A barbed suture comprises sharp-edged, resilient protrusions that form acute angles relative to the suture main body. The point of the protrusion faces a direction that is opposite the direction of the suture's path through tissue, so as to anchor the barbs in the tissue when the suture is pulled against the direction of the suture path. Barbed sutures enable knotless methods of anchoring sutures into tissue and have found applications in plastic and reconstructive surgery (Lee, Arch. Facial Plast. Surg., 7, 55-61, 2005) as well as flexor and Achilles tendon repair (McKenzie, JBJS Br., 49, 440-7, 1967 & Motta, Am. J. Sports Med., 25, 172-6, 1997.
Barbed sutures can be made into bi-directional and continuous array designs. In continuous array designs, the barbs point in only one direction along the suture length and are used in wound closure procedures in a manner similar to conventional sutures, but without the need of knotting. Bi-directional suture designs include two sets of barbs, one set on either side of the midpoint, wherein the barb sets point at each other and towards the midpoint of the suture. The midpoint of the suture, where the barbs change direction, corresponds to the contact point between the two portions of tissue that are being repaired by the suture. Bi-directional barb sutures have needles at both ends and these needles are passed through the two portions of the tissue, starting at the wound site.
Recent advances in barbed suture technology have been reviewed by Leung, in “Advances in Biomedical Textiles and Healthcare Products”, 62-90, 2004. This review article outlines surgical techniques, holding strengths, and in vivo performance of such sutures. The design of conventional barbed sutures is also reported in U.S. Pat. No. 3,123,077 (“Alcamo”); U.S. Pat. No. 5,053,047 (“Yoon”); and U.S. Pat. No. 5,342,376 (“Ruff”). Surgical methods using barbed sutures are reported in U.S. Pat. No. 5,931,855 (“Buncke”). None of these references disclose a barbed suture having a therapeutic agent coated thereon.
Conventional sutures coated with therapeutic agents have been reported in the literature. Sutures coated with collagen, butyric acid and a variety of growth factors have been used in soft tissue repair. Mazzocca, AAOS 2005, #338; Wright, 50th ORS, 2004, poster #1234; Petersen, 51st ORS 2005, paper number 0076; Schmidmaier, J. Biomed. Mat. Res. (Appl. Biomat.) 58, 449-55, 2001; and Rickert, Growth Factors, 19, 115-26, 2001. These studies have shown promising in vitro and in vivo data.
Sutures coated with antibiotics are clinically available. At present, VICRYL Plus Coated Suture (Ethicon, Somerville, N.J.) is the first and only antibacterial suture cleared by the FDA for inhibiting the colonization of bacteria that cause the majority of surgical site infections(Rothburger, Surgical Infection Society Journal (Suppl) December 2002). VICRYL Plus Coated Sutures contain IRGACARE MP*, the most pure form of triclosan, a proven broad-spectrum antibacterial used effectively in consumer products for more than 30 years. VICRYL Plus Coated Suture is indicated for use in general soft tissue approximation and/or ligation, except ophthalmic, cardiovascular and neurological tissues.
The present invention relates to a barbed suture comprising a therapeutic agent. Self-anchoring sutures, such as those with bi-directional barb designs, facilitate wound closure by anchoring themselves in tissue without the need of additional securement (i.e., knots). This enables the suture to be passed directly through the wound site. Barbed sutures combined with a therapeutic agent (such as recombinant human growth and differentiation factor-5 (rhGDF-5)) would provide a localized delivery of the agent to the wound and an improved healing response. This would be an advantage over conventional sutures coated with bioactive therapeutic agents that are typically stitched along the wound edge, thereby requiring the released agent to diffuse through tissue in order to reach the defect site. As the suture is embedded within the tissue, the therapeutic will be concentrated at the defect site and there will also be less loss of the bioactive therapeutic agent to neighboring tissue. The barbed suture also possesses an increased surface area, which allows for a greater amount of therapeutic agent to be absorbed on the surface per given length of suture as compared to conventional sutures.
Barbed sutures coated with a bioactive therapeutic agent would also have improved wound holding strength, as the therapeutic agent would enhances the quality of the tissue in which the sutures are anchored.
Therefore, in accordance with the present invention, there is provided a method of suturing, comprising the steps of:
Also in accordance with the present invention, there is provided a barbed suture comprising a therapeutic agent.
a and 3b show a barbed suture having localized depots of therapeutic agent on its outer surface.
Now referring to
The therapeutic agent is present in the therapeutic overlay that coats the intermediate portion of the bi-directional suture. This location corresponds to the contact point between the two planes of tissue that are being repaired by the suture.
In another embodiment, the therapeutic coating coats the entire length of the suture. In a preferred embodiment thereof, the concentration of the therapeutic agent is greater in the intermediate portion of the suture than in the first or second end portions.
Now referring to
The sheet 33 containing a bioactive therapeutic agent is placed within the intermediate section of the bi-directional barbed suture. The sheet lays perpendicular to the suture and co-exists within the 2-dimensional plane of the wound site. The sheet is preferably attached to the suture by piercing it with a needled end of the suture and then sliding it to the intermediate portion of the suture. The bi-directional suture design will maintain the sheet at the intermediate portion. Preferably, the sheet comprises a material that loses its rigidity when wetted so that it has the ability to mold and conform to the wound site.
Now referring to
In another embodiment, (not shown), there is provided a blend of resorbable synthetic polymer and therapeutic agent that has been extruded into a monofilament suture. This suture is then subsequently micro-machined to yield the barbed suture, having either a continuous array design or a bi-directional design. The therapeutic agent is released as the suture material degrades in the physiological environment.
In some preferred embodiments, the therapeutic agent to be coated upon the suture is a protein. In some embodiments, the therapeutic protein to be coated upon the suture is selected from the group consisting of growth factors, anti-microbials, analgesics, anti-inflammatory agents, anti-neoplastics, RGD sequences, fibrin and clotting factors.
In some embodiments, the therapeutic agent to be coated upon the suture is selected from the group consisting of amino acids, anabolics, analgesics and antagonists, anaesthetics, anti-adrenergic agents, anti-asthmatics, anti-atherosclerotics, antibacterials, anticholesterolics, anti-coagulants, antidepressants, antidotes, anti-emetics, anti-epileptic drugs, anti-fibrinolytics, anti-inflammatory agents, antihypertensives, antimetabolites, antimigraine agents, antimycotics, antinauseants, antineoplastics, anti-obesity agents, antiprotozoals, antipsychotics, antirheumatics, antiseptics, antivertigo agents, antivirals, appetite stimulants, bacterial vaccines, bioflavonoids, calcium channel blockers, capillary stabilizing agents, coagulants, corticosteroids, detoxifying agents for cytostatic treatment, diagnostic agents (like contrast media, radiopaque agents and radioisotopes), electrolytes, enzymes, enzyme inhibitors, ferments, ferment inhibitors, gangliosides and ganglioside derivatives, hemostatics, hormones, hormone antagonists, hypnotics, immunomodulators, immunostimulants, immunosuppressants, minerals, muscle relaxants, neuromodulators, neurotransmitters and neurotrophins, osmotic diuretics, parasympatholytics, para-sympathomimetics, peptides, proteins, psychostimulants, respiratory stimulants, sedatives, serum lipid reducing agents, smooth muscle relaxants, sympatholytics, sympathomimetics, vasodilators, vasoprotectives, vectors for gene therapy, viral vaccines, viruses, vitamins, oligonucleotides and derivatives, saccharides, polysaccharides, glycoproteins, hyaluronic acid, and any excipient that can be used to stabilize a proteinaceous therapeutic In some embodiments, the therapeutic agent to be coated upon the suture is a non-curing therapeutic agent.
As used herein, the term “growth factors” encompasses any cellular product that modulates the adhesion, migration, proliferation, or differentiation of other cells, particularly connective tissue progenitor cells. The growth factors that may be used in accordance with the present invention include, but are not limited to, members of the fibroblast growth factor family, including acidic and basic fibroblast growth factor (FGF-1 and -2) and FGF-4, members of the platelet-derived growth factor (PDGF) family, including PDGF-AB, PDGF-BB and PDGF-AA; Epidermal Growth Factors (EGFs), members of the insulin-like growth factor (IGF) family, including IGF-I and -II; the Transforming Growth Factor (TGF-β) superfamily, including TGF-β1, 2 and 3 (including rhGDF-5), osteoid-inducing factor (OIF), angiogenin(s), endothelins, hepatocyte growth factor and keratinocyte growth factor; members of the bone morphogenetic proteins (BMP's) BMP-1, (BMP-3); BMP-2; OP-1; BMP-2A, -2B, and -7, BMP-14 ; Heparin Binding Growth Factors HBGF-1 and -2; growth differentiation factors (GDF's), members of the hedgehog family of proteins, including indian, sonic and desert hedgehog; ADMP-1; members of the interleukin (IL) family, including IL-1 thru -6; members of the colony-stimulating factor (CSF) family, including CSF-1, G-CSF, GM-CSF, VEGF integrin binding sequence, ligands, bone morphogenic proteins, epidermal growth factor, IGF-I, IGF-II, TGF-β I-III, growth differentiation factor, parathyroid hormone, hyaluronic acid, glycoprotein, lipoprotein, small molecules that affect the upregulation of specific growth factors, tenascin-C, fibronectin, thromboelastin, thrombin-derived peptides, heparin-binding domains, and isoforms thereof.
In some embodiments, the growth factor is GDF-5, preferably rhGDF-5. More preferably, the rhGDF-5 is administered using a solution with concentrations between 10 ng/mL and 40 mg/mL, more preferably between 100 ng/mL and 10 mg/mL, most preferably between 1 μg/mL and 5 mg/mL.
Any biocompatible fluid capable of coating a suture may be used in accordance with the present invention. Suitable fluids include aqueous liquids (such as saline) and gels that include, but are not limited to, hyaluronic acid, succinalyted collagen, carboxymethyl cellulose (CMC), gelatin, collagen gel, fibrinogen/thrombin, solvents such as ethanol, any excipient that can be used to stabilize a proteinaceous therapeutic and liquid polymers (MGSA).
Preferably, the sutures used in accordance with the present invention will be bioresorbable. However, the sutures may also be non-resorbable. Preferred bioresorbable materials, which can be used to make the sutures of the present invention, include bioresorbable polymers or copolymers, preferably selected from the group consisting of hydroxy acids, (particularly lactic acids and glycolic acids; caprolactone; hydroxybutyrate; dioxanone; orthoesters; orthocarbonates; and aminocarbonates). Preferred bioresorbable materials also include natural materials such as chitosan, collagen, cellulose, fibrin, hyaluronic acid; fibronectin, and mixtures thereof. However, synthetic bioresorbable materials are preferred because they can be manufactured under process specifications which insure repeatable properties.
Synthetic nonresorbable materials include silk, cotton, linen, nylon, polypropylene, polybutester, nylon and polyester.
A variety of bioabsorbable polymers can be used to make the suture of the present invention. Examples of suitable biocompatible, bioabsorbable polymers include but are not limited to polymers selected from the group consisting of aliphatic polyesters, poly(amino acids), copoly(ether-esters), polyalkylenes oxalates, polyamides, tyrosine derived polycarbonates, poly(iminocarbonates), polyorthoesters, polyoxaesters, polyamidoesters, polyoxaesters containing amine groups, poly(anhydrides), polyphosphazenes, biomolecules (i.e., biopolymers such as collagen, elastin, bioabsorbable starches, etc.), polyurethanes, and blends thereof. For the purpose of this invention aliphatic polyesters include, but are not limited to, homopolymers and copolymers of lactide (which includes lactic acid, D-,L- and meso lactide), glycolide (including glycolic acid), ε-caprolactone, p-dioxanone (1,4-dioxan-2-one), trimethylene carbonate (1,3-dioxan-2-one), alkyl derivatives of trimethylene carbonate, δ-valerolactone, β-butyrolactone, χ-butyrolactone, ε-decalactone, hydroxybutyrate, hydroxyvalerate, 1,4-dioxepan-2-one (including its dimer 1,5,8,12-tetraoxacyclotetradecane-7,14-dione), 1,5-dioxepan-2-one, 6,6-dimethyl-1,4-dioxan-2-one, 2,5-diketomorpholine, pivalolactone, χ,χ-diethylpropiolactone, ethylene carbonate, ethylene oxalate, 3-methyl-1,4-dioxane-2,5-dione, 3,3-diethyl-1,4-dioxan-2,5-dione, 6,8-dioxabicycloctane-7-one and polymer blends thereof. Poly(iminocarbonates), for the purpose of this invention, are understood to include those polymers as described by Kemnitzer and Kohn, in the Handbook of Biodegradable Polymers, edited by Domb, et. al., Hardwood Academic Press, pp. 251-272 (1997). Copoly(ether-esters), for the purpose of this invention, are understood to include those copolyester-ethers as described in the Journal of Biomaterials Research, Vol. 22, pages 993-1009, 1988 by Cohn and Younes, and in Polymer Preprints (ACS Division of Polymer Chemistry), Vol. 30(1), page 498, 1989 by Cohn (e.g. PEO/PLA). Polyalkylene oxalates, for the purpose of this invention, include those described in U.S. Pat. Nos. 4,208,511; 4,141,087; 4,130,639; 4,140,678; 4,105,034; and 4,205,399. Polyphosphazenes, co-, ter- and higher order mixed monomer-based polymers made from L-lactide, D,L-lactide, lactic acid, glycolide, glycolic acid, para-dioxanone, trimethylene carbonate and ε-caprolactone such as are described by Allcock in The Encyclopedia of Polymer Science, Vol. 13, pages 31-41, Wiley Intersciences, John Wiley & Sons, 1988 and by Vandorpe, et al in the Handbook of Biodegradable Polymers, edited by Domb, et al, Hardwood Academic Press, pp. 161-182 (1997). Polyanhydrides include those derived from diacids of the form HOOC—C6H4—O—(CH2)m—O—C6H4—COOH, where m is an integer in the range of from 2 to 8, and copolymers thereof with aliphatic alpha-omega diacids of up to 12 carbons. Polyoxaesters, polyoxaamides and polyoxaesters containing amines and/or amido groups are described in one or more of the following U.S. Pat. Nos. 5,464,929; 5,595,751; 5,597,579; 5,607,687; 5,618,552; 5,620,698; 5,645,850; 5,648,088; 5,698,213; 5,700,583; and 5,859,150. Polyorthoesters such as those described by Heller in Handbook of Biodegradable Polymers, edited by Domb, et al, Hardwood Academic Press, pp. 99-118 (1997).
Preferably, the bioresorbable material is selected from the group consisting of poly(lactic acid) (“PLA”) and poly(glycolic acid)(“PGA”), and copolymers thereof.
In some of the preferred embodiments, one of the resorbable sutures is selected from the group consisting of PLA, PGA, polydioxanone (PDO), polycaprolactone (PCL), and mixtures thereof.
In some embodiments, the sutures may comprise shape memory materials such as shape memory polymers and shape memory metals, such as nitinol.
In some preferred embodiments, the suture comprises collagen because rhGDF-5 has a high affinity towards collagen. In some preferred embodiments, the suture comprises surgical gut, which comprises purified connective tissue (of which its main component is type I collagen) derived from either the serosal layer or the submucosal fibrous layer of bovine intestines.
In some embodiments, there is provided a resorbable composite comprising a first resorbable barbed suture and a second resorbable barbed suture, wherein the first resorbable suture is made of a material different than the second resorbable suture, and wherein at least one of the sutures is coated with a therapeutic agent, preferably a growth factor. Preferably, each suture is coated with the growth factor. Preferably, the growth factor is a BMP. More preferably, the growth factor is rhGDF-5. In some embodiments, one of the resorbable sutures is PLGA.
In other embodiments, there is provided a partially resorbable composite comprising a first resorbable barbed suture and a second non-resorbable barbed suture, wherein at least one of the sutures is coated with a growth factor. Preferably, each suture is coated with the growth factor, wherein the growth factor is preferably a BMP. More preferably, the growth factor is rhGDF-5. In some preferred embodiments thereof, the resorbable suture is polydioxanone and the non-resorbable suture is polyethylene. More preferably, the growth factor is coated upon the composite suture disclosed in US Published Patent Application No. US 2005/0149118 (Koyfman), the specification is incorporated by reference in its entirety. In some embodiments, this composite is ORTHOCORD, available from Mitek, Raynham, Mass.
In other embodiments, there is provided a non-resorbable composite comprising a first non-resorbable barbed suture and a second non-resorbable barbed suture, wherein the first non-resorbable suture is made of a material different than the second non-resorbable suture, and wherein at least one of the sutures is coated with a therapeutic agent, preferably a growth factor. Preferably, each suture is coated with the growth factor. Preferably, the growth factor is a BMP. More preferably, the growth factor is rhGDF-5. In some preferred embodiments thereof, the first non-resorbable suture is a polyethylene core, and the second non-resorbable suture is a polyester braided jacket. More preferably, the growth factor is coated upon the composite suture disclosed in U.S. Pat. No. 6,716,234 (“Grafton”), the specification is incorporated by reference in its entirety. In some embodiments, this composite is FIBERWIRE, available from Arthrex, Naples, Fla.
In other embodiments, there is provided a composite suture comprising of a resorbable barbed suture and a resorbable conventional suture(s), wherein the barbed suture is made of a material different then the conventional suture, wherein the conventional suture(s) is braided around the barbed suture, and wherein at least one of the sutures is coated with a therapeutic agent, preferably a growth factor. Preferably, each suture is coated with the growth factor. Preferably, the growth factor is a BMP. More preferably, the growth factor is rhGDF-5. In some embodiments, one of the resorbable sutures is PLGA.
In other embodiments, there is provided a composite suture comprising of a non-resorbable barbed suture and a non-resorbable conventional suture(s), wherein the barbed suture is made of a material different then the conventional suture, wherein the conventional suture(s) is braided around the barbed suture, and wherein at least one of the sutures is coated with a therapeutic agent, preferably a growth factor. Preferably, each suture is coated with the growth factor. Preferably, the growth factor is a BMP. More preferably, the growth factor is rhGDF-5.
In other embodiments, there is provided a composite suture comprising of a non-resorbable barbed suture and a resorbable conventional suture(s), wherein the conventional suture(s) is braided around the barbed suture, and wherein at least one of the sutures is coated with a therapeutic agent, preferably a growth factor. Preferably, each suture is coated with the growth factor. Preferably, the growth factor is a BMP. More preferably, the growth factor is rhGDF-5. In some embodiments, the resorbable conventional sutures are PLGA.
In some embodiments of the present invention, the wound defect that is treated by the barbed suture of the present invention is selected from the group consisting of an anterior cruciate ligament defect, a medial collateral ligament defect, a meniscal defect, a rotator cuff defect, a defect in an annulus fibrosus of an intervertebral disc, a dna ligament. The preferred therapeutic agent therefore is a growth factor, more preferably GDF-5.