The invention relates in general, to firearms, and more particularly to barrel nut designs which ease installation of the barrel to the front end of the upper receiver and which offer structural features that improve the function of the associated gas operated firearm.
Firearms in the M16 family, which include but are not limited to, the AR10, SR25, AR15, and piston driven systems and other similar designs, have been in use with military, police, and civilian shooters for nearly 50 years. The M16 family of firearms includes a lower receiver having a stock coupled to the rear end which is connected to an upper receiver having a barrel coupled to the front end. The chamber end of the barrel is received by a portion of the upper receiver and threadedly secured in place. The threads of the upper receiver which receive the barrel nut are not timed in any way but require a minimum torque of 30 foot pounds to secure the barrel in place. The outer surface of the barrel nut has a series of spokes, with gaps formed between, which are used to apply torque to the barrel nut. In order to properly install the gas operating system of the firearm, a gap in the spokes must be in alignment with an opening in the front of the upper receiver. This alignment is required because the gap between the spokes facilitates the entry of either a piston or a gas tube, of the gas operating system, into the interior of the upper receiver. To achieve this required alignment, the barrel nut is often either under—or over—torqued. Both of these conditions present a variety of potential problems which include, but are not limited to, damage to the firearm, poor accuracy during normal operation or compromised operational reliability.
Indirect gas operated M16 type rifles, often referred to as piston driven, such as the design described in U.S. Pat. No. 7,461,581 (“the '581 patent”), are becoming increasingly popular within both the commercial and military markets due to the increased operational reliability offered by such systems. The vast majority of these new piston driven designs rely on the prior art barrel nut common to the M16 family of firearms and as such have inherited the flaws of this design. In addition to the trouble which can result from improper torque being applied to the barrel nut, these piston designs depend on a moving piston, which is supported by the spokes of the barrel nut, to operate. However, the spokes of the barrel nut were not designed for this purpose and, as a result, present a weak point in the operational reliability of these new piston driven designs. Over time some systems which rely on the prior art barrel nut fail because the spokes which support the piston directly, or a removable bushing which houses the piston, start to bend or break, rendering the firearm inoperable. Therefore a need exists for a barrel nut design that will remedy the foregoing and other deficiencies inherent in the prior art.
Accordingly several objects and advantages of the present invention are:
In accordance with one embodiment of the present invention, a barrel nut assembly including a barrel nut and a locknut for coupling a barrel to the receiver of a firearm are provided. The barrel nut has internal threads and an external flange which is designed to be held in a fixture that is secured in a vice during barrel installation. The barrel nut body is designed to receive the threaded extension of the upper receiver in its back side and the chamber end of the barrel in its front side. An annular locknut, which has a central opening to receive the barrel, is used to secure the barrel to the host firearm's receiver. A preset torque value is applied to secure the locknut, and thereby the barrel, into place. While the locknut is being rotated, the barrel nut and upper receiver are held securely in a fixture which prevents the unintentional rotation and resulting misalignment of the barrel nut in relationship to the upper receiver. Further, the locknut places torque directly against a portion of the barrel, effectively compressing it against the front part of the upper receiver. The barrel nut assembly design and method of installation according to the present invention eliminate the problems inherent in the prior art as a result of applying an inappropriate torque value to a barrel nut in an effort to align the barrel nut with the gas tube of the firearm's operating system during barrel installation.
The body of the barrel nut also includes an integral bushing which is designed to receive and support a portion of a gas piston or gas tube of the firearm's operating system. Having a bore designed to be aligned with an opening present on the forward face of the upper receiver through which the operating rod passes, the integral bushing is structurally sound and will not bend or deform even after prolonged use of the host firearm. Accordingly the present invention provides a barrel nut assembly that affords the user with a method and apparatus for aligning the bushing bore with the upper receiver opening that is independent of the torque required to properly secure the barrel to the upper receiver.
Still further objects and advantages will become apparent from a consideration of the ensuing description and drawings where like reference numerals refer to corresponding elements throughout.
The characteristic features of the invention, together with further advantages thereof, will be better understood from the following description considered in connection with the accompanying drawings in which a preferred embodiment of the present invention is illustrated by way of example. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended to define the limits of the invention.
The present invention is directed to a barrel nut assembly for use with the AR-10, AR-15, SR25, M16 variety and other derivatives to include those which use a gas piston in place of a conventional gas tube. Unless otherwise specified, the various components which make up the trigger mechanism, upper receiver assembly, lower receiver assembly, buttstock assembly, bolt assembly and barrel assembly are those found on the prior art M16 and M4 rifles and their various embodiments.
As used herein, the word “front” or “forward” corresponds to the end nearest the barrel (i.e., to the right as shown in
The present invention is directed to a barrel nut assembly for securing a barrel to the front end of a receiver. In
The piston assembly, generally designated by reference numeral 33, incorporates a piston cup 35 at its forward end, an operating rod 37 at the back end and a connecting rod 29 located therebetween. The gas block 32 incorporates a gas nozzle 36 which is received by the piston cup 35. The piston assembly 33 and the gas nozzle 36 are components of the operating system being used with the preferred embodiment. The specific components and features which make up the piston assembly 33 and the gas nozzle 32, along with the methods of their installation, are described in the '581 patent and co-pending, commonly owned, patent application U.S. Ser. No. 12/801,001, which are expressly incorporated by reference as if fully set forth herein. Any manner in which the piston assembly 33 and the gas nozzle 36 differ from '581 patent will be disclosed herein.
As shown in isolation in
The barrel nut 12, shown best in
The forward end 100 of the barrel nut includes an exterior flange 13, best shown in
The opening edge 14 about at least the bottom portion 114 of the entrance into the through bore 18 of the bushing 16 is chamfered. In the illustrated embodiment, the opening edge is chamfered all the way around, with the chamfered bottom portion 114 of the edge 14 of the through bore 18 being more substantial than the chamfer extending about the top portion 115 of the through bore 18. This opening edge 14 is configured to receive and support the chamfered rear end 39 of spring cup 38 during and upon installation of the piston assembly 33 shown in
A specially designed wrench, generally designated by reference numeral 40, is used to secure the lock nut 11 to the barrel nut 12 as shown in
In particular, the fixture 80, which is shown in the opened position in
A prior art barrel nut 50 is shown in
If a spoke 51 of the prior art barrel nut is in line with the opening 58 on the receiver 55 when the barrel nut is torqued, the gas tube 60 cannot be properly installed, rendering the rifle inoperable. There is no effort to time the threads of the threaded extension 56 and the barrel nut 50 during the manufacturing process. As a result, during installation the barrel nut is often torqued into place multiple times in an attempt to properly align a trough 52 of the barrel nut with the opening 58 in the receiver 55. This can result in a situation where the alignment of a trough 52 with the opening in the receiver 55 will only occur by either over-torquing the barrel nut 50, under-torquing the barrel nut 50, or removing the barrel nut 50 entirely and starting over with a new barrel nut, which may have the same or a similar problem. In cases where the barrel nut 50 is over-torqued, the spokes 51, which are used in conjunction with a tool to apply torque to the barrel, can become brittle and break. This is a condition of particular concern when a piston is used in place of the gas tube 60, which is often supported on the spokes 51. Over-torquing the barrel nut 50 and thereby the barrel 54 can also negatively affect the accuracy of the host firearm.
To secure a barrel 30 to an upper receiver 20 of an M16 type firearm using the barrel nut assembly 10 in accordance with the present invention, the barrel nut 12 is threaded onto the threaded extension 21 of the upper receiver 20 until the barrel nut stops. The barrel nut is then reverse threaded until the through bore 18 of the bushing 16 is aligned with the opening 22 on the face of the receiver 20. The resulting subassembly of the upper receiver and the barrel nut is then placed within a fixture 80 which is secured within a vice to prevent any rotational movement of the barrel nut 12 and upper receiver 20. A barrel 30 of desired length is then selected, with the chamber end 23 thereof being inserted into the barrel nut 12 until the annular flange 31 of the barrel 30 is aligned with and comes to rest against the forward face 108 of the threaded extension 21 (see
The piston assembly 33 is assembled in essentially the same manner as described in the '581 patent. Initially, the piston cup 35 is independently placed on the gas nozzle 36. The rear end of the operating rod 37 is then inserted into the through bore 18 of the bushing 16 and into the opening 22 of the receiver 20 by grasping the forward end of the operating rod 37 and thereby compressing the spring of the piston assembly 33. With the spring compressed, the operating rod 37 may be rotated into a position which places it in line with the rearward face of the piston cup 35. While holding the operating rod 37 in its compressed position, the connecting rod 29 is then inserted into the opening (not shown) present on the forward end of the operating rod 37. This assembly is then aligned with the opening (not shown) present on the back side of the piston cup 35 and released so that a forward portion of the connecting rod 29 is received by the opening on the back side of the piston cup 35, thereby holding the operating rod 37, connecting rod 29, and piston cup 35 in operational alignment. The chamfered edge 14 present at the opening of the through bore 18 facilitates the initial insertion or removal of the operating rod 37. Thus the installation of the new barrel nut assembly 10 has been described. By reversing the steps outlined above the barrel nut assembly 10 may be removed.
It should also be noted that the piston assembly 33, gas nozzle 36 and gas block 32 may easily be replaced with the gas block 59, gas tube 60 and other components of prior art gas operating systems without departing from the purpose and advantage of the barrel nut assembly 10 of the present invention as described herein.
Accordingly, the barrel nut assembly according to the present invention provides an apparatus and method for securing a barrel to the receiver of a firearm. The barrel nut has an integral bushing 16 with a through bore 18 that is aligned with the opening 22 in the receiver so that the operating rod 37 of the piston assembly 33 may pass unhindered into the interior of the receiver. By supporting the operating rod of the piston assembly, the integral bushing provides a more robust means of supporting the operating rod and is not prone to structural failure as are the spokes of a conventional barrel nut, the disadvantages of which have been described above.
In addition, the provided method of orienting the through bore 18 of the bushing 16 with the opening 22 of the receiver is independent of the torque applied to the locknut used to secure the barrel to the receiver, offering the significant advantage of being able to use a consistent, preset torque value to secure the barrel to the receiver. This use of a consistent, preset torque value is an advantage as compared to prior art methods of securing a barrel to a receiver through the use of a conventional barrel nut.
While there is shown and described the present preferred embodiment of the invention, it is to be distinctly understood that this invention is not limited thereto but may be variously embodied without departing from the intended scope of the present invention. From the foregoing description, it will be apparent that various changes may be made without departing from the spirit and scope of the invention as defined by the following claims.
This Application is a Division of U.S. application Ser. No. 13/562,651 filed on Jul. 31, 2012, granted as U.S. Pat. No. 9,816,546. The entire contents of which are incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
894530 | Punches | Jul 1908 | A |
1348702 | Gabbett-Fairfax | Aug 1920 | A |
1348733 | Pedersen | Aug 1920 | A |
1568005 | Sutter | Dec 1925 | A |
1737974 | Pedersen | Dec 1929 | A |
1797951 | Gaidos | Mar 1931 | A |
1994489 | Simpson | Mar 1935 | A |
2090656 | Williams | Aug 1937 | A |
2100410 | Pugsley | Nov 1937 | A |
2137491 | Huff | Nov 1938 | A |
2275213 | Wise | Mar 1942 | A |
2336146 | Williams | Dec 1943 | A |
2377692 | Johnson, Jr. | Jun 1945 | A |
2424194 | Sampson et al. | Jul 1947 | A |
2426563 | Patchett | Aug 1947 | A |
2482758 | Gaidos | Sep 1949 | A |
2532794 | Teece | Dec 1950 | A |
2611297 | Simpson | Sep 1952 | A |
2655754 | Brush | Oct 1953 | A |
2858741 | Simpson | Nov 1958 | A |
2872849 | Simpson | Feb 1959 | A |
2910795 | Agren | Nov 1959 | A |
2952934 | Yovanovitch | Sep 1960 | A |
2971441 | Reed | Feb 1961 | A |
3027672 | Sullivan | Apr 1962 | A |
3137958 | Lewis et al. | Jun 1964 | A |
3176424 | Hoge | Apr 1965 | A |
3366011 | Sturtevant | Jan 1968 | A |
3446114 | Ketterer | May 1969 | A |
3453762 | Fremont | Jul 1969 | A |
3570162 | Suddarth | Mar 1971 | A |
3618455 | Plumer et al. | Nov 1971 | A |
3618457 | Miller | Nov 1971 | A |
3630119 | Perrine | Dec 1971 | A |
3636647 | Goldin | Jan 1972 | A |
3675534 | Beretta | Jul 1972 | A |
3771415 | Into et al. | Nov 1973 | A |
3776095 | Atchisson | Dec 1973 | A |
3803739 | Haines et al. | Apr 1974 | A |
3857323 | Ruger et al. | Dec 1974 | A |
3869961 | Kawamura | Mar 1975 | A |
4016667 | Forbes | Apr 1977 | A |
4028993 | Reynolds | Jun 1977 | A |
4057003 | Atchisson | Nov 1977 | A |
4128042 | Atchisson | Dec 1978 | A |
4226041 | Goodworth | Oct 1980 | A |
4244273 | Langendorfer, Jr. et al. | Jan 1981 | A |
4279191 | Johansson | Jul 1981 | A |
4416186 | Sullivan | Nov 1983 | A |
4433610 | Tatro | Feb 1984 | A |
4475437 | Sullivan | Oct 1984 | A |
4502367 | Sullivan | Mar 1985 | A |
4503632 | Cuevas | Mar 1985 | A |
4505182 | Sullivan | Mar 1985 | A |
4553469 | Atchisson | Nov 1985 | A |
4563937 | White | Jan 1986 | A |
D285236 | Brunton | Aug 1986 | S |
4654993 | Atchisson | Apr 1987 | A |
4658702 | Tatro | Apr 1987 | A |
4663875 | Tatro | May 1987 | A |
4677897 | Barrett | Jul 1987 | A |
4688344 | Kim | Aug 1987 | A |
4693170 | Atchisson | Sep 1987 | A |
4702146 | Ikeda et al. | Oct 1987 | A |
4735007 | Gal | Apr 1988 | A |
4765224 | Morris | Aug 1988 | A |
4872279 | Boat | Oct 1989 | A |
4893426 | Bixler | Jan 1990 | A |
4893547 | Atchisson | Jan 1990 | A |
5038666 | Major | Aug 1991 | A |
5117735 | Flashkes | Jun 1992 | A |
5173564 | Hammond, Jr. | Dec 1992 | A |
5183959 | McCoan et al. | Feb 1993 | A |
5198600 | E'Nama | Mar 1993 | A |
5272956 | Hudson | Dec 1993 | A |
5343650 | Swan | Sep 1994 | A |
5351598 | Schuetz | Oct 1994 | A |
5412895 | Krieger | May 1995 | A |
5448940 | Schuetz et al. | Sep 1995 | A |
5452534 | Lambie | Sep 1995 | A |
5551179 | Young | Sep 1996 | A |
5565642 | Heitz | Oct 1996 | A |
5590484 | Mooney et al. | Jan 1997 | A |
5634288 | Martel | Jun 1997 | A |
5678343 | Menges et al. | Oct 1997 | A |
5726377 | Harris et al. | Mar 1998 | A |
5770814 | Ealovega | Jun 1998 | A |
5806224 | Hager | Sep 1998 | A |
5826363 | Olson | Oct 1998 | A |
5827992 | Harris et al. | Oct 1998 | A |
5900577 | Robinson et al. | May 1999 | A |
5907919 | Keeney | Jun 1999 | A |
6019024 | Robinson et al. | Feb 2000 | A |
6070352 | Daigle | Jun 2000 | A |
6071523 | Mehta et al. | Jun 2000 | A |
6134823 | Griffin | Oct 2000 | A |
6182389 | Lewis | Feb 2001 | B1 |
6227098 | Mason | May 2001 | B1 |
6311603 | Dunlap | Nov 2001 | B1 |
6382073 | Beretta | May 2002 | B1 |
6418655 | Kay | Jul 2002 | B1 |
6508027 | Kim | Jan 2003 | B1 |
6536153 | Lindsey | Mar 2003 | B2 |
6564492 | Weldle et al. | May 2003 | B2 |
6606812 | Gwinn, Jr. | Aug 2003 | B1 |
6634274 | Herring | Oct 2003 | B1 |
6651371 | Fitzpatrick et al. | Nov 2003 | B2 |
6655069 | Kim | Dec 2003 | B2 |
6655372 | Field et al. | Dec 2003 | B1 |
6668815 | Fernandez | Dec 2003 | B1 |
6671990 | Booth | Jan 2004 | B1 |
6681677 | Herring | Jan 2004 | B2 |
6718680 | Roca et al. | Apr 2004 | B2 |
6722255 | Herring | Apr 2004 | B2 |
6792711 | Battaglia | Sep 2004 | B2 |
6820533 | Schuerman | Nov 2004 | B2 |
6829974 | Gwinn, Jr. | Dec 2004 | B1 |
6848351 | Davies | Feb 2005 | B1 |
6851346 | Herring | Feb 2005 | B1 |
6901691 | Little | Jun 2005 | B1 |
6945154 | Luth | Sep 2005 | B1 |
6959509 | Vais | Nov 2005 | B2 |
6971202 | Bender | Dec 2005 | B2 |
7036259 | Beretta | May 2006 | B2 |
7082709 | Lindsey | Aug 2006 | B2 |
7131228 | Hochstrate et al. | Nov 2006 | B2 |
7137217 | Olson et al. | Nov 2006 | B2 |
7162822 | Heayn et al. | Jan 2007 | B1 |
7213498 | Davies | May 2007 | B1 |
7216451 | Troy | May 2007 | B1 |
7219462 | Finn | May 2007 | B2 |
7231861 | Gauny et al. | Jun 2007 | B1 |
7243453 | McGarry | Jul 2007 | B2 |
7299737 | Hajjar et al. | Nov 2007 | B2 |
7313883 | Leitner-Wise | Jan 2008 | B2 |
7316091 | Desomma | Jan 2008 | B1 |
7398616 | Weir | Jul 2008 | B1 |
7428795 | Herring | Sep 2008 | B2 |
7444775 | Schuetz | Nov 2008 | B1 |
7461581 | Leitner-Wise | Dec 2008 | B2 |
7478495 | Alzamora et al. | Jan 2009 | B1 |
7497044 | Cammenga et al. | Mar 2009 | B2 |
D590473 | Fitzpatrick et al. | Apr 2009 | S |
7533598 | Murphy | May 2009 | B1 |
D603012 | Fitzpatrick et al. | Oct 2009 | S |
7596900 | Robinson et al. | Oct 2009 | B2 |
7634959 | Frickey | Dec 2009 | B2 |
7661219 | Knight, Jr. et al. | Feb 2010 | B1 |
7698844 | Gruber et al. | Apr 2010 | B2 |
7707762 | Swan | May 2010 | B1 |
7715865 | Camp, Jr. | May 2010 | B2 |
7716865 | Daniel et al. | May 2010 | B2 |
7735410 | Clark | Jun 2010 | B2 |
7743542 | Novak | Jun 2010 | B1 |
7762018 | Fitzpatrick et al. | Jul 2010 | B1 |
7775150 | Hochstrate et al. | Aug 2010 | B2 |
7784211 | Desomma | Aug 2010 | B1 |
7793453 | Sewell, Jr. et al. | Sep 2010 | B1 |
7806039 | Gomez | Oct 2010 | B1 |
7827722 | Davies | Nov 2010 | B1 |
7832326 | Barrett | Nov 2010 | B1 |
7886470 | Doiron | Feb 2011 | B1 |
D636043 | Olsen et al. | Apr 2011 | S |
7930968 | Giefing | Apr 2011 | B2 |
7963203 | Davies | Jun 2011 | B1 |
7966760 | Fitzpatrick et al. | Jun 2011 | B2 |
7966761 | Kuczynko et al. | Jun 2011 | B1 |
D641451 | Gomez et al. | Jul 2011 | S |
7975595 | Robinson et al. | Jul 2011 | B2 |
8037806 | Davies | Oct 2011 | B2 |
8051595 | Hochstrate et al. | Nov 2011 | B2 |
8061072 | Crose | Nov 2011 | B1 |
8141285 | Brown | Mar 2012 | B2 |
8141289 | Gomez et al. | Mar 2012 | B2 |
8181563 | Peterken | May 2012 | B1 |
8186090 | Chiarolanza et al. | May 2012 | B1 |
8209896 | Cashwell | Jul 2012 | B1 |
8234808 | Lewis et al. | Aug 2012 | B2 |
8245427 | Gomez | Aug 2012 | B2 |
8245429 | Kuczynko et al. | Aug 2012 | B2 |
D668311 | Rogers et al. | Oct 2012 | S |
8307750 | Vuksanovich et al. | Nov 2012 | B2 |
D674859 | Robbins et al. | Jan 2013 | S |
8341868 | Zusman | Jan 2013 | B2 |
8342075 | Gomez | Jan 2013 | B2 |
8375616 | Gomez et al. | Feb 2013 | B2 |
8387513 | Gomez et al. | Mar 2013 | B2 |
8393107 | Brown | Mar 2013 | B2 |
8397415 | Laney | Mar 2013 | B2 |
8418389 | Lukman et al. | Apr 2013 | B1 |
8434252 | Holmberg | May 2013 | B2 |
8468929 | Larson et al. | Jun 2013 | B2 |
8479429 | Barrett et al. | Jul 2013 | B2 |
8516731 | Cabahug et al. | Aug 2013 | B2 |
8539708 | Kenney | Sep 2013 | B2 |
8561335 | Brown | Oct 2013 | B2 |
8631601 | Langevin et al. | Jan 2014 | B2 |
8689477 | Gomez et al. | Apr 2014 | B2 |
8689672 | Cassels | Apr 2014 | B2 |
8726559 | Mueller | May 2014 | B1 |
8746125 | Gomez et al. | Jun 2014 | B2 |
8769855 | Law | Jul 2014 | B2 |
8783159 | Gomez et al. | Jul 2014 | B2 |
8806792 | Yan et al. | Aug 2014 | B2 |
8806793 | Daniel et al. | Aug 2014 | B2 |
D712998 | Gomez | Sep 2014 | S |
8844424 | Gomez | Sep 2014 | B2 |
8863426 | Zinsner | Oct 2014 | B1 |
8887426 | Feese et al. | Nov 2014 | B2 |
8943947 | Gomez | Feb 2015 | B2 |
8950312 | Gomez | Feb 2015 | B2 |
8955422 | Schumacher | Feb 2015 | B1 |
8966800 | Olson | Mar 2015 | B1 |
8978284 | Zusman | Mar 2015 | B1 |
9010009 | Buxton | Apr 2015 | B2 |
9038304 | Hu | May 2015 | B1 |
D735288 | Gomez | Jul 2015 | S |
9121663 | Troy et al. | Sep 2015 | B2 |
9140506 | Gomez | Sep 2015 | B2 |
9234713 | Olson | Jan 2016 | B1 |
9261324 | Liang et al. | Feb 2016 | B1 |
9291414 | Gomez | Mar 2016 | B2 |
9297609 | Burt | Mar 2016 | B2 |
9316459 | Troy et al. | Apr 2016 | B2 |
9395148 | Huang | Jul 2016 | B1 |
9404708 | Chow et al. | Aug 2016 | B1 |
9506711 | Gomez | Nov 2016 | B2 |
9625232 | Gomez | Apr 2017 | B2 |
9658011 | Gomez | May 2017 | B2 |
9766034 | Huang et al. | Sep 2017 | B2 |
9915497 | Gomez | Mar 2018 | B2 |
10054394 | Jen et al. | Aug 2018 | B2 |
10060699 | Hu | Aug 2018 | B1 |
10240883 | Gomez | Mar 2019 | B2 |
10309739 | Gomez | Jun 2019 | B2 |
10532447 | Hamby | Jan 2020 | B2 |
20030089014 | Schuerman | May 2003 | A1 |
20030101631 | Fitzpatrick et al. | Jun 2003 | A1 |
20030110675 | Garrett et al. | Jun 2003 | A1 |
20030126781 | Herring | Jul 2003 | A1 |
20030136041 | Herring | Jul 2003 | A1 |
20040020092 | Christensen | Feb 2004 | A1 |
20040049964 | Vais | Mar 2004 | A1 |
20040055200 | Fitzpatrick et al. | Mar 2004 | A1 |
20050011345 | Herring | Jan 2005 | A1 |
20050011346 | Wolff et al. | Jan 2005 | A1 |
20050016374 | Pescini | Jan 2005 | A1 |
20050115140 | Little | Jun 2005 | A1 |
20050183310 | Finn | Aug 2005 | A1 |
20050183317 | Finn | Aug 2005 | A1 |
20050188590 | Baber et al. | Sep 2005 | A1 |
20050223613 | Bender | Oct 2005 | A1 |
20050262752 | Robinson et al. | Dec 2005 | A1 |
20060026883 | Hochstrate et al. | Feb 2006 | A1 |
20060065112 | Kuczynko et al. | Mar 2006 | A1 |
20060283067 | Herring | Dec 2006 | A1 |
20070012169 | Gussalli Beretta et al. | Jan 2007 | A1 |
20070033850 | Murello et al. | Feb 2007 | A1 |
20070033851 | Hochstrate et al. | Feb 2007 | A1 |
20070051236 | Groves et al. | Mar 2007 | A1 |
20070199435 | Hochstrate et al. | Aug 2007 | A1 |
20070234897 | Poff | Oct 2007 | A1 |
20080016684 | Olechnowicz et al. | Jan 2008 | A1 |
20080029076 | Liang | Feb 2008 | A1 |
20080092422 | Daniel et al. | Apr 2008 | A1 |
20080092733 | Leitner-Wise et al. | Apr 2008 | A1 |
20080276797 | Leitner-Wise | Nov 2008 | A1 |
20090000173 | Robinson et al. | Jan 2009 | A1 |
20090007477 | Robinson et al. | Jan 2009 | A1 |
20090031606 | Robinson et al. | Feb 2009 | A1 |
20090031607 | Robinson et al. | Feb 2009 | A1 |
20090107023 | Murphy | Apr 2009 | A1 |
20090151213 | Bell | Jun 2009 | A1 |
20090178325 | Veilleux | Jul 2009 | A1 |
20100071246 | Vesligai | Mar 2010 | A1 |
20100122483 | Clark | May 2010 | A1 |
20100126054 | Daniel et al. | May 2010 | A1 |
20100154275 | Faifer | Jun 2010 | A1 |
20100162604 | Dubois | Jul 2010 | A1 |
20100186276 | Herring | Jul 2010 | A1 |
20100205846 | Fitzpatrick et al. | Aug 2010 | A1 |
20100236394 | Gomez | Sep 2010 | A1 |
20100242334 | Kincel | Sep 2010 | A1 |
20100269682 | Vuksanovich et al. | Oct 2010 | A1 |
20100281734 | Rousseau et al. | Nov 2010 | A1 |
20100287808 | King | Nov 2010 | A1 |
20100313459 | Gomez | Dec 2010 | A1 |
20100319231 | Stone et al. | Dec 2010 | A1 |
20100319527 | Giefing | Dec 2010 | A1 |
20110005384 | Lewis et al. | Jan 2011 | A1 |
20110016762 | Davies | Jan 2011 | A1 |
20110061281 | Kapusta et al. | Mar 2011 | A1 |
20110094373 | Cassels | Apr 2011 | A1 |
20110173863 | Ingram | Jul 2011 | A1 |
20110247254 | Barnes | Oct 2011 | A1 |
20120000109 | Zusman | Jan 2012 | A1 |
20120030983 | Kuczynko et al. | Feb 2012 | A1 |
20120030987 | Lee, III | Feb 2012 | A1 |
20120042557 | Gomez et al. | Feb 2012 | A1 |
20120073177 | Laney et al. | Mar 2012 | A1 |
20120079752 | Peterson et al. | Apr 2012 | A1 |
20120111183 | Hochstrate et al. | May 2012 | A1 |
20120132068 | Kucynko | May 2012 | A1 |
20120137556 | Laney et al. | Jun 2012 | A1 |
20120137562 | Langevin et al. | Jun 2012 | A1 |
20120137869 | Gomez et al. | Jun 2012 | A1 |
20120137872 | Crommett | Jun 2012 | A1 |
20120152105 | Gomez et al. | Jun 2012 | A1 |
20120167424 | Gomez | Jul 2012 | A1 |
20120180354 | Sullivan et al. | Jul 2012 | A1 |
20120186123 | Troy et al. | Jul 2012 | A1 |
20120204713 | Patel | Aug 2012 | A1 |
20120222344 | Werner | Sep 2012 | A1 |
20120260793 | Gomez | Oct 2012 | A1 |
20130055613 | Gomez et al. | Mar 2013 | A1 |
20130068089 | Brown | Mar 2013 | A1 |
20130097911 | Larue | Apr 2013 | A1 |
20130152443 | Gomez et al. | Jun 2013 | A1 |
20130174457 | Gangl et al. | Jul 2013 | A1 |
20130192114 | Christenson | Aug 2013 | A1 |
20130205637 | Patel | Aug 2013 | A1 |
20130263732 | Kucynko | Oct 2013 | A1 |
20130269232 | Harris et al. | Oct 2013 | A1 |
20130269510 | Sullivan | Oct 2013 | A1 |
20140026459 | Yan et al. | Jan 2014 | A1 |
20140026744 | Gomez et al. | Jan 2014 | A1 |
20140033590 | Gomez | Feb 2014 | A1 |
20140041518 | Neitzling | Feb 2014 | A1 |
20140060293 | Gomez | Mar 2014 | A1 |
20140060509 | Tseng | Mar 2014 | A1 |
20140068987 | Burt | Mar 2014 | A1 |
20140075817 | Gomez | Mar 2014 | A1 |
20140076144 | Gomez | Mar 2014 | A1 |
20140076146 | Gomez | Mar 2014 | A1 |
20140090283 | Gomez | Apr 2014 | A1 |
20140163664 | Goldsmith | Jun 2014 | A1 |
20140190056 | Troy et al. | Jul 2014 | A1 |
20140259843 | Matteson | Sep 2014 | A1 |
20140260946 | Gomez | Sep 2014 | A1 |
20140373415 | Faifer | Dec 2014 | A1 |
20150027427 | Maeda | Jan 2015 | A1 |
20150075052 | Boyarkin | Mar 2015 | A1 |
20150135942 | Gomez | May 2015 | A1 |
20150345895 | Young | Dec 2015 | A1 |
20160069636 | Gomirato et al. | Mar 2016 | A1 |
20160084596 | Gomez | Mar 2016 | A1 |
20160116240 | Gomez | Apr 2016 | A1 |
20160116249 | Maugham | Apr 2016 | A1 |
20160305738 | Huang et al. | Oct 2016 | A1 |
20170023328 | Irvin et al. | Jan 2017 | A1 |
20170108303 | Gomez | Apr 2017 | A1 |
20170205190 | Jen et al. | Jul 2017 | A1 |
20170219311 | Reavis, III | Aug 2017 | A1 |
20170241737 | Keller, II | Aug 2017 | A1 |
20180066906 | Gomez | Mar 2018 | A1 |
20180156568 | Troy et al. | Jun 2018 | A1 |
20190017777 | Wilson et al. | Jan 2019 | A1 |
20190063867 | Gomez | Feb 2019 | A1 |
20200018564 | Gomez | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
WO-9508090 | Mar 1995 | WO |
WO-2008108804 | Sep 2008 | WO |
WO-2008108804 | Sep 2008 | WO |
Entry |
---|
U.S. Appl. No. 15/471,808, dated Nov. 1, 2017, Notice of Allowance in the U.S. Patent and Trademark Office. |
U.S. Appl. No. 15/332,143, dated Nov. 15, 2017, Requirement for Restriction/Election in the U.S. Patent and Trademark Office. |
U.S. Appl. No. 15/332,143, dated Aug. 27, 2017, Office Action in the U.S. Patent and Trademark Office. |
U.S. Appl. No. 15/589,708, dated Jan. 10, 2018, Office Action in the U.S. Patent and Trademark Office. |
U.S. Appl. No. 15/589,708, dated Nov. 15, 2018, Notice of Allowance in the U.S. Patent and Trademark Office. |
U.S. Appl. No. 15/596,834, dated May 17, 2018, Office Action in the U.S. Patent and Trademark Office. |
U.S. Appl. No. 15/596,834, dated Jan. 23, 2019, Notice of Allowance in the U.S. Patent and Trademark Office. |
U.S. Appl. No. 15/918,935, dated Jan. 7, 2019, Requirement for Restriction/Election in the U.S. Patent and Trademark Office. |
Brownells, Inc., “Brownells—Barrel Extension Torque Tool,” YouTube video [online], published Oct. 6, 2011, [retrieved on Aug. 9, 2018]. Retrieved from the Internet: <URL: www.youtube.com/watch?v=n4Y_JrfDcXU>. |
The Brownells Critical Tool Kit Website, “Brownells—AR-15/M16 Critical Tools Kit,” [online], [retrieved on Aug. 10, 2018]. Retrieved from the Internet: <URL: http://investors.maxwell.com/phoenix.zhtml?c=94560&p=irol-newsArticle&ID=1903210 URL: <www.brownells.com/gunsmith-tools-supplies/general-gunsmith-tools/gunsmithing-tool-kits/ar-15-m16-critical-tools-kit-prod41214.aspx>. |
U.S. Appl. No. 14/575,923, dated Jul. 9, 2017, Notice of Allowance in the U.S. Patent and Trademark Office. |
In the U.S. Patent and Trademark Office, Ex Parte Quayle Action in re: U.S. Appl. No. 29/439,542, dated Jan. 30, 2014, 4 pages. |
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 12/316,241, dated Oct. 12, 2011, 7 pages. |
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 12/381,240, dated Sep. 14, 2011, 11 pages. |
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 13/562,651, dated Jul. 9, 2015, 9 pages. |
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 14/575,923, dated Jan. 12, 2017. |
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 14/575,923, dated May 6, 2016, 8 pages. |
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 14/593,513, dated Jan. 14, 2016, 11 pages. |
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 29/439,542, dated Sep. 23, 2014, 5 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 11/825,221, dated Jun. 18, 2010, 4 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 15/058,488, dated Dec. 9, 2016. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 13/419,202, dated Aug. 30, 2012, 7 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 29/439,542, dated Apr. 9, 2015, 6 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 29/449,534, dated Apr. 25, 2014, 5 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 11/188,734, dated Aug. 10, 2007, 6 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 11/491,141, dated Aug. 13, 2008, 6 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 12/217,874, dated Nov. 15, 2011, 8 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 12/316,241, dated Oct. 12, 2012, 6 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 12/801,001, dated Nov. 19, 2012, 9 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 13/430,281, dated Apr. 17, 2013, 6 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 13/430,281, dated Nov. 5, 2013, 7 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 13/562,663, dated May 12, 2015, 7 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 13/588,294, dated Sep. 24, 2014, 7 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 13/738,894, dated Aug. 3, 2016, 10 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 13/756,320, dated Jan. 27, 2014, 7 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 13/769,224, dated Mar. 18, 2014, 6 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 13/837,697, dated Sep. 30, 2014, 10 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 13/841,618, dated May 27, 2014, 7 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 14/577,503, dated Nov. 12, 2015, 8 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 29/371,221, dated May 31, 2011, 9 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 12/217,874, dated Nov. 15, 2011, 5 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 12/217,874, dated Oct. 12, 2011, 6 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 11/491,141, dated Jan. 23, 2008, 14 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 11/825,221, dated Feb. 5, 2010, 6 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 12/217,874, dated Jan. 4, 2011, 7 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 12/316,241, dated Feb. 7, 2011, 9 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 12/316,241, dated May 1, 2012, 5 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 12/381,240, dated Feb. 15, 2011, 10 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 13/430,281, dated Dec. 5, 2012, 5 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 13/562,651, dated Aug. 26, 2014, 8 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 13/562,663, dated Sep. 25, 2014, 15 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 13/738,894, dated Dec. 15, 2015, 10 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 13/738,894, dated Dec. 3, 2014, 12 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 13/756,320, dated Sep. 11, 2013, 6 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 13/769,224, dated Nov. 29, 2013, 7 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 14/470,513, dated Jun. 30, 2016, 8 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 14/575,923, dated Jan. 15, 2016, 7 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 14/577,503, dated Aug. 28, 2015, 10 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 14/593,513, dated Aug. 13, 2015, 14 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 14/844,886, dated Feb. 29, 2016, 8 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 29/371,221, dated Mar. 15, 2011, 5 pages. |
In the U.S. Patent and Trademark Office, Requirement for Restriction/Election in re: U.S. Appl. No. 12/217,874, dated Oct. 12, 2011, 6 pages. |
In the U.S. Patent and Trademark Office, Requirement for Restriction/Election in re: U.S. Appl. No. 12/316,241, dated Sep. 27, 2010, 5 pages. |
In the U.S. Patent and Trademark Office, Requirement for Restriction/Election in re: U.S. Appl. No. 12/801,001, dated Feb. 15, 2012, 7 pages. |
In the U.S. Patent and Trademark Office, Requirement for Restriction/Election in re: U.S. Appl. No. 13/562,651, dated Jun. 10, 2014, 7 pages. |
In the U.S. Patent and Trademark Office, Requirement for Restriction/Election in re: U.S. Appl. No. 13/588,294, dated Mar. 28, 2014, 9 pages. |
In the U.S. Patent and Trademark Office, Requirement for Restriction/Election in re: U.S. Appl. No. 13/738,894, dated May 7, 2014, 9 pages. |
In the U.S. Patent and Trademark Office, Requirement for Restriction/Election in re: U.S. Appl. No. 13/756,320, dated Jul. 12, 2013, 5 pages. |
In the U.S. Patent and Trademark Office, Requirement for Restriction/Election in re: U.S. Appl. No. 13/769,224, dated Aug. 9, 2013, 6 pages. |
In the U.S. Patent and Trademark Office, Requirement for Restriction/Election in re: U.S. Appl. No. 13/837,697, dated Jul. 16, 2014, 7 pages. |
In the U.S. Patent and Trademark Office, Requirement for Restriction/Election in re: U.S. Appl. No. 14/470,513, dated Feb. 4, 2016, 7 pages. |
In the U.S. Patent and Trademark Office, Requirement for Restriction/Election in re: U.S. Appl. No. 14/577,503, dated Jun. 10, 2015, 6 pages. |
In the U.S. Patent and Trademark Office, Requirement for Restriction/Election in re: U.S. Appl. No. 16/837,697, dated Jul. 16, 2014, 7 pages. |
12″ LWRC REPR SBR, [online], [2011]. Retrieved from the Internet: <URL: http://forum.lwrci.com/viewtopic.php?f=35&t=10081. |
Charlie Cutshaw, “Fal Fever!” Combat Tactics, www.surefire.com; Fall 2005; 14 pages. |
David Crane, “LMT MRP Piston/Op-Rod System v. HK416: 2,000-Round Head-to-Head Test,” Defense Review (www.defensereview.com); Feb. 23, 2009 (5 web pages), plus 6 enlarged photographs from the web pages. [Reprint of text retrieved Nov. 12, 2015, online], Retrieved from the Internet: <URL: http://www.defensereview.com/lmt-mrp-pistonop-rod-system-vs-hk416-2000-round-head-to-head-test/>. |
Iannamico, “The U.S. Ordnance Department Tests The German FG-42,” Journal Article: The Small Arms Review, 2007: vol. 10(9), pp. 83-88. |
International Search Report for PCT/US07/16133 dated Nov. 6, 2008. |
LWRC REPR 7.62mm Photo Gallery, [online], [retrieved on Nov. 5, 2009]. Retrieved from the Internet: <URL: http://www.xdtalk.com/forums/ar-talk/135060-lwrc-repr-7-62mm-photo-gallery.html. |
Rob Curtis, “AAC's MPW “Honey Badger” don't care . . . ;” Military Times GearScout (http://blogs.militarytimes.com/gearscout/2011/10/15/aacs-mpw-h-oney-badger-dont-care/); Oct. 15, 2011 [Retrieved on May 17, 2013] (2 web pages), plus 4 enlarged photographs from the web pages. |
Rob Curtis, Reaction Rod by Geissele Automatics, Military Times—Gear Scout, Oct. 12, 2012; , [online], [retrieved on Nov. 12, 2015]. Retrieved from the Internet: <URL: http://gearscout.militarytimes.com/2012/10/12/reaction-rod-by-geissele-automatics/>. |
U.S. Appl. No. 15/332,143, dated Jun. 13, 2019, Final Office Action in the U.S. Patent and Trademark Office. |
U.S. Appl. No. 15/332,143, dated Feb. 21, 2020, Notice of Allowance in the U.S. Patent and Trademark Office. |
U.S. Appl. No. 15/806,137, dated Nov. 1, 2018, Requirement for Restriction/Election in the U.S. Patent and Trademark Office. |
U.S. Appl. No. 15/806,137, dated May 31, 2019, Office Action in the U.S. Patent and Trademark Office. |
U.S. Appl. No. 15/806,137, dated Dec. 31, 2019, Notice of Allowance in the U.S. Patent and Trademark Office. |
U.S. Appl. No. 15/918,935, dated Jul. 23, 2019, Office Action in the U.S. Patent and Trademark Office. |
U.S. Appl. No. 15/918,935, dated Nov. 6, 2019, Notice of Allowance in the U.S. Patent and Trademark Office. |
U.S. Appl. No. 16/277,506, dated Oct. 25, 2019, Office Action in the U.S. Patent and Trademark Office. |
Number | Date | Country | |
---|---|---|---|
20180119721 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13562651 | Jul 2012 | US |
Child | 15811404 | US |