The present invention relates to a flow barrel polishing method and a flow barrel polishing apparatus for polishing a workpiece while causing a mass configured by the workpiece and a media to centrifugally flow in a polishing bath.
Flow barrel polishing is a method for inputting a mass configured by a workpiece that is a polishing target and a media that is a polishing material into a polishing bath, and for polishing the workpiece while causing the mass to centrifugally flow using a rotary disc provided on a bottom of the polishing bath. One example of the method is disclosed in Japanese Patent Application Laid-Open No. 8-11057 (Japanese Patent Number 3343701). As shown in
The conventional flow barrel polishing has, however, disadvantages in that the media is gradually worn as the polishing progresses, a mass amount is reduced, a frictional force between the workpiece and the media is reduced, and a deterioration in a polishing capability is thereby unavoidable. These disadvantages are conspicuous particularly in dry flow barrel polishing.
It is an object of the present invention to provide a flow barrel polishing method and a barrel polishing apparatus that can solve the above-stated conventional disadvantages, that can avoid a reduction in a polishing capability following progress of polishing, and that can greatly improve the polishing capability as compared with that of the conventional polishing method or apparatus.
The inventors of the present invention exerted their utmost efforts for solving the conventional disadvantages. As a result, the inventors discovered that the polishing capability can be considerably enhanced as compared with the conventional polishing capability by controlling a flow of a mass rising along an inner wall of a polishing bath using an appropriate means against a conventional common knowledge that the polishing capability of the flow barrel polishing is deteriorated when a natural flow of the mass is disturbed. Further, a change in the polishing capability of the flow barrel polishing apparatus appears as a change in a work amount transmitted from the rotary disc to the mass, that is, appears as a change in a rotation resistance of the rotary disc. It is, therefore, possible to grasp the change in the polishing capability of the apparatus as a load of a driving motor for the rotary disc from outside. Accordingly, by controlling the flow of the mass to keep the load of the driving motor for the rotary disc constant, the polishing capability deteriorated as the polishing progresses can be kept constant.
A barrel polishing method according to the present invention achieved based on the above-stated knowledge is a barrel polishing method for polishing a mass while causing the mass to rotatably flow by a rotary disc provided on a bottom of a polishing bath, characterized in that a load range of a driving motor for the rotary disc is set in advance, a flow area of the mass within the polishing bath is controlled with a load of the driving motor used as a parameter if the load of the driving motor is out of a set range, and the mass is polished while keeping the load of the driving motor within the set range. In this case, it is preferable to use, for example, a load current of the driving motor as the load of the driving motor.
According to the present invention, the flow area of the mass within the polishing bath can be controlled by various methods including a method for elevating movable means that covers an upper portion of the polishing bath and increasing or reducing the flow area of the mass that rises along an inner wall of the polishing bath, a method for increasing or reducing a force of pressing down an upper end the mass that rises along the inner wall of the polishing bath, a method for controlling a rotation speed of the rotary disc, and the like. Further, the load current set range is not always limited to one and a plurality of load current set ranges can be set at predetermined time intervals. By intermittently controlling the flow of the mass within the polishing bath, polishing of the mass while controlling the flow of the mass and free polishing without a control over the flow of the mass can be alternately and repeatedly performed. 1
Further, a barrel polishing apparatus according to the present invention is characterized by comprising: a polishing bath into which a workpiece and a media are input; a rotary disc, provided on a bottom of the polishing bath, for causing the workpiece and the media to rotatably flow to thereby form a mass within the polishing bath; means for setting a load of a driving motor for the rotary disc; and flow area control means for controlling a flow area of the mass within the polishing bath with the load of the driving motor used as a parameter if the load of the driving motor is out of a set range.
As the mass flow area control means, any of various means including a combination of movable means provided in an upper portion of the polishing bath and an elevation mechanism for the movable means, a combination of movable means provided in an upper portion of the polishing bath and a pressurization chamber that supplies or discharges a pressurized fluid and that thereby moves the movable means downward or stops moving the movable means downward, a combination of movable means that is provided in an upper portion of the polishing bath and that is expandable and compressible within the polishing bath and a pressurization mechanism that expands or compresses the movable means, control means for controlling a rotation speed of the driving motor for the rotary disc, and the like can be used. Each of these control means can be employed together with the other control means.
According to the present invention, the load range of the driving motor for the rotary disc is set in advance as a load current or the like, and the flow area of the mass within the polishing bath is controlled with the load of the driving motor used as a parameter if the load of the driving motor is out of the set range, whereby the mass is polished within the load set range. A deterioration in polishing capability following progress of the polishing can be detected as a reduction in the load of the driving motor for the rotary disc as a result of a reduction in the frictional force between the workpiece and the media due to a reduction in a volume of the mass after wearing of the media or polishing of the workpiece. Therefore, if the load is reduced, then the flow area of the mass within the polishing bath is narrowed to keep the frictional force between the workpiece and the media constant, and the load of the driving motor is always kept within the set range, whereby the barrel polishing can be performed while keeping the polishing capability constant. Besides, by area control of the flow of the mass within the polishing bath, the frictional force between the workpiece and the media can be considerably intensified as compared with that of the conventional method or apparatus. While these advantages of the present invention are conspicuous particularly in dry barrel polishing, they are similarly exhibited even in wet barrel polishing.
The rotary disc 2, which is arranged slightly upward of a bottom plate 10 of the polishing bath 1, is rotated by a driving motor 20 through a reducer 5 while slidably contacting with the inner wall 12 of the polishing bath 1 with a slidable contact clearance 4 left. A rotation speed of the driving motor 20 is controlled by a control means 50.
The rotary disc 2 is provided with small bores 6 and a cavity 14 is formed between the rotary disc 2 and the bottom plate 10 of the polishing bath 1. A dust collector, not shown, is connected to a dust collection tube 11 provided in a lower portion of the cavity 14. Dusts generated by polishing are passed through the cavity 14 via the small bores 6 and the slidable contact clearance 4, and collected by this cavity 14 via the dust collection tube 11.
The load of the driving motor 20 for the rotary disc 2 is always detected by a load detection means included in the control means 50. Although it is practical to use a load current for detecting the load of the driving motor 20, the present invention is not always limited to this and a load power, for example, may be detected. According to the present invention, the load current or the like can be set by a load setting means 70 in advance, and the flow area of the mass M within the polishing bath 1 is controlled by a flow area control means of any one of various types as will be described later in detail. The polishing is thereby always performed within a set range of setting the load of the driving motor 20.
An opening 8 for evading a part of the mass M and providing a smooth flow when the mass M is filled into the polishing bath 1 and the flow of the mass M is not smooth is formed at a center of the movable means 3. In this embodiment, a support member 31 that strides over the opening 8 is fixedly provided. An elevation mechanism 60 for vertically moving this movable means 3 is provided above the movable means 3. The elevation mechanism 60 is configured by an arm 62 horizontally rotatably attached to an axis of a column 61, a driving section 64 that is attached to a tip end of the arm 62 and that vertically moves the movable means 3 through an operation rod 63 protruding upward of the support member 31 of the movable means 3, and a control section 65 that is included in the speed control means 50, that receives a signal from the load current detection means, and that drives the driving section 64. As the driving section 64, an appropriate type of the driving section 64 such as a hydraulic cylinder type or a ball screw type can be employed. In this embodiment, flow area control means for controlling the flow of the mass within the polishing bath 1 is constituted by the movable mean 3 and the elevation mechanism 60.
When the workpiece and the media are input into the polishing bath 1 and the rotary disc 2 is rotated by the driving motor 20, the workpiece and the media form the mass M and the mass M rises along the inner wall 12 of the polishing bath 1 by the centrifugal force as stated above. According to the present invention, the mass M flows in a toroidal fashion while a flow area of the rising mass M is restricted by the movable means 3 and a flow direction thereof is changed to a direction of the center of the polishing bath 1. It is a conventional common knowledge that when a natural flow of the mass is disturbed, the polishing capability of the flow barrel polishing is deteriorated. According to the present invention, however, the flow area of the mass that rises along the inner wall of the polishing bath is controlled by the appropriate means, thereby considerably increasing the frictional force between the workpiece and the media and greatly enhancing the polishing capability as compared with the conventional apparatus or method.
As stated, as the polishing progresses, corners (convex portions) of the media are worn and the workpiece is polished. Due to this, the frictional force between them is reduced and the polishing capability is gradually lessened. According to this embodiment, however, the elevation mechanism 60 that is the mass flow area control means moves the movable means 3 downward so that the load of the driving motor 20 is kept within the range set by the setting means 70 in advance.
That is, if the polishing capability is deteriorated, the load of the driving motor 20, e.g., the load current is reduced. Therefore, in response to the signal from the load detection means included in the control means 50, the control section 65 of the elevation mechanism 60 moves the operation rod 63 downward as shown in
As can be seen, according to this embodiment, the polishing is performed while controlling the frictional force between the workpiece and the media to always fall within the certain range by optimally adjusting the height of the movable means 3 with the load of the driving motor 20 used as a parameter. It is, therefore, possible to continuously perform barrel polishing without deteriorating the polishing capability even if the polishing progresses.
After the polishing is finished, the movable means 3 is raised upward of the polishing bath 1 by the elevation mechanism 60 and the arm 62 is then rotated horizontally about the column 61. Next, the polishing bath 1 is rotated so that the bath 1 stands and the rotary disc 2 is rotated at a right angle or more, whereby the mass M completed with the polishing can be easily taken out from within the polishing bath 1.
In the first embodiment, the peripheral edge of the flexible movable means 3 is fixed to the upper end of the polishing bath 1. Alternatively, as shown in
In this embodiment, a pressure of the pressurized fluid supplied from the pressurized fluid supply port 18 is increased and the movable means 3 is pressed downward in a piston manner when a load of a driving motor 20 is reduced, thereby controlling a flow area of a mass M. It is thereby possible to increase a frictional force between a workpiece and a medium and always perform barrel polishing within a set range of setting the load of the driving motor 20.
Alternatively, as shown in
In the respective embodiments stated so far, if the load of the driving motor 20 is reduced, the position of the movable means 3 is changed to control the flow area of the mass M and to increase or reduce the pressure applied to the mass M. Besides, if the rotation speed of a rotary disc 2 is controlled to increase or decrease a flow speed of the mass M when the load of the driving motor 20 is changed, the pressure applied to the rotatably flowing mass M can be increased or reduced. Namely, according to this sixth embodiment, control means 50 for controlling the rotation speed of the driving motor 20 is allowed to function as a means for controlling a flow of the mass M. It is noted, however, an upper portion of a polishing bath 1 is covered with a lid so as to prevent the mass M from protruding when the number of revolutions of the rotary disc 2 is increased.
Furthermore, a control means 50 may be configured to be able to set a constraint polishing time for which a flow direction of a mass M is changed by a movable means 3 and a workpiece is polished in a constraint state, and an unconstraint polishing time for which the mass M is polished while the mass M flows freely without a change in the flow direction thereof by the movable means 3, and to intermittently control a flow of the mass M. By so configuring, it is possible to efficiently perform barrel polishing (see
Namely, a method according to this embodiment is a method for turning the workpiece into an unconstraint state by raising the movable means 3 up to a height at which the mass M is in no contact with the movable means 3 or the number of revolutions of a rotary disc 2 is decreased so that the mass M is in no contact with the movable means 3 without changing the height of the mass M when the workpiece constraint polishing time reaches a predetermined time. During the constraint polishing, a non-uniform mixture state of mixing up a media and the workpiece often causes a deterioration in polishing efficiency. However, by intermittently releasing the constraint and allowing the mass M to rotatably flow in a free state, the workpiece and the media are mixed together uniformly again. It is, therefore, possible to further enhance the polishing efficiency.
Using the barrel polishing apparatus including the polishing bath 1 having an inside diameter of 440 mm as shown in
A polishing amount per workpiece is 115 mg/hr as indicated by {circle around (1)} in
{circle around (2)}: A column of stainless steel, a diameter of three mm, and a length of 21 mm;
{circle around (3)}: A ring of steel, an outside diameter of 14 mm, an inside diameter of 13 mm, and a thickness of 12 mm; and
{circle around (4)}: A plate of spring steel, a length of 54 mm, a width of 27 mm, and a thickness of 4.5 mm.
Ratios of the method according to the present invention to the conventional method in the polishing amount per workpiece are: 9.9 for the workpiece {circle around (2)}, 14.3 for {circle around (3)}, and 18.6 for {circle around (4)}. It is thus confirmed that the method according to the present invention can enhance the polishing capability of polishing any workpiece.
Using these correlations, the load is controlled by changing the rotation speed of the rotary disc 2 between 250 and 400 min−1. The workpiece used herein is the workpiece {circle around (1)} shown in the first example, and the polishing bath, the media, and the like are the same as those of the first example. The polishing amount per workpiece is over 80 mg/hr according to the present invention relative to 13 mg/hr according to the conventional method. Good results can be thus obtained.
In this example, the upper limit of the load current is set at 5.2 A, and the lower limit thereof is set at 5.0 A in the same polishing conditions as those of the first example. Further, as shown in
In this third example, the mass M is intermittently controlled to freely flow by raising the movable means 3 up to the height at which the movable means 3 is in no contact with the mass M. Needless to say, the workpiece can be polished while intermittently controlling the flow of the workpiece by a method for increasing or decreasing the rotation speed of the rotary disc 2.
Number | Date | Country | Kind |
---|---|---|---|
2002-346870 | Nov 2002 | JP | national |
This application is a continuation of International Application No. PCT/JP2003/011952, filed Sep. 19, 2003, which designated the United States, and also claims the benefit of Japanese Application No. 2002-346870, filed Nov. 29, 2002, the entireties of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP03/11952 | Sep 2003 | US |
Child | 11135601 | May 2005 | US |