second face when the knit is rolled up on itself under the effect of an external stress, such as for example the stress exerted by the surgeon when he rolls the knit or the prosthesis comprising the knit up on itself in order to introduce it into a trocar, and subsequently the stress exerted by the internal walls of the trocar, then a large number of the barbs trapped will be released automatically, or under the effect of a very small unrolling force, when said stress is relieved.
The knit according to the invention can be used to produce a reinforcing prosthesis for repairing a hernia. Thus, when the surgeon wishes to implant a prosthesis formed of a knit according to the invention, he can easily roll the knit up on itself, for example by folding the face provided with barbs outwards. It is then possible to introduce the knit according to the invention, thus rolled up, into a trocar, for example having an internal diameter of 10 mm. Once the knit according to the invention has been thus conveyed in the form of a roll to the implantation site via the trocar, it can be unrolled and deployed easily: indeed, even if some of the barbs were trapped within some of the openings present on the second face of the knit during the rolling up of the knit according to the invention and during its passage in the trocar, the particular structure of the knit according to the invention obtained by means of the particular chart followed during the knitting of the knit according to the invention means that these trapped barbs can be released very easily by exerting a minimal force for unrolling the knit. Thus, even if the barbs were entangled when the prosthesis was rolled up, they can be easily disentangled, and the surgeon can deploy the knit and/or the prosthesis easily in order to position it correctly on the implantation site.
The knit can then be fastened either to another fabric, or to a biological wall, owing to the anchoring abilities of the barbs.
In one embodiment of the invention, the first yarn or yarns are monofilament yarns. The first yarn or yarns of the knit according to the invention are those that follow the charts of bars B1 and B2. They constitute the ground structure or alternatively the base of the knit according to the invention, since the second yarn, namely a heat-fusible monofilament yarn, so as to generate the barbs, is regularly cut at the loops that it forms. The generation of barbs from loops made of heat-fusible yarn is known and is described, for example in document WO 01/81667. When the first yarn or yarns are monofilament yarns, the possible presence of protrusions or anchorage points of the barbs is limited and the force needed to unroll the knit after the rolling up as described above is very small.
The first yarns of the knit according to the invention may be made of any biodegradable or non-biodegradable biocompatible material. Thus, the biodegradable materials suitable for the first yarns of the knit of the present invention may be selected from polylactic acid (PLA), polyglycolic acid (PGA), oxidized cellulose, polycaprolactone (PCL), polydioxanone (PDO), trimethylene carbonate (TMC), polyvinyl alcohol (PVA), polyhydroxyalkanoates (PHAs), copolymers thereof and mixtures thereof. The non-biodegradable materials suitable for the first yarns of the knit of the present invention may be selected from polyethylene terephthalate (PET), polyamides, aramids, expanded polytetrafluoroethylene, polyurethane, polyvinylidene difluoride (PVDF), butyl ester polymers, polyetheretherketone (PEEK), polyolefins (such as polyethylene or polypropylene), polyethers, copper alloys, silver or platinum alloys, medical grades of steel such as medical-grade stainless steel, and combinations thereof.
In one embodiment of the invention, the first yarns are monofilament yarns made of polyester terephthalate (PET) having a diameter of 0.09 mm. Such yarns have an intrinsic stiffness meaning that when these yarns follow the particular charts of bars B1 and B2 of the knit according to the present invention, the knit obtained naturally tends to return to a flat configuration when it is unrolled under the effect of a stress as described above.
The second heat-fusible monofilament yarn may be made of a bioresorbable or non-bioresorbable material. For example, the heat-fusible monofilament yarn is made of a material selected from polypropylene, polyglycolic acid, polylactic acid, and mixtures thereof. In one embodiment, the heat-fusible monofilament yarn is a polylactic acid monofilament yarn having a diameter of 0.15 mm: such a yarn having such a diameter makes it possible to obtain barbs that have good anchoring abilities in biological tissues or in another openwork textile, while maintaining the ability of the knit according to the invention to be unrolled easily.
Another aspect of the invention is a process for manufacturing a prosthetic knit as described above, comprising the following steps:
In the process according to the invention the yarns threaded on bar B1 and bar B2 are the first yarns made of biocompatible polymer material: these yarns may be identical or different. Thus, as seen above, these yarns may be monofilament yarns, in particular monofilament yarns made of polyester terephthalate (PET) having a diameter of 0.09 mm.
In one embodiment of the invention, the yarns are threaded one full, one empty on bars B1 and B2, and one full, three empty on bar B3.
Another aspect of the invention is a knit capable of being obtained according to the above process.
Another aspect of the invention is a prosthesis for repairing a hernia, comprising a knit as described above or obtained according to the process described above.
The knit according to the invention and/or the prosthesis according to the invention may be used in a method for treating a hernia, in particular the abdominal wall. The knit and the prosthesis according to the invention are particularly suitable for coelioscopic or laparoscopic surgery.
The advantages of the present invention are illustrated by means of the experimental section which follows and the following supporting figures:
Produced on a warp knitting machine having three guide bars B1, B2 and B3, were a knit A, according to the invention, and a comparative knit B, the chart of which differs from that of the knit according to the invention.
Knit A: according to the invention, having the following chart according to the ISO 11676 standard:
These charts are illustrated in
Bar B1 and bar B2 are each threaded 1 full, 1 empty, with a monofilament yarn made of polyester terephthalate (PET) having a diameter of 0.09 mm; bar B3, which gives rise to the barbs, is threaded 1 full, 3 empty, with a heat-fusible monofilament yarn made of polylactic acid having a diameter of 0.15 mm.
Knit B: comparative, having the following chart according to the ISO 11676 standard:
The chart of bar B2 is illustrated in
Bar B1 and bar B2 are each threaded 1 full, 1 empty, with a monofilament yarn made of polyester terephthalate (PET) having a diameter of 0.08 mm; bar B3, which gives rise to the barbs, is threaded 1 full, 3 empty, with a heat-fusible monofilament yarn made of polylactic acid having a diameter of 0.15 mm.
For each of the two knits A and B, bar B3 is the one that leads to the formation of the barbs. Since the bars B3 are threaded in an identical manner for the two knits, and these bars have the same chart, the density of the barbs, once the loops have been melted, is the same for both knits.
Once the loops have been melted and the barbs have been formed as described in WO 01/81667, the unrolling properties were evaluated after rolling these knits up on themselves, according to the following test:
On exiting the trocar, as shown in
These “points of resistance” are measured as follows: using measured values of the force F and length L of the unrolled portion as indicated above, the curve representing the force F, in newtons, is plotted as a function of the length L of the unrolled portion in mm, of the sample 1. Next, a threshold value is determined for the force F, for example 0.5 N. Each peak of the curve having a value greater than 0.5 N is considered to be a point of resistance. An example of such a curve, showing the peaks counted encircled, is represented in
The results obtained for knit A according to the invention and comparative knit B are presented in Table I below:
As it emerges from this table, the knit according to the invention (Knit A) has significantly fewer points of resistance than the knit from the prior art (Knit B). The average force needed to unroll the knit of the invention, after it has been rolled up on itself then passed through a trocar having an internal diameter of 10 mm is substantially lower than that needed to unroll the knit from the prior art. Likewise, the maximum force needed to unroll knit A according to the invention is practically divided by 3 compared to the maximum force needed in the case of the comparative knit B.
Thus, the knit according to the invention can be unrolled easily after having been rolled up on itself then passed through a trocar having a diameter of 10 mm. The knit can thus be brought to an implantation site during laparoscopic or coelioscopic surgery for repairing a hernia, by means of a trocar, then it can be unrolled without the surgeon having to apply considerable force in order to deploy the knit and/or the prosthesis comprising said knit.
Number | Date | Country | Kind |
---|---|---|---|
11/62535 | Dec 2011 | FR | national |
This application is a continuation of U.S. patent application Ser. No. 16/436,979 filed on Jun. 11, 2019, now U.S. Pat. No. 11,266,489, which is continuation of U.S. patent application Ser. No. 15/262,165 filed on Sep. 12, 2016, now U.S. Pat. No. 10,342,652, which is a continuation of U.S. patent application Ser. No. 14/366,393 filed Jun. 18, 2014, now U.S. Pat. No. 9,445,883, which is a National Stage Application of PCT/EP2012/076981 filed Dec. 27, 2012, which claims the benefit of and priority to French Patent Application Serial No. 1162535 filed on Dec. 29, 2011, the disclosures of each of the above-identified applications are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1187158 | Mcginley | Jun 1916 | A |
3118294 | Laethem | Jan 1964 | A |
3124136 | Usher | Mar 1964 | A |
3272204 | Artandi et al. | Sep 1966 | A |
3276448 | Kronenthal | Oct 1966 | A |
3320649 | Naimer | May 1967 | A |
3364200 | Ashton et al. | Jan 1968 | A |
3570482 | Shigeru et al. | Mar 1971 | A |
4006747 | Kronenthal et al. | Feb 1977 | A |
4060081 | Yannas et al. | Nov 1977 | A |
4173131 | Melton et al. | Nov 1979 | A |
4193137 | Heck | Mar 1980 | A |
4248064 | Odham | Feb 1981 | A |
4294241 | Miyata | Oct 1981 | A |
4307717 | Hymes et al. | Dec 1981 | A |
4338800 | Matsuda | Jul 1982 | A |
4476697 | Unknown | Oct 1984 | A |
4487865 | Balazs et al. | Dec 1984 | A |
4500676 | Balazs et al. | Feb 1985 | A |
4511653 | Play et al. | Apr 1985 | A |
4527404 | Nakagaki et al. | Jul 1985 | A |
4591501 | Cioca | May 1986 | A |
4597762 | Walter et al. | Jul 1986 | A |
4603695 | Ikada et al. | Aug 1986 | A |
4631932 | Sommers | Dec 1986 | A |
4670014 | Huc et al. | Jun 1987 | A |
4709562 | Matsuda | Dec 1987 | A |
4748078 | Doi et al. | May 1988 | A |
4759354 | Quarfoot | Jul 1988 | A |
4769038 | Bendavid et al. | Sep 1988 | A |
4796603 | Dahlke et al. | Jan 1989 | A |
4813942 | Alvarez | Mar 1989 | A |
4841962 | Berg et al. | Jun 1989 | A |
4846815 | Scripps | Jul 1989 | A |
4854316 | Davis | Aug 1989 | A |
4925294 | Geshwind et al. | May 1990 | A |
4931546 | Tardy et al. | Jun 1990 | A |
4942875 | Hlavacek et al. | Jul 1990 | A |
4948540 | Nigam | Aug 1990 | A |
4950483 | Ksander et al. | Aug 1990 | A |
4970298 | Silver et al. | Nov 1990 | A |
5002551 | Linsky et al. | Mar 1991 | A |
5147374 | Fernandez | Sep 1992 | A |
5162430 | Rhee et al. | Nov 1992 | A |
5171273 | Silver et al. | Dec 1992 | A |
5176692 | Wilk et al. | Jan 1993 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5196185 | Silver et al. | Mar 1993 | A |
5201745 | Tayot et al. | Apr 1993 | A |
5201764 | Kelman et al. | Apr 1993 | A |
5206028 | Li | Apr 1993 | A |
5217493 | Raad et al. | Jun 1993 | A |
5254133 | Seid | Oct 1993 | A |
5256418 | Kemp et al. | Oct 1993 | A |
5263983 | Yoshizato et al. | Nov 1993 | A |
5304595 | Rhee et al. | Apr 1994 | A |
5306500 | Rhee et al. | Apr 1994 | A |
5324775 | Rhee et al. | Jun 1994 | A |
5328955 | Rhee et al. | Jul 1994 | A |
5334527 | Brysk | Aug 1994 | A |
5339657 | Mcmurray | Aug 1994 | A |
5350583 | Yoshizato et al. | Sep 1994 | A |
5356432 | Rutkow et al. | Oct 1994 | A |
5368549 | Mcvicker | Nov 1994 | A |
5376375 | Rhee et al. | Dec 1994 | A |
5376376 | Li | Dec 1994 | A |
5397331 | Himpens et al. | Mar 1995 | A |
5399361 | Song et al. | Mar 1995 | A |
5413791 | Rhee et al. | May 1995 | A |
5425740 | Hutchinson, Jr. | Jun 1995 | A |
5428022 | Palefsky et al. | Jun 1995 | A |
5433996 | Kranzler et al. | Jul 1995 | A |
5441491 | Verschoor et al. | Aug 1995 | A |
5441508 | Gazielly et al. | Aug 1995 | A |
5456693 | Conston et al. | Oct 1995 | A |
5456711 | Hudson | Oct 1995 | A |
5466462 | Rosenthal et al. | Nov 1995 | A |
5480644 | Freed | Jan 1996 | A |
5487895 | Dapper et al. | Jan 1996 | A |
5490984 | Freed | Feb 1996 | A |
5512291 | Li | Apr 1996 | A |
5512301 | Song et al. | Apr 1996 | A |
5514181 | Light et al. | May 1996 | A |
5522840 | Krajicek | Jun 1996 | A |
5523348 | Rhee et al. | Jun 1996 | A |
5536656 | Kemp et al. | Jul 1996 | A |
5543441 | Rhee et al. | Aug 1996 | A |
5565210 | Rosenthal et al. | Oct 1996 | A |
5567806 | Abdul-Malak et al. | Oct 1996 | A |
5569273 | Titone et al. | Oct 1996 | A |
RE35399 | Eisenberg | Dec 1996 | E |
5593441 | Lichtenstein et al. | Jan 1997 | A |
5595621 | Light et al. | Jan 1997 | A |
5601571 | Moss | Feb 1997 | A |
5607474 | Athanasiou et al. | Mar 1997 | A |
5607590 | Shimizu | Mar 1997 | A |
5614587 | Rhee et al. | Mar 1997 | A |
5618551 | Tardy et al. | Apr 1997 | A |
5634931 | Kugel | Jun 1997 | A |
5639796 | Lee | Jun 1997 | A |
5665391 | Lea | Sep 1997 | A |
5667839 | Berg | Sep 1997 | A |
5681568 | Goldin et al. | Oct 1997 | A |
5686115 | Vournakis et al. | Nov 1997 | A |
5690675 | Sawyer et al. | Nov 1997 | A |
5695525 | Mulhauser et al. | Dec 1997 | A |
5697978 | Sgro | Dec 1997 | A |
5700476 | Rosenthal et al. | Dec 1997 | A |
5700477 | Rosenthal et al. | Dec 1997 | A |
5709934 | Bell et al. | Jan 1998 | A |
5716409 | Debbas | Feb 1998 | A |
5720981 | Eisinger | Feb 1998 | A |
5732572 | Litton | Mar 1998 | A |
5749895 | Sawyer et al. | May 1998 | A |
5752974 | Rhee et al. | May 1998 | A |
5766246 | Mulhauser et al. | Jun 1998 | A |
5766631 | Arnold | Jun 1998 | A |
5769864 | Kugel | Jun 1998 | A |
5771716 | Schlussel | Jun 1998 | A |
5785983 | Furlan et al. | Jul 1998 | A |
5800541 | Rhee et al. | Sep 1998 | A |
5814328 | Gunasekaran | Sep 1998 | A |
5833705 | Ken et al. | Nov 1998 | A |
5840011 | Landgrebe et al. | Nov 1998 | A |
5861034 | Taira et al. | Jan 1999 | A |
5863984 | Doillon et al. | Jan 1999 | A |
5869080 | Mcgregor et al. | Feb 1999 | A |
5871767 | Pionne et al. | Feb 1999 | A |
5876444 | Lai | Mar 1999 | A |
5891558 | Bell et al. | Apr 1999 | A |
5899909 | Claren et al. | May 1999 | A |
5906937 | Sugiyama et al. | May 1999 | A |
5910149 | Kuzmak | Jun 1999 | A |
5911731 | Pham et al. | Jun 1999 | A |
5916225 | Kugel | Jun 1999 | A |
5919232 | Chaffringeon et al. | Jul 1999 | A |
5919233 | Knopf et al. | Jul 1999 | A |
5922026 | Chin | Jul 1999 | A |
5931165 | Reich et al. | Aug 1999 | A |
5942278 | Hagedorn et al. | Aug 1999 | A |
5962136 | Dewez et al. | Oct 1999 | A |
5972022 | Huxel | Oct 1999 | A |
RE36370 | Li | Nov 1999 | E |
5993844 | Abraham et al. | Nov 1999 | A |
5994325 | Roufa et al. | Nov 1999 | A |
5997895 | Narotam et al. | Dec 1999 | A |
6001895 | Harvey et al. | Dec 1999 | A |
6008292 | Lee et al. | Dec 1999 | A |
6015844 | Harvey et al. | Jan 2000 | A |
6039686 | Robert | Mar 2000 | A |
6042534 | Gellman et al. | Mar 2000 | A |
6042592 | Schmitt | Mar 2000 | A |
6043089 | Sugiyama et al. | Mar 2000 | A |
6051425 | Morota et al. | Apr 2000 | A |
6056688 | Benderev et al. | May 2000 | A |
6056970 | Greenawalt et al. | May 2000 | A |
6057148 | Sugiyama et al. | May 2000 | A |
6063396 | Kelleher | May 2000 | A |
6066776 | Goodwin et al. | May 2000 | A |
6066777 | Benchetrit | May 2000 | A |
6071292 | Makower et al. | Jun 2000 | A |
6077281 | Das | Jun 2000 | A |
6080194 | Pachence et al. | Jun 2000 | A |
6083522 | Chu et al. | Jul 2000 | A |
6120539 | Eldridge et al. | Sep 2000 | A |
6132765 | Dicosmo et al. | Oct 2000 | A |
6143037 | Goldstein et al. | Nov 2000 | A |
6153292 | Bell et al. | Nov 2000 | A |
6165488 | Tardy et al. | Dec 2000 | A |
6171318 | Kugel et al. | Jan 2001 | B1 |
6174320 | Kugel et al. | Jan 2001 | B1 |
6176863 | Kugel et al. | Jan 2001 | B1 |
6179872 | Bell et al. | Jan 2001 | B1 |
6197325 | Macphee et al. | Mar 2001 | B1 |
6197934 | Devore et al. | Mar 2001 | B1 |
6197935 | Doillon et al. | Mar 2001 | B1 |
6210439 | Firmin et al. | Apr 2001 | B1 |
6221109 | Geistlich et al. | Apr 2001 | B1 |
6224616 | Kugel | May 2001 | B1 |
6241768 | Agarwal et al. | Jun 2001 | B1 |
6258124 | Darois et al. | Jul 2001 | B1 |
6262332 | Ketharanathan | Jul 2001 | B1 |
6264702 | Ory et al. | Jul 2001 | B1 |
6267772 | Mulhauser et al. | Jul 2001 | B1 |
6277397 | Shimizu | Aug 2001 | B1 |
6280453 | Kugel et al. | Aug 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6290708 | Kugel et al. | Sep 2001 | B1 |
6306424 | Vyakarnam et al. | Oct 2001 | B1 |
6312474 | Francis et al. | Nov 2001 | B1 |
6328686 | Robert | Dec 2001 | B1 |
6334872 | Termin et al. | Jan 2002 | B1 |
6383201 | Dong | May 2002 | B1 |
6391333 | Li et al. | May 2002 | B1 |
6391939 | Tayot et al. | May 2002 | B2 |
6408656 | Ory et al. | Jun 2002 | B1 |
6410044 | Chudzik et al. | Jun 2002 | B1 |
6413742 | Olsen et al. | Jul 2002 | B1 |
6428978 | Olsen et al. | Aug 2002 | B1 |
6436030 | Rehil | Aug 2002 | B2 |
6440167 | Shimizu | Aug 2002 | B2 |
6443964 | Ory et al. | Sep 2002 | B1 |
6447551 | Goldmann | Sep 2002 | B1 |
6447802 | Sessions et al. | Sep 2002 | B2 |
6448378 | Devore et al. | Sep 2002 | B2 |
6451032 | Ory et al. | Sep 2002 | B1 |
6451301 | Sessions et al. | Sep 2002 | B1 |
6454787 | Maddalo et al. | Sep 2002 | B1 |
6477865 | Matsumoto | Nov 2002 | B1 |
6479072 | Morgan et al. | Nov 2002 | B1 |
6500464 | Ceres et al. | Dec 2002 | B2 |
6509031 | Miller et al. | Jan 2003 | B1 |
6511958 | Atkinson et al. | Jan 2003 | B1 |
6514286 | Leatherbury et al. | Feb 2003 | B1 |
6514514 | Atkinson et al. | Feb 2003 | B1 |
6540773 | Dong | Apr 2003 | B2 |
6541023 | Andre et al. | Apr 2003 | B1 |
6548077 | Gunasekaran | Apr 2003 | B1 |
6554855 | Dong | Apr 2003 | B1 |
6559119 | Burgess et al. | May 2003 | B1 |
6566345 | Miller et al. | May 2003 | B2 |
6575988 | Rousseau | Jun 2003 | B2 |
6576019 | Atala | Jun 2003 | B1 |
6596002 | Therin et al. | Jul 2003 | B2 |
6596304 | Bayon et al. | Jul 2003 | B1 |
6599323 | Melican et al. | Jul 2003 | B2 |
6599524 | Li et al. | Jul 2003 | B2 |
6599690 | Abraham et al. | Jul 2003 | B1 |
6613348 | Jain | Sep 2003 | B1 |
6623963 | Mueller et al. | Sep 2003 | B1 |
6630414 | Matsumoto | Oct 2003 | B1 |
6638284 | Rousseau et al. | Oct 2003 | B1 |
6652594 | Francis et al. | Nov 2003 | B2 |
6653450 | Berg et al. | Nov 2003 | B1 |
6656206 | Corcoran et al. | Dec 2003 | B2 |
6660280 | Allard et al. | Dec 2003 | B1 |
6669735 | Pelissier | Dec 2003 | B1 |
6682760 | Noff et al. | Jan 2004 | B2 |
6685714 | Rousseau | Feb 2004 | B2 |
6706684 | Bayon et al. | Mar 2004 | B1 |
6706690 | Reich et al. | Mar 2004 | B2 |
6719795 | Bryan et al. | Apr 2004 | B1 |
6723335 | Moehlenbruck et al. | Apr 2004 | B1 |
6730299 | Tayot et al. | May 2004 | B1 |
6736823 | Darois et al. | May 2004 | B2 |
6743435 | Devore et al. | Jun 2004 | B2 |
6755868 | Rousseau | Jun 2004 | B2 |
6773723 | Spiro et al. | Aug 2004 | B1 |
6783554 | Amara et al. | Aug 2004 | B2 |
6790213 | Cherok et al. | Sep 2004 | B2 |
6790454 | Abdul et al. | Sep 2004 | B1 |
6800082 | Rousseau | Oct 2004 | B2 |
6833408 | Sehl et al. | Dec 2004 | B2 |
6835336 | Watt | Dec 2004 | B2 |
6852330 | Bowman et al. | Feb 2005 | B2 |
6869938 | Schwartz et al. | Mar 2005 | B1 |
6893653 | Abraham et al. | May 2005 | B2 |
6896904 | Spiro et al. | May 2005 | B2 |
6936276 | Spiro et al. | Aug 2005 | B2 |
6939562 | Spiro et al. | Sep 2005 | B2 |
6949625 | Tayot | Sep 2005 | B2 |
6966918 | Schuldt-Hempe et al. | Nov 2005 | B1 |
6971252 | Therin et al. | Dec 2005 | B2 |
6974679 | Andre et al. | Dec 2005 | B2 |
6974862 | Ringeisen et al. | Dec 2005 | B2 |
6977231 | Matsuda | Dec 2005 | B1 |
6988386 | Okawa et al. | Jan 2006 | B1 |
7025063 | Snitkin et al. | Apr 2006 | B2 |
7041868 | Greene et al. | May 2006 | B2 |
RE39172 | Bayon et al. | Jul 2006 | E |
7098315 | Schaufler | Aug 2006 | B2 |
7101381 | Ford et al. | Sep 2006 | B2 |
7115220 | Dubson et al. | Oct 2006 | B2 |
7156858 | Schuldt-Hempe et al. | Jan 2007 | B2 |
7175852 | Simmoteit et al. | Feb 2007 | B2 |
7192604 | Brown et al. | Mar 2007 | B2 |
7207962 | Anand et al. | Apr 2007 | B2 |
7214765 | Ringeisen et al. | May 2007 | B2 |
7226611 | Yura et al. | Jun 2007 | B2 |
7229453 | Anderson et al. | Jun 2007 | B2 |
7594921 | Browning | Sep 2009 | B2 |
7615065 | Priewe et al. | Nov 2009 | B2 |
7670380 | Cauthen, III | Mar 2010 | B2 |
7709017 | Tayot et al. | May 2010 | B2 |
7718556 | Matsuda et al. | May 2010 | B2 |
7732354 | Fricke et al. | Jun 2010 | B2 |
7785334 | Ford et al. | Aug 2010 | B2 |
7799767 | Lamberti et al. | Sep 2010 | B2 |
7806905 | Ford et al. | Oct 2010 | B2 |
7824420 | Eldridge et al. | Nov 2010 | B2 |
7846171 | Kullas et al. | Dec 2010 | B2 |
7905825 | Arnal et al. | Mar 2011 | B2 |
8142515 | Therin et al. | Mar 2012 | B2 |
8197837 | Jamiolkowski et al. | Jun 2012 | B2 |
8323675 | Greenawalt | Dec 2012 | B2 |
8366787 | Brown et al. | Feb 2013 | B2 |
8418508 | Lecuivre et al. | Apr 2013 | B2 |
8709094 | Stad et al. | Apr 2014 | B2 |
8834578 | Bayon et al. | Sep 2014 | B2 |
8834864 | Odar et al. | Sep 2014 | B2 |
8846060 | Archibald et al. | Sep 2014 | B2 |
8877233 | Obermiller et al. | Nov 2014 | B2 |
8956373 | Ford et al. | Feb 2015 | B2 |
8961850 | Wood et al. | Feb 2015 | B2 |
9034357 | Stopek | May 2015 | B2 |
9398943 | Criscuolo et al. | Jul 2016 | B2 |
9445883 | Lecuivre et al. | Sep 2016 | B2 |
10342652 | Lecuivre et al. | Jul 2019 | B2 |
10865505 | Montanari et al. | Dec 2020 | B2 |
11266489 | Lecuivre | Mar 2022 | B2 |
20020095218 | Carr et al. | Jul 2002 | A1 |
20030086975 | Ringeisen | May 2003 | A1 |
20030114937 | Leatherbury et al. | Jun 2003 | A1 |
20030133967 | Ruszczak et al. | Jul 2003 | A1 |
20030225355 | Butler | Dec 2003 | A1 |
20040034373 | Schuldt-Hempe et al. | Feb 2004 | A1 |
20040059356 | Gingras | Mar 2004 | A1 |
20040101546 | Gorman et al. | May 2004 | A1 |
20050002893 | Goldmann | Jan 2005 | A1 |
20050021058 | Negro | Jan 2005 | A1 |
20050085924 | Darois et al. | Apr 2005 | A1 |
20050113849 | Popadiuk et al. | May 2005 | A1 |
20050137512 | Campbell et al. | Jun 2005 | A1 |
20050142161 | Freeman et al. | Jun 2005 | A1 |
20050148963 | Brennan | Jul 2005 | A1 |
20050175659 | Macomber et al. | Aug 2005 | A1 |
20050232979 | Shoshan | Oct 2005 | A1 |
20050267521 | Forsberg | Dec 2005 | A1 |
20050288691 | Leiboff | Dec 2005 | A1 |
20060135921 | Wiercinski et al. | Jun 2006 | A1 |
20060147501 | Hillas et al. | Jul 2006 | A1 |
20060216320 | Kitazono et al. | Sep 2006 | A1 |
20060252981 | Matsuda et al. | Nov 2006 | A1 |
20070299538 | Roeber | Dec 2007 | A1 |
20090192532 | Spinnler et al. | Jul 2009 | A1 |
20130172915 | Thomas et al. | Jul 2013 | A1 |
20140228867 | Thomas et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
1317836 | May 1993 | CA |
19544162 | Apr 1997 | DE |
10019604 | Oct 2001 | DE |
10043396 | Jun 2002 | DE |
0194192 | Sep 1986 | EP |
0248544 | Dec 1987 | EP |
0276890 | Aug 1988 | EP |
0372969 | Jun 1990 | EP |
0544485 | Jun 1993 | EP |
0552576 | Jul 1993 | EP |
0614650 | Sep 1994 | EP |
0621014 | Oct 1994 | EP |
0625891 | Nov 1994 | EP |
0637452 | Feb 1995 | EP |
0705878 | Apr 1996 | EP |
0719527 | Jul 1996 | EP |
0774240 | May 1997 | EP |
0797962 | Oct 1997 | EP |
0827724 | Mar 1998 | EP |
0836838 | Apr 1998 | EP |
0895762 | Feb 1999 | EP |
0898944 | Mar 1999 | EP |
1017415 | Jul 2000 | EP |
1052319 | Nov 2000 | EP |
1055757 | Nov 2000 | EP |
1216717 | Jun 2002 | EP |
1216718 | Jun 2002 | EP |
0693523 | Nov 2002 | EP |
1315468 | Jun 2003 | EP |
1382728 | Jan 2004 | EP |
1484070 | Dec 2004 | EP |
1561480 | Aug 2005 | EP |
1782848 | May 2007 | EP |
2244853 | Apr 1975 | FR |
2257262 | Aug 1975 | FR |
2308349 | Nov 1976 | FR |
2453231 | Oct 1980 | FR |
2715405 | Jul 1995 | FR |
2724563 | Mar 1996 | FR |
2744906 | Aug 1997 | FR |
2766698 | Feb 1999 | FR |
2771622 | Jun 1999 | FR |
2779937 | Dec 1999 | FR |
2859624 | Dec 2005 | FR |
2863277 | Jun 2006 | FR |
2884706 | Apr 2008 | FR |
2051153 | Jan 1981 | GB |
H0332677 | Mar 1991 | JP |
H05237128 | Sep 1993 | JP |
H09137380 | May 1997 | JP |
9532687 | Dec 1995 | NO |
9906080 | Feb 1999 | NO |
8902445 | Mar 1989 | WO |
8908467 | Sep 1989 | WO |
9012551 | Nov 1990 | WO |
9206639 | Apr 1992 | WO |
9220349 | Nov 1992 | WO |
9311805 | Jun 1993 | WO |
9318174 | Sep 1993 | WO |
9417747 | Aug 1994 | WO |
9507666 | Mar 1995 | WO |
9518638 | Jul 1995 | WO |
9603091 | Feb 1996 | WO |
9608277 | Mar 1996 | WO |
9609795 | Apr 1996 | WO |
9614805 | May 1996 | WO |
9641588 | Dec 1996 | WO |
9735533 | Oct 1997 | WO |
9835632 | Aug 1998 | WO |
9849967 | Nov 1998 | WO |
9905990 | Feb 1999 | WO |
9906079 | Feb 1999 | WO |
9951163 | Oct 1999 | WO |
0016821 | Mar 2000 | WO |
0067663 | Nov 2000 | WO |
0115625 | Mar 2001 | WO |
0180773 | Nov 2001 | WO |
0181667 | Nov 2001 | WO |
0207648 | Jan 2002 | WO |
02078568 | Oct 2002 | WO |
03002168 | Jan 2003 | WO |
2004004600 | Jan 2004 | WO |
2004071349 | Aug 2004 | WO |
2004078120 | Sep 2004 | WO |
2004103212 | Dec 2004 | WO |
2005011280 | Feb 2005 | WO |
2005013863 | Feb 2005 | WO |
2005018698 | Mar 2005 | WO |
2005105172 | Nov 2005 | WO |
2006018552 | Feb 2006 | WO |
2006023444 | Mar 2006 | WO |
2009071998 | Jun 2009 | WO |
2009031035 | Jan 2010 | WO |
2007048099 | Sep 2010 | WO |
2011027087 | Mar 2011 | WO |
Entry |
---|
Amid, P., “Lichtenstein tension-free hernioplasty: Its inception, evolution, and principles,” Hernia, 2004; pp. 1-7, 8, published online Sep. 2003. |
Australian Patent Examination Report dated Aug. 15, 2016 in corresponding Australian Patent Application No. 2012360855, 2 pages. |
Blondin, C. et al., “Inhibition of Complement Activation by Natural Sulfated Polysaccharides (Fucans) from Brown Seaweed,” Molecular Immuol., Mar. 1994, pp. 247-253, 31(4). |
Blondin, C. et al., “Relationships between chemical characteristics and anticomplementary activity of fucans,” Biomaterials, Mar. 1996, pp. 597-603, 17(6). |
Boisson-Vidal, C. et al., “Neoangiogenesis Induced by Progenitor Endothelial Cells: Effect of Fucoidan From Marine Algae,” Cardiovascular & Hematological Agents in Medicinal Chem., Jan. 2007, pp. 67-77, 5(1). |
Bracco, P. et al., “Comparison of polypropylene and polyethylene terephthalate (Dacron) meshes for abdominal wall hernia repair: A chemical and morphological study,” Hernia, 2005, pp. 51-55, 9 (1), published online Sep. 2004. |
Collins, R. et al., “Use of collagen film as a dural substitute: Preliminary animal studies,” Journal of Biomedical Materials Research, Feb. 1991, pp. 267-276, vol. 25. |
Communication pursurant to Article 94(3) EPC issued in European Patent Application No. 19154116.8 dated Jan. 13, 2022, 7 pages. |
Ellouali, M. et al., “Antitumor Activity of Low Molecular Weight Fucans Extracted from Brown Seaweed Ascophyllu hodosum,” Anticancer Res., Nov.-Dec. 1993, pp. 2011-2020, 12 (6A). |
Extended European Search Report issued in EP Patent Application No. 19154116.8 dated Jun. 6, 2019, 6 pages. |
Haneji, K et al., “Fucoidan extracted from Cladosiphon Okamuranus Tokida Induces Apoptosis of Human T-cell Leukemia Virus Type 1-Infected T-Cell Lines and Primary Adult T-Cell Leukemia Cells,” Nutrition and Cancer, 2005, pp. 189-201, 52(2), published online Nov. 2009. |
Haroun-Bouhedja, F. et al., “In Vitro Effects of Fucans on MDA-MB231 Tumor Cell Adhesion and Invasion,” Anticancer Res., Jul.-Aug. 2002, pp. 2285-2292, 22(4). |
Haroun-Bouhedja, F. et al., “Relationship between sulfate groups and biological activities of fucans,” Thrombosis Res., Dec. 2000, pp. 453-459, 100(5). |
Hirano, S. et al., “The blood biocompatibility of chitosan and N-acylchitosans,” J. Biomed. Mater. Res., Apr. 1985, 413-417, 19. |
International Search Report for PCT/EP12/076981 date of completion is Apr. 16, 2013 (2 pages). |
Junge, K. et al., “Functional and Morphologic Properties of a Modified Mesh for Inguinal Hernia Repair,” World J. Surg. Sep. 2002, pp. 1472-1480, 26. |
Kanabar, V. et al., “Some structural determinants of the antiproliferative effect of heparin-like molecules on human airway smooth muscle, ” Br. J. Pharmacol., Oct. 2005, pp. 370-777, 146(3). |
Klinge, U. et al., “Foreign Body Reaction to Meshes Used for the Repair of Abdominal Wall Hernias,” Eur J. Surg, Sep. 1999, pp. 665-673, 165. |
Klinge, U. et al., “Functional and Morphological Evaluation of a Low-Weight, Monofilament Polypropylene Mesh for Hernia Repair,” J. Biomed. Mater. Res., Jan. 2002, pp. 129-136, 63. |
Langenbech, M. R. et al., “Comparison of biomaterials in the early postoperative period,” Surg Endosc., May 2003, pp. 1105-1109, 17 (7). |
Logeart, D. et al., “Fucans, sulfated polysaccharides extracted from brown seaweeds, inhibit vascular smooth muscle cell proliferation. II. Degradation and molecular weight effect,” Eur. J. Cell. Biol., Dec. 1997, pp. 385-390, 74(4). |
Malette, W. G. et al., “Chitosan, A New Hemostatic,” Ann Th. Surg., Jul. 1983, pp. 55-58, 36. |
Muzzarelli, R. et al., “Reconstruction of parodontal tissue with chitosan,” Biomaterials, Nov. 1989, pp. 598-604, 10. |
O'Dwyer, P. et al., “Randomized clinical trial assessing impact of a lightweight or heavyweight mesh on chronic pain after inguinal hernia repair,” Br. J. Surg., Feb. 2005, pp. 166-170, 92(2). |
Preliminary Search Report from French Patent Office dated Dec. 20, 2006, 3 pages. |
Prokop, A. et al., “Water Soluble Polymers for Immunoisolation I: Complex Coacevation and Cytotoxicity,” Advances in Polymer Science, Jul. 1998, pp. 1-51, 136. |
Rao, B. et al., “Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential,” J. Biomed. Mater. Res., Jan. 1997, pp. 21-28, 34. |
Rosen, M. et al., “Laparoscopic component separation in the single-stage treatment of infected abdominal wall prosthetic removal,” Hernia, 2007, pp. 435-440, 11, published online Jul. 2007. |
Scheidbach, H. et al., “In vivo studies comparing the biocompatibility of various polypropylene meshes and their handling properties during endoscopic total extraperitoneal (TEP) patchplasty: An experimental study in pigs,” Surg. Endosc., Feb. 2004, pp. 211-220, 18(2). |
Strand, S. et al., “Screening of Chitosans and Conditions for Bacterial Flocculation,” Biomacromolecules, Mar. 2001, 126-133, 2. |
Varum, K. et al., “In vitro degradation rates of partially N-acetylated chitosans in human serum,” Carbohydrate Research, Mar. 1997, pp. 99-101, 299. |
Welty, G. et al., “Functional impairment and complaints following incisional hernia repair with different polypropylene meshes,” Hernia, Aug. 2001; pp. 142-147, 5. |
Zvyagintseva, T. et al., “Inhibition of complement activation by water-soluble polysaccharides of some far-eastern brown seaweeds,” Comparative Biochem and Physiol, Jul. 2000, pp. 209-215, 126(3). |
Number | Date | Country | |
---|---|---|---|
20220211479 A1 | Jul 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16436979 | Jun 2019 | US |
Child | 17689910 | US | |
Parent | 15262165 | Sep 2016 | US |
Child | 16436979 | US | |
Parent | 14366393 | US | |
Child | 15262165 | US |