The technology of the disclosure relates generally to a radio frequency (RF) transmitter and, more particularly, to an envelope tracking (ET) circuit that controls power amplifiers within an RF transmitter.
Mobile communication devices have become increasingly common in current society for providing wireless communication services. The prevalence of these mobile communication devices is driven in part by the many functions that are now enabled on such devices. Increased processing capabilities in such devices means that mobile communication devices have evolved from being pure communication tools into sophisticated mobile multimedia centers that enable enhanced user experiences.
The redefined user experience requires higher data rates offered by wireless communication technologies, such as Wi-Fi, long-term evolution (LTE), and fifth-generation new-radio (5G-NR). To achieve the higher data rates in mobile communication devices, sophisticated power amplifiers may be employed to increase output power of radio frequency (RF) signals (e.g., maintaining sufficient energy per bit) communicated by mobile communication devices.
Various power amplifier arrangements have been proposed and implemented in transmitter chains within the mobile communication devices to provide the desired output power while also meeting the power level control requirements of 5G-NR. One such power amplifier arrangement is the Doherty dual amplifier, which uses a carrier amplifier to operate at voltages up to the average power and uses the carrier amplifier and a peaking amplifier to operate at voltages between the average power and a peak power. While the Doherty dual amplifier provides options for providing power amplification, there remains room for improved power amplification.
Embodiments of the disclosure relate to a barely Doherty dual envelope tracking (BD2E) circuit. In a non-limiting example, a transmitter chain includes an envelope tracking (ET) circuit that controls a Doherty dual power amplifier array. The ET circuit provides two control signals (supply voltage signals) that are used to control or modulate a carrier amplifier and a peaking amplifier independently of one another. The BD2E circuit includes an improved impedance inverter that isolates the peaking amplifier from the carrier amplifier to allow this independent control. By providing independent control, greater linearity may be provided while preserving the efficiency of the circuit.
In one aspect, a power amplifier circuit is disclosed. The power amplifier circuit comprises a carrier amplifier. The power amplifier circuit also comprises a peaking amplifier. The power amplifier circuit also comprises an impedance inverter coupling the carrier amplifier to the peaking amplifier. The impedance inverter comprises a supply voltage input node, wherein a supply voltage received at the supply voltage input node modulates the carrier amplifier. The power amplifier circuit also comprises a transformer circuit coupled to the peaking amplifier. The transformer circuit comprises a second supply voltage input node, wherein a second supply voltage received at the second supply voltage input node modulates the peaking amplifier separately from modulation of the carrier amplifier. The power amplifier circuit also comprises an output node coupled to the transformer circuit, wherein an amplified signal from the transformer circuit may be output at the output node.
In another aspect, a transmitter circuit is disclosed. The transmitter circuit comprises a transceiver. The transmitter circuit also comprises an ET circuit coupled to the transceiver, wherein the ET circuit is configured to provide a first voltage supply signal and a second voltage supply signal. The transmitter circuit also comprises a power amplifier circuit. The power amplifier circuit comprises a carrier amplifier. The power amplifier circuit also comprises a peaking amplifier. The power amplifier circuit also comprises an impedance inverter coupling the carrier amplifier to the peaking amplifier. The impedance inverter comprises a supply voltage input node coupled to the ET circuit to receive the first voltage supply signal. The power amplifier circuit also comprises a transformer circuit coupled to the peaking amplifier. The transformer circuit comprises a second supply voltage input node coupled to the ET circuit to receive the second voltage supply signal. The peaking amplifier is modulated separately from the carrier amplifier. The power amplifier circuit also comprises an output node coupled to the transformer circuit, wherein an amplified signal from the transformer circuit may be output at the output node.
In another aspect, a power amplifier circuit is disclosed. The power amplifier circuit comprises a carrier amplifier. The power amplifier circuit also comprises a peaking amplifier. The power amplifier circuit also comprises an impedance inverter coupling the carrier amplifier to the peaking amplifier. The impedance inverter comprises a first supply voltage input node, wherein a first supply voltage received at the first supply voltage input node modulates the carrier amplifier. The impedance inverter also comprises a second supply voltage input node, wherein a second supply voltage received at the second supply voltage input node modulates the peaking amplifier. The power amplifier circuit also comprises a transformer circuit coupled to the peaking amplifier. The power amplifier circuit also comprises an output node coupled to the transformer circuit, wherein an amplified signal from the transformer circuit may be output at the output node.
In another aspect, a power amplifier circuit is disclosed. The power amplifier circuit comprises a carrier amplifier. The power amplifier circuit also comprises a peaking amplifier. The power amplifier circuit also comprises an impedance inverter coupling the carrier amplifier to the peaking amplifier. The impedance inverter comprises an inductor pair comprising a first inductor positively coupled to a second inductor, the second inductor in series with the first inductor. The power amplifier circuit also comprises a transformer circuit coupled to the peaking amplifier. The transformer circuit comprises a supply voltage input node, wherein a supply voltage received at the supply voltage input node modulates the peaking amplifier and the carrier amplifier. The power amplifier circuit also comprises an output node coupled to the transformer circuit, wherein an amplified signal from the transformer circuit may be output at the output node.
Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Embodiments of the disclosure relate to a barely Doherty dual envelope tracking (BD2E) circuit. In a non-limiting example, a transmitter chain includes an envelope tracking (ET) circuit that controls a Doherty dual power amplifier array. The ET circuit provides two control signals (supply voltage signals) that are used to control or modulate a carrier amplifier and a peaking amplifier independently of one another. The BD2E circuit includes an improved impedance inverter that isolates the peaking amplifier from the carrier amplifier to allow this independent control. By providing independent control, greater linearity may be provided while preserving the efficiency of the circuit.
Before addressing the particular impedance inverter of the present disclosure and its use with a Doherty dual amplifier circuit, an overview of a transmitter apparatus is provided with reference to
In this regard,
The transmitter apparatus 10 includes a transceiver circuit 20 configured to receive the first input signal 12 and the second input signal 14. The transceiver circuit 20 is configured to generate a first RF signal 22, sometimes referred to as signal a or RFina, from the first input signal 12 and a second RF signal 24, sometimes referred to as signal b or RFinb, from the second input signal 14. Commonly, signals a and b are orthogonal.
The transmitter apparatus 10 includes two (2) power amplifier circuits 26 and 28 to amplify the first RF signal 22 and the second RF signal 24, respectively. The power amplifier circuits 26 and 28 may also be a network of power amplifiers, and each may generically be referred to as a power amplifier network. It should be appreciated that either or both of the power amplifier circuits 26 and 28 may be Doherty dual amplifier circuits. The two power amplifier circuits 26 and 28 may be controlled by ET integrated circuits (ICs) (ETICs) 30 and 32, respectively. The ETICs 30 and 32 are controlled by a Vrampa signal 34 and a Vrampb signal 36 from the transceiver circuit 20. In an exemplary aspect, the signals 34, 36 are differential signals.
After amplification, signals 22′ and 24′ are provided to respective filters 38 and 40. The filters 38 and 40 are coupled to impedance tuners 42 and 44, respectively. The impedance tuners 42 and 44 are coupled to the antennas 16 and 18, respectively, such as through a coaxial or flex line connection (noted at 46 and 48, respectively). In some instances, there may be no signal being provided to an antenna. In such instances, the line with no signal may be terminated to a known voltage level (e.g., to ground). Accordingly, termination structures 50 and 52 are provided to provide such terminations.
As noted above, the power amplifier circuit 26 and/or the power amplifier circuit 28 may be a Doherty dual amplifier circuit as better illustrated in
In a traditional ideal Doherty dual amplifier circuit, only the carrier amplifier 60 is active at power levels from zero to the average power. Once the average power is reached, the peaking amplifier 66 is also activated and operates from the average power to the peak power. In a typical situation, the average power is half the peak power and thus may be considered −6 decibels (dB) below the peak power. This may be visualized by the graph 80 of
A power graph 90 is provided in
The load seen by the power amplifiers 60, 66 is shown in
While a Doherty dual amplifier structure is fine for many situations, a significant non-linearity in performance occurs when the peaking amplifier 66 is activated. Since activation of the peaking amplifier 66 occurs at the average power, this non-linearity negatively impacts performance at a point that occurs frequently in operational conditions. One attempt to improve performance involves moving the activation of the peaking amplifier 66 to a point below the average power. For example, the peaking amplifier 66 may be activated at −12 dB below the peak power. Such early activation is sometimes referred to as barely Doherty dual (BDD or BD2) amplifiers.
BDD or BD2 operation is illustrated in
A power graph 90′ is provided in
The load seen by the power amplifiers 60, 66 is shown in
While BD2 operation moves the non-linearity away from the primary zone of operation, the net impact of moving the activation of the peaking amplifier 66 is a loss of efficiency because of the reduction in load impedance at lower power levels (and across a larger portion of the power range). This loss of efficiency may be addressed in part through the use of ET provided by an ETIC such as the ETIC 30 or 32. ET relies on a signal from an envelope detection circuit in a transceiver circuit to detect changes in the original signal that is going to be amplified. The signal sent from the envelope detection circuit may be single ended or differential. The ETIC then generates a signal that acts as the supply voltage (Vcc) for the power amplifier circuit 26, 28.
In conventional Doherty dual amplifier circuits, the supply voltage signal from the ETIC is provided to both the carrier amplifier and the peaking amplifier. While using an ETIC with a BD2 circuit provides some supply voltage modulation, it fails to take full advantage of the two-amplifier arrangement and still suffers from some loss of efficiency.
Exemplary aspects of the present disclosure allow for independent control of the carrier amplifier and the peaking amplifier. This independent control is achieved by using the impedance inverter to isolate the carrier amplifier from the peaking amplifier. With this isolation, the amplifiers may be controlled independently to maintain linearity and reduce efficiency losses that may result from variations in the load perceived by the two amplifiers. Additionally, digital predistortion (DPD) may be used to help the amplifiers remain in isogain (i.e., having a constant gain).
In this regard, as illustrated in
With continuing reference to
With continuing reference to
With continuing reference to
The topology of the impedance inverter is selected to allow the impedance at an input multiplied by an impedance at an output to be a constant. Accordingly, a mathematical interlude is provided to explain how such selection can be made.
To realize a close implementation to the ideal impedance inverter 300,
To make the impedance inverter 310 closer to an ideal impedance inverter, a series capacitor may be added as better illustrated in
This means that if −j/(C0*ω)=−j*L*ω and thus C0*L=1/ω2, then an ideal impedance inverter 316″ is obtained at the frequency
with the Ka factor
Converting back to the structure of the impedance inverter 310 based on the impedance inverter 316″,
The impedance inverter 310′ compared with just using two non-coupled inductors has a higher Ka factor for the same inductance due to the increased term (1+K); that is, one can create a larger Ka factor for a given L value by creating the negative coupling. Also, tuning of the Ka factor can be done via adjusting the value of C0 versus frequency of operation thereby changing the resonance frequency.
Another approach to finding a topology for the impedance inverter to be used in the power amplifier circuit 26 would start from a π-network 350 illustrated in
To create a close impedance inverter network like the network 350, an impedance network 360 is formed as illustrated in
To make the approximation closer, a capacitance may be added. Thus, as illustrated in
The value of C0 is selected such that 1/(C0*ω)=L*(1−K2)*ω, and thus 1/ω2=L*(1−K2)*C0. The resulting impedance network 366′ has a Ka term equal to j*L*(1−K)*ω with K<0 and thus equal to
thus allowing creation of a much larger impedance inverter Ka factor due to the term
which is greater than 1 since K is negative.
Transforming back to the topology of the impedance network 360,
These topologies (i.e., impedance inverter 310′ and impedance network 360′) as well as other topologies may be used within the impedance inverter 182 to allow the control signals Vcc_carrier and Vcc_peaking to be supplied and control the carrier amplifier and the peaking amplifier to be controlled independently as shown in
While the structure of
Instead of using the impedance network 360′, an impedance inverter can be formed from the impedance inverter 310′ as better shown in
While the most benefit is achieved by providing the ability to control the peaking and carrier amplifiers separately, the present disclosure is not so limited.
In this regard,
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
This application claims the benefit of U.S. provisional patent application Ser. No. 63/154,030, filed Feb. 26, 2021, the disclosure of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5510753 | French | Apr 1996 | A |
5838732 | Carney | Nov 1998 | A |
6107862 | Mukainakano et al. | Aug 2000 | A |
6141377 | Sharper et al. | Oct 2000 | A |
6141541 | Midya et al. | Oct 2000 | A |
6411531 | Nork et al. | Jun 2002 | B1 |
6985033 | Shirali et al. | Jan 2006 | B1 |
7043213 | Robinson et al. | May 2006 | B2 |
7193467 | Garlepp et al. | Mar 2007 | B2 |
7471155 | Levesque | Dec 2008 | B1 |
7570931 | McCallister et al. | Aug 2009 | B2 |
7994862 | Pukhovski | Aug 2011 | B1 |
8461928 | Yahav et al. | Jun 2013 | B2 |
8493141 | Khlat et al. | Jul 2013 | B2 |
8519788 | Khlat | Aug 2013 | B2 |
8588713 | Khlat | Nov 2013 | B2 |
8718188 | Balteanu et al. | May 2014 | B2 |
8723492 | Korzeniowski | May 2014 | B2 |
8725218 | Brown et al. | May 2014 | B2 |
8774065 | Khlat et al. | Jul 2014 | B2 |
8803603 | Wimpenny | Aug 2014 | B2 |
8818305 | Schwent et al. | Aug 2014 | B1 |
8854129 | Wilson | Oct 2014 | B2 |
8879665 | Xia et al. | Nov 2014 | B2 |
8913690 | Onishi | Dec 2014 | B2 |
8942651 | Jones | Jan 2015 | B2 |
8947161 | Khlat et al. | Feb 2015 | B2 |
8989682 | Ripley et al. | Mar 2015 | B2 |
9018921 | Gurlahosur | Apr 2015 | B2 |
9020451 | Khlat | Apr 2015 | B2 |
9041364 | Khlat | May 2015 | B2 |
9041365 | Kay et al. | May 2015 | B2 |
9055529 | Shih | Jun 2015 | B2 |
9065509 | Yan et al. | Jun 2015 | B1 |
9069365 | Brown et al. | Jun 2015 | B2 |
9098099 | Park et al. | Aug 2015 | B2 |
9166538 | Hong et al. | Oct 2015 | B2 |
9166830 | Camuffo et al. | Oct 2015 | B2 |
9167514 | Dakshinamurthy et al. | Oct 2015 | B2 |
9197182 | Baxter et al. | Nov 2015 | B2 |
9225362 | Drogi et al. | Dec 2015 | B2 |
9247496 | Khlat | Jan 2016 | B2 |
9263997 | Vinayak | Feb 2016 | B2 |
9270230 | Henshaw et al. | Feb 2016 | B2 |
9270239 | Drogi et al. | Feb 2016 | B2 |
9271236 | Drogi | Feb 2016 | B2 |
9280163 | Kay et al. | Mar 2016 | B2 |
9288098 | Yan et al. | Mar 2016 | B2 |
9298198 | Kay et al. | Mar 2016 | B2 |
9344304 | Cohen | May 2016 | B1 |
9356512 | Chowdhury et al. | May 2016 | B2 |
9362868 | Al-Qaq et al. | Jun 2016 | B2 |
9377797 | Kay et al. | Jun 2016 | B2 |
9379667 | Khlat et al. | Jun 2016 | B2 |
9445371 | Khesbak et al. | Sep 2016 | B2 |
9515622 | Nentwig et al. | Dec 2016 | B2 |
9520907 | Peng et al. | Dec 2016 | B2 |
9584071 | Khlat | Feb 2017 | B2 |
9595869 | Lerdworatawee | Mar 2017 | B2 |
9595981 | Khlat | Mar 2017 | B2 |
9596110 | Jiang et al. | Mar 2017 | B2 |
9614477 | Rozenblit et al. | Apr 2017 | B1 |
9634666 | Krug | Apr 2017 | B2 |
9705451 | Takenaka et al. | Jul 2017 | B2 |
9748845 | Kotikalapoodi | Aug 2017 | B1 |
9806676 | Balteanu et al. | Oct 2017 | B2 |
9831834 | Balteanu et al. | Nov 2017 | B2 |
9837962 | Mathe et al. | Dec 2017 | B2 |
9900204 | Levesque et al. | Feb 2018 | B2 |
9923520 | Abdelfattah et al. | Mar 2018 | B1 |
10003416 | Lloyd | Jun 2018 | B1 |
10090808 | Henzler et al. | Oct 2018 | B1 |
10090809 | Khlat | Oct 2018 | B1 |
10097145 | Khlat et al. | Oct 2018 | B1 |
10103693 | Zhu et al. | Oct 2018 | B2 |
10110169 | Khesbak et al. | Oct 2018 | B2 |
10116470 | Gu et al. | Oct 2018 | B2 |
10158329 | Khlat | Dec 2018 | B1 |
10158330 | Khlat | Dec 2018 | B1 |
10170989 | Balteanu et al. | Jan 2019 | B2 |
10291181 | Kim et al. | May 2019 | B2 |
10326408 | Khlat et al. | Jun 2019 | B2 |
10361744 | Khlat | Jul 2019 | B1 |
10382071 | Rozek et al. | Aug 2019 | B2 |
10476437 | Nag et al. | Nov 2019 | B2 |
10756675 | Leipold et al. | Aug 2020 | B2 |
10862431 | Khlat | Dec 2020 | B1 |
10879804 | Kim et al. | Dec 2020 | B2 |
11050433 | Melanson et al. | Jun 2021 | B1 |
11121684 | Henzler et al. | Sep 2021 | B2 |
11128261 | Ranta et al. | Sep 2021 | B2 |
20020167827 | Umeda et al. | Nov 2002 | A1 |
20030107428 | Khouri et al. | Jun 2003 | A1 |
20040266366 | Robinson et al. | Dec 2004 | A1 |
20050090209 | Behzad | Apr 2005 | A1 |
20050227646 | Yamazaki et al. | Oct 2005 | A1 |
20050232385 | Yoshikawa et al. | Oct 2005 | A1 |
20060028271 | Wilson | Feb 2006 | A1 |
20060240786 | Liu | Oct 2006 | A1 |
20070036212 | Leung et al. | Feb 2007 | A1 |
20070052474 | Saito | Mar 2007 | A1 |
20070258602 | Vepsalainen et al. | Nov 2007 | A1 |
20070290748 | Woo et al. | Dec 2007 | A1 |
20080116960 | Nakamura | May 2008 | A1 |
20080231358 | Maemura | Sep 2008 | A1 |
20090016085 | Rader et al. | Jan 2009 | A1 |
20090045872 | Kenington | Feb 2009 | A1 |
20090191826 | Takinami et al. | Jul 2009 | A1 |
20100283534 | Pierdomenico | Nov 2010 | A1 |
20100308919 | Adamski et al. | Dec 2010 | A1 |
20110074373 | Lin | Mar 2011 | A1 |
20110136452 | Pratt et al. | Jun 2011 | A1 |
20110148705 | Kenington | Jun 2011 | A1 |
20110175681 | Inamori et al. | Jul 2011 | A1 |
20110279179 | Vice | Nov 2011 | A1 |
20120194274 | Fowers et al. | Aug 2012 | A1 |
20120200435 | Ngo et al. | Aug 2012 | A1 |
20120281597 | Khlat et al. | Nov 2012 | A1 |
20120299645 | Southcombe et al. | Nov 2012 | A1 |
20120299647 | Honjo et al. | Nov 2012 | A1 |
20130021827 | Ye | Jan 2013 | A1 |
20130072139 | Kang et al. | Mar 2013 | A1 |
20130100991 | Woo | Apr 2013 | A1 |
20130127548 | Popplewell et al. | May 2013 | A1 |
20130130724 | Kumar Reddy et al. | May 2013 | A1 |
20130141064 | Kay et al. | Jun 2013 | A1 |
20130162233 | Marty | Jun 2013 | A1 |
20130187711 | Goedken et al. | Jul 2013 | A1 |
20130200865 | Wimpenny | Aug 2013 | A1 |
20130271221 | Levesque et al. | Oct 2013 | A1 |
20140009226 | Severson | Jan 2014 | A1 |
20140028370 | Wimpenny | Jan 2014 | A1 |
20140028390 | Davis | Jan 2014 | A1 |
20140055197 | Khlat et al. | Feb 2014 | A1 |
20140057684 | Khlat | Feb 2014 | A1 |
20140103995 | Langer | Apr 2014 | A1 |
20140155002 | Dakshinamurthy et al. | Jun 2014 | A1 |
20140169427 | Asenio et al. | Jun 2014 | A1 |
20140184335 | Nobbe et al. | Jul 2014 | A1 |
20140199949 | Nagode et al. | Jul 2014 | A1 |
20140203869 | Khlat et al. | Jul 2014 | A1 |
20140210550 | Mathe et al. | Jul 2014 | A1 |
20140213196 | Langer et al. | Jul 2014 | A1 |
20140218109 | Wimpenny | Aug 2014 | A1 |
20140235185 | Drogi | Aug 2014 | A1 |
20140266423 | Drogi et al. | Sep 2014 | A1 |
20140266428 | Chiron et al. | Sep 2014 | A1 |
20140315504 | Sakai et al. | Oct 2014 | A1 |
20140361830 | Mathe et al. | Dec 2014 | A1 |
20140361837 | Strange et al. | Dec 2014 | A1 |
20150048883 | Vinayak | Feb 2015 | A1 |
20150071382 | Wu et al. | Mar 2015 | A1 |
20150098523 | Lim et al. | Apr 2015 | A1 |
20150139358 | Asuri et al. | May 2015 | A1 |
20150155836 | Midya et al. | Jun 2015 | A1 |
20150188432 | Vannorsdel et al. | Jul 2015 | A1 |
20150234402 | Kay et al. | Aug 2015 | A1 |
20150236652 | Yang et al. | Aug 2015 | A1 |
20150236654 | Jiang et al. | Aug 2015 | A1 |
20150236729 | Peng et al. | Aug 2015 | A1 |
20150236877 | Peng et al. | Aug 2015 | A1 |
20150280652 | Cohen | Oct 2015 | A1 |
20150333781 | Alon et al. | Nov 2015 | A1 |
20160050629 | Khesbak et al. | Feb 2016 | A1 |
20160065137 | Khlat | Mar 2016 | A1 |
20160065139 | Lee et al. | Mar 2016 | A1 |
20160099686 | Perreault et al. | Apr 2016 | A1 |
20160099687 | Khlat | Apr 2016 | A1 |
20160105151 | Langer | Apr 2016 | A1 |
20160118941 | Wang | Apr 2016 | A1 |
20160126900 | Shute | May 2016 | A1 |
20160164550 | Pilgram | Jun 2016 | A1 |
20160164551 | Khlat et al. | Jun 2016 | A1 |
20160173031 | Langer | Jun 2016 | A1 |
20160181995 | Nentwig et al. | Jun 2016 | A1 |
20160187627 | Abe | Jun 2016 | A1 |
20160197627 | Qin et al. | Jul 2016 | A1 |
20160226448 | Wimpenny | Aug 2016 | A1 |
20160249300 | Tsai et al. | Aug 2016 | A1 |
20160294587 | Jiang et al. | Oct 2016 | A1 |
20170005619 | Khlat | Jan 2017 | A1 |
20170005676 | Yan et al. | Jan 2017 | A1 |
20170006543 | Khlat | Jan 2017 | A1 |
20170012675 | Frederick | Jan 2017 | A1 |
20170141736 | Pratt et al. | May 2017 | A1 |
20170302183 | Young | Oct 2017 | A1 |
20170317913 | Kim et al. | Nov 2017 | A1 |
20170338773 | Balteanu et al. | Nov 2017 | A1 |
20180013465 | Chiron et al. | Jan 2018 | A1 |
20180048265 | Nentwig | Feb 2018 | A1 |
20180048276 | Khlat et al. | Feb 2018 | A1 |
20180076772 | Khesbak et al. | Mar 2018 | A1 |
20180123453 | Puggelli et al. | May 2018 | A1 |
20180152144 | Choo et al. | May 2018 | A1 |
20180254530 | Wigney | Sep 2018 | A1 |
20180288697 | Camuffo et al. | Oct 2018 | A1 |
20180302042 | Zhang et al. | Oct 2018 | A1 |
20180309414 | Khlat et al. | Oct 2018 | A1 |
20180367101 | Chen et al. | Dec 2018 | A1 |
20180375476 | Balteanu et al. | Dec 2018 | A1 |
20180375483 | Balteanu et al. | Dec 2018 | A1 |
20190028060 | Jo et al. | Jan 2019 | A1 |
20190044480 | Khlat | Feb 2019 | A1 |
20190068234 | Khlat et al. | Feb 2019 | A1 |
20190097277 | Fukae | Mar 2019 | A1 |
20190109566 | Folkmann et al. | Apr 2019 | A1 |
20190109613 | Khlat et al. | Apr 2019 | A1 |
20190181804 | Khlat | Jun 2019 | A1 |
20190222178 | Khlat et al. | Jul 2019 | A1 |
20190229623 | Tsuda et al. | Jul 2019 | A1 |
20190238095 | Khlat | Aug 2019 | A1 |
20190253023 | Yang et al. | Aug 2019 | A1 |
20190267956 | Granger-Jones et al. | Aug 2019 | A1 |
20190288645 | Nag et al. | Sep 2019 | A1 |
20190222175 | Khlat et al. | Oct 2019 | A1 |
20190319584 | Khlat et al. | Oct 2019 | A1 |
20190386565 | Rosolowski et al. | Dec 2019 | A1 |
20200007090 | Khlat et al. | Jan 2020 | A1 |
20200036337 | Khlat | Jan 2020 | A1 |
20200106392 | Khlat et al. | Apr 2020 | A1 |
20200127608 | Khlat | Apr 2020 | A1 |
20200127625 | Khlat | Apr 2020 | A1 |
20200127730 | Khlat | Apr 2020 | A1 |
20200136561 | Khlat et al. | Apr 2020 | A1 |
20200136563 | Khlat | Apr 2020 | A1 |
20200136575 | Khlat et al. | Apr 2020 | A1 |
20200144966 | Khlat | May 2020 | A1 |
20200153394 | Khlat et al. | May 2020 | A1 |
20200177131 | Khlat | Jun 2020 | A1 |
20200204116 | Khlat | Jun 2020 | A1 |
20200228063 | Khlat | Jul 2020 | A1 |
20200259456 | Khlat | Aug 2020 | A1 |
20200259685 | Khlat | Aug 2020 | A1 |
20200266766 | Khlat et al. | Aug 2020 | A1 |
20200313622 | Eichler et al. | Oct 2020 | A1 |
20200321848 | Khlat | Oct 2020 | A1 |
20200321917 | Nomiyama et al. | Oct 2020 | A1 |
20200328720 | Khlat | Oct 2020 | A1 |
20200336105 | Khlat | Oct 2020 | A1 |
20200336111 | Khlat | Oct 2020 | A1 |
20200350865 | Khlat | Nov 2020 | A1 |
20200350878 | Drogi et al. | Nov 2020 | A1 |
20200382061 | Khlat | Dec 2020 | A1 |
20200382066 | Khlat | Dec 2020 | A1 |
20210036604 | Khlat et al. | Feb 2021 | A1 |
20210099137 | Drogi et al. | Apr 2021 | A1 |
20210159590 | Na et al. | May 2021 | A1 |
20210175896 | Melanson et al. | Jun 2021 | A1 |
20210184708 | Khlat | Jun 2021 | A1 |
20210194515 | Go et al. | Jun 2021 | A1 |
20210194517 | Mirea et al. | Jun 2021 | A1 |
20210194522 | Stockert et al. | Jun 2021 | A1 |
20210211108 | Khlat | Jul 2021 | A1 |
20210226585 | Khlat | Jul 2021 | A1 |
20210234513 | Khlat | Jul 2021 | A1 |
20210265953 | Khlat | Aug 2021 | A1 |
20210281228 | Khlat | Sep 2021 | A1 |
20210288615 | Khlat | Sep 2021 | A1 |
20210305944 | Scott et al. | Sep 2021 | A1 |
20210356299 | Park | Nov 2021 | A1 |
20220021348 | Philpott et al. | Jan 2022 | A1 |
20220103137 | Khlat et al. | Mar 2022 | A1 |
20220123698 | Goto et al. | Apr 2022 | A1 |
Number | Date | Country |
---|---|---|
103916093 | Jul 2014 | CN |
105322894 | Feb 2016 | CN |
105680807 | Jun 2016 | CN |
106208974 | Dec 2016 | CN |
106209270 | Dec 2016 | CN |
106877824 | Jun 2017 | CN |
107093987 | Aug 2017 | CN |
108141184 | Jun 2018 | CN |
109150212 | Jan 2019 | CN |
3174199 | May 2012 | EP |
2909928 | Aug 2015 | EP |
H03104422 | May 1991 | JP |
2018182778 | Oct 2018 | WO |
2020206246 | Oct 2020 | WO |
2021016350 | Jan 2021 | WO |
2021046453 | Mar 2021 | WO |
2022103493 | May 2022 | WO |
Entry |
---|
Written Opinion for International Patent Application No. PCT/US2021/052830, dated Nov. 3, 2022, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 14/836,634, dated May 16, 2016, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 14/868,890, dated Jul. 14, 2016, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 15/792,909, dated May 18, 2018, 13 pages. |
Notice of Allowance for U.S. Appl. No. 15/459,449, dated Mar. 28, 2018, 7 pages. |
Notice of Allowance for U.S. Appl. No. 15/723,460, dated Jul. 24, 2018, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/704,131, dated Jul. 17, 2018, 7 pages. |
Notice of Allowance for U.S. Appl. No. 15/728,202, dated Aug. 2, 2018, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 15/888,300, dated Aug. 28, 2018, 11 pages. |
Notice of Allowance for U.S. Appl. No. 15/792,909, dated Dec. 19, 2018, 11 pages. |
Notice of Allowance for U.S. Appl. No. 15/993,705, dated Oct. 31, 2018, 7 pages. |
Pfister, Henry, “Discrete-Time Signal Processing,” Lecture Note, pfister.ee.duke.edu/courses/ece485/dtsp.pdf, Mar. 3, 2017, 22 pages. |
Non-Final Office Action for U.S. Appl. No. 15/888,260, dated May 2, 2019, 14 pages. |
Non-Final Office Action for U.S. Appl. No. 15/986,948, dated Mar. 28, 2019, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/018,426, dated Apr. 11, 2019, 11 pages. |
Supplemental Notice of Allowability for U.S. Appl. No. 15/902,244, dated Mar. 20, 2019, 6 pages. |
Notice of Allowance for U.S. Appl. No. 15/902,244, dated Feb. 8, 2019, 8 pages. |
Advisory Action for U.S. Appl. No. 15/888,300, dated Jun. 5, 2019, 3 pages. |
Notice of Allowance for U.S. Appl. No. 15/984,566, dated May 21, 2019, 6 pages. |
Notice of Allowance for U.S. Appl. No. 16/150,556, dated Jul. 29, 2019, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 15/888,300, dated Jun. 27, 2019, 17 pages. |
Final Office Action for U.S. Appl. No. 15/986,948, dated Aug. 27, 2019, 9 pages. |
Advisory Action for U.S. Appl. No. 15/986,948, dated Nov. 8, 2019, 3 pages. |
Notice of Allowance for U.S. Appl. No. 15/986,948, dated Dec. 13, 2019, 7 pages. |
Final Office Action for U.S. Appl. No. 16/018,426, dated Sep. 4, 2019, 12 pages. |
Advisory Action for U.S. Appl. No. 16/018,426, dated Nov. 19, 2019, 3 pages. |
Notice of Allowance for U.S. Appl. No. 16/180,887, dated Jan. 13, 2020, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/888,300, dated Jan. 14, 2020, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 16/122,611, dated Mar. 11, 2020, 16 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 15/888,300, dated Feb. 25, 2020, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/018,426, dated Mar. 31, 2020, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/174,535, dated Feb. 4, 2020, 7 pages. |
Quayle Action for U.S. Appl. No. 16/354,234, dated Mar. 6, 2020, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/354,234, dated Apr. 24, 2020, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 16/246,859, dated Apr. 28, 2020, 9 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 15/888,300, dated May 13, 2020, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/155,127, dated Jun. 1, 2020, 8 pages. |
Final Office Action for U.S. Appl. No. 16/174,535, dated Jul. 1, 2020, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/284,023, dated Jun. 24, 2020, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/435,940, dated Jul. 23, 2020, 6 pages. |
Final Office Action for U.S. Appl. No. 15/888,300, dated Feb. 15, 2019, 15 pages. |
Final Office Action for U.S. Appl. No. 16/122,611, dated Sep. 18, 2020, 17 pages. |
Advisory Action for U.S. Appl. No. 16/174,535, dated Sep. 24, 2020, 3 pages. |
Notice of Allowance for U.S. Appl. No. 16/174,535, dated Oct. 29, 2020, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/246,859, dated Sep. 18, 2020, 8 pages. |
Final Office Action for U.S. Appl. No. 16/284,023, dated Nov. 3, 2020, 7 pages. |
Quayle Action for U.S. Appl. No. 16/421,905, dated Aug. 25, 2020, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 16/416,812, dated Oct. 16, 2020, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/514,051, dated Nov. 13, 2020, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 16/774,060, dated Aug. 17, 2020, 6 pages. |
Notice of Allowance for U.S. Appl. No. 16/122,611, dated Dec. 1, 2020, 9 pages. |
Notice of Allowance for U.S. Appl. No. 15/964,762, dated Mar. 18, 2019, 7 pages. |
Quayle Action for U.S. Appl. No. 16/589,940, dated Dec. 4, 2020, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/122,611, dated Jan. 13, 2021, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/284,023, dated Jan. 19, 2021, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/416,812, dated Feb. 16, 2021, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/689,236 dated Mar. 2, 2021, 15 pages. |
Notice of Allowance for U.S. Appl. No. 16/435,940, dated Dec. 21, 2020, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/774,060, dated Feb. 3, 2021, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/590,790, dated Jan. 27, 2021, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/661,061, dated Feb. 10, 2021, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/122,611, dated Apr. 1, 2021, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/582,471, dated Mar. 24, 2021, 11 pages. |
Wan, F. et al., “Negative Group Delay Theory of a Four-Port RC-Network Feedback Operational Amplifier,” IEEE Access, vol. 7, Jun. 13, 2019, IEEE, 13 pages. |
Notice of Allowance for U.S. Appl. No. 16/689,236 dated Jun. 9, 2021, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/775,554, dated Jun. 14, 2021, 5 pages. |
Notice of Allowance for U.S. Appl. No. 16/582,471, dated Jun. 22, 2021, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 16/597,952, dated May 26, 2021, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/834,049, dated Jun. 24, 2021, 8 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2021/052151, dated Oct. 13, 2022, 21 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2021/054141, dated Sep. 29, 2022, 20 pages. |
Non-Final Office Action for U.S. Appl. No. 17/146,765, dated Sep. 7, 2022, 10 pages. |
Final Office Action for U.S. Appl. No. 17/163,642, dated Nov. 25, 2022, 13 pages. |
Notice of Allowance for U.S. Appl. No. 17/032,553, dated Oct. 11, 2022, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 17/073,764, dated Sep. 30, 2022, 13 pages. |
Notice of Allowance for U.S. Appl. No. 17/073,764, dated Aug. 23, 2023, 12 pages. |
Notice of Allowance for U.S. Appl. No. 17/163,642, dated Mar. 1, 2023, 10 pages. |
Final Office Action for U.S. Appl. No. 17/073,764, dated Mar. 3, 2023, 14 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2021/052830, dated Feb. 20, 2023, 21 pages. |
First Office Action for Chinese Patent Application No. 202010083654.0, dated May 12, 2023, 17 pages. |
Notification to Grant for Chinese Patent Application No. 202010097807.7, dated Jul. 11, 2023, 14 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2021/050892, dated Oct. 24, 2022, 20 pages. |
Advisory Action for U.S. Appl. No. 17/073,764, dated May 26, 2023, 3 pages. |
Advisory Action for U.S. Appl. No. 16/807,575, dated Jul. 28, 2022, 3 pages. |
Notice of Allowance for U.S. Appl. No. 16/807,575, dated Aug. 19, 2022, 8 pages. |
Notice of Allowance for U.S. Appl. No. 17/148,064, dated Aug. 18, 2022, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 17/163,642, dated Aug. 17, 2022, 9 pages. |
Final Office Action for U.S. Appl. No. 17/032,553, dated Jul. 29, 2022, 6 pages. |
Final Office Action for U.S. Appl. No. 17/073,764, dated Jun. 1, 2022, 22 pages. |
Advisory Action for U.S. Appl. No. 17/073,764, dated Aug. 23, 2022, 3 pages. |
Extended European Search Report for European Patent Application No. 22153526.3, dated Jul. 13, 2022, 9 pages. |
Notice of Allowance for U.S. Appl. No. 15/984,566, dated Mar. 18, 2019, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/263,316, dated Dec. 23, 2019, 10 pages. |
Final Office Action for U.S. Appl. No. 16/263,316, dated May 13, 2020, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 16/263,316, dated Jul. 17, 2020, 4 pages. |
Non-Final Office Action for U.S. Appl. No. 16/263,316, dated Nov. 24, 2020, 4 pages. |
Notice of Allowance for U.S. Appl. No. 16/263,316, dated Mar. 30, 2021, 7 pages. |
Final Office Action for U.S. Appl. No. 16/807,575, dated May 4, 2022, 12 pages. |
Notice of Allowance for U.S. Appl. No. 16/582,471, dated Feb. 1, 2022, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 16/807,575, dated Jan. 31, 2022, 12 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/050892, dated Jan. 5, 2022, 20 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/052151, dated Jan. 4, 2022, 16 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/054141 dated Jan. 25, 2022, 15 pages. |
Non-Final Office Action for U.S. Appl. No. 17/032,553, dated Mar. 21, 2022, 4 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/052830, dated Jan. 24, 2022, 13 pages. |
U.S. Appl. No. 16/834,049, filed Mar. 30, 2020. |
U.S. Appl. No. 17/032,553, filed Sep. 25, 2020. |
U.S. Appl. No. 17/073,764, filed Oct. 19, 2020. |
U.S. Appl. No. 17/363,522, filed Jun. 30, 2021. |
Chen, S. et al., “A 4.5 μW 2.4 GHZ Wake-Up Receiver Based on Complementary Current-Reuse RF Detector,” 2015 IEEE International Symposium on Circuits and Systems (ISCAS), May 24-27, 2015, IEEE, pp. 1214-1217. |
Ying, K. et al., “A Wideband Envelope Detector with Low Ripple and High Detection Speed,” 2018 IEEE International Symposium on Circuits and Systems (ISCAS), May 27-30, 2018, IEEE, 5 pages. |
Notice of Allowance for U.S. Appl. No. 17/011,313, dated Nov. 4, 2021, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/597,952, dated Nov. 10, 2021, 9 pages. |
Quayle Action for U.S. Appl. No. 16/855,154, dated Oct. 25, 2021, 6 pages. |
Notice of Allowance for U.S. Appl. No. 17/115,982, dated Nov. 12, 2021, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 17/126,561, dated Oct. 14, 2021, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 17/073,764, dated Dec. 24, 2021, 22 pages. |
Non-Final Office Action for U.S. Appl. No. 17/363,568, dated Nov. 9, 2023, 8 pages. |
Decision to Grant for Chinese Patent Application No. 202010083654.0, dated Sep. 11, 2023, 8 pages. |
Notification to Grant for Chinese Patent Application No. 202010083654.0, mailed Nov. 9, 2023, 8 pages. |
Notice of Allowance for U.S. Appl. No. 17/363,568, mailed Jan. 3, 2024, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 17/343,912, mailed Dec. 14, 2023, 6 pages. |
Examination Report for European Patent Application No. 21790723.7, mailed Mar. 7, 2024, 5 pages. |
Notice of Allowance for U.S. Appl. No. 17/343,912, mailed Mar. 4, 2024, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 17/331,996, mailed Feb. 1, 2024, 9 pages. |
Notice of Allowance for U.S. Appl. No. 17/331,996, mailed Mar. 1, 2024, 8 pages. |
Intention to Grant for European Patent Application No. 21806074.7, mailed May 10, 2024, 27 pages. |
Notice of Allowance for U.S. Appl. No. 17/331,996, mailed Jun. 14, 2024, 9 pages. |
Notice of Allowance for U.S. Appl. No. 17/351,560, mailed Apr. 19, 2024, 8 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2023/085103, mailed Apr. 26, 2024, 17 pages. |
Number | Date | Country | |
---|---|---|---|
20220278651 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
63154030 | Feb 2021 | US |