Information
-
Patent Grant
-
6386687
-
Patent Number
6,386,687
-
Date Filed
Tuesday, June 5, 200124 years ago
-
Date Issued
Tuesday, May 14, 200223 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Barlow; John
- Stephen; Juanita
-
CPC
-
US Classifications
Field of Search
US
- 347 63
- 347 65
- 347 64
- 347 50
- 347 58
- 438 106
- 438 108
- 438 121
- 438 21
- 438 42
- 438 43
-
International Classifications
-
Abstract
An ink jet printhead including a thin film substructure including a plurality of elongated gold traces having openings formed therein. An ink barrier layer is disposed on the thin film substructure in contact with the gold traces and the regions exposed by the openings in the elongated gold traces. The openings are configured to provide for reliable adhesion between the ink barrier layer and the regions exposed by the openings in the elongated gold traces.
Description
BACKGROUND OF THE INVENTION
The subject invention generally relates to ink jet printing, and more particularly to thin film ink jet printheads for ink jet cartridges and methods for manufacturing such printheads.
The art of ink jet printing is relatively well developed. Commercial products such as computer printers, graphics plotters, and facsimile machines have been implemented with ink jet technology for producing printed media. The contributions of Hewlett-Packard Company to ink jet technology are described, for example, in various articles in the Hewlett-Packard Journal, Vol. 36, No. 5 (May 1985); Vol. 39, No. 5 (October 1988); Vol. 43, No. 4 (August 1992); Vol. 43, No. 6 (December 1992); and Vol. 45, No. 1 (February 1994); all incorporated herein by reference.
Generally, an ink jet image is formed pursuant to precise placement on a print medium of ink drops emitted by an ink drop generating device known as an ink jet printhead. Typically, an ink jet printhead is supported on a movable carriage that traverses over the surface of the print medium and is controlled to eject drops of ink at appropriate times pursuant to command of a microcomputer or other controller, wherein the timing of the application of the ink drops is intended to correspond to a pattern of pixels of the image being printed.
A typical Hewlett-Packard ink jet printhead includes an array of precisely formed nozzles in an orifice plate that is attached to an ink-barrier layer which in turn is attached to a thin film substructure that implements ink firing heater resistors and apparatus for enabling the resistors. The ink barrier layer defines ink channels including ink chambers disposed over associated ink firing resistors, and the nozzles in the orifice plate are aligned with associated ink chambers. Ink drop generator regions are formed by the ink chambers and portions of the thin film substructure and the orifice plate that are adjacent to the ink chambers.
The thin film substructure is typically comprised of a substrate such as silicon on which are formed various thin film layers that form thin film ink firing resistors, apparatus for enabling the resistors, and also interconnections to bonding pads that are provided for external electrical connections to the printhead. The thin film substructure more particularly includes a top thin film layer of tantalum disposed over the resistors as a thermomechanical passivation layer.
The ink barrier layer is typically a polymer material that is laminated as a dry film to the thin film substructure, and is designed to be photodefinable and both UV and thermally curable.
An example of the physical arrangement of the orifice plate, ink barrier layer, and thin film substructure is illustrated at page 44 of the Hewlett-Packard Journal of February 1994, cited above. Further examples of ink jet printheads are set forth in commonly assigned U.S. Pat. No. 4,719,477 and U.S. Pat. No. 5,317,346, both of which are incorporated herein by reference.
A consideration with the foregoing ink jet printhead architecture includes delamination of the ink barrier layer from the thin film substructure. Delamination pricipally occurs from environmental moisture and the ink itself which is in continual contact with the edges of the thin film substructure/barrier interface in the drop generator regions.
BRIEF DESCRIPTION OF THE DRAWINGS
The advantages and features of the disclosed invention will readily be appreciated by persons skilled in the art from the following detailed description when read in conjunction with the drawing wherein:
FIG. 1
is a schematic top plan view of an ink jet printhead that employs the invention.
FIG. 2
a schematic, partially sectioned a perspective view of the ink jet printhead of FIG.
1
.
FIG. 3
is a schematic cross-sectional view of the ink jet printhead of
FIG. 1
depicting layers of the printhead.
FIG. 4
is a schematic cross-sectional view of the ink jet printhead of
FIG. 1
depicting openings in a layer that underlies gold traces of the printhead.
FIG. 5
is a partial plan view of the printhead of
FIG. 1
illustrating examples of gold traces in accordance with the invention.
FIG. 6
is a partial plan view illustrating a further example of a gold trace in accordance with the invention.
FIG. 7
is a partial plan view illustrating another example of a gold trace in accordance with the invention.
FIG. 8
is a partial plan view illustrating another example of a gold trace in accordance with the invention.
DETAILED DESCRIPTION OF THE DISCLOSURE
In the following detailed description and in the several figures of the drawing, like elements are identified with like reference numerals.
Referring now to
FIGS. 1 and 2
, set forth therein are an unscaled schematic plan view and an unscaled schematic perspective view of an ink jet printhead in which the invention can be employed and which generally includes (a) a thin film substructure or die
11
comprising a substrate such as silicon and having various thin film layers formed thereon, (b) an ink barrier layer
12
disposed on the thin film substructure
11
, and (c) an orifice or nozzle plate
13
attached to the top of the ink barrier
12
.
The thin film substructure
11
is formed pursuant to integrated circuit fabrication techniques, and includes thin film heater resistors
56
formed therein. By way of illustrative example, the thin film heater resistors
56
are arranged in columns along opposing ink feed edges of ink feed slots
71
. The columns of heater resistors and the ink feed slots are aligned with a longitudinal axis L of the printhead.
The ink barrier layer
12
is formed of a dry film that is heat and pressure laminated to the thin film substructure
11
and photodefined to form therein ink chambers
19
and ink channels
29
. Gold bond pads
27
engagable for external electrical connections are disposed at the ends of the thin film substructure
11
and are not covered by the ink barrier layer
12
. By way of illustrative example, the barrier layer material comprises an acrylate based photopolymer dry film such as the Parad, brand photopolymer dry film obtainable from E.I. duPont de Nemours and Company of Wilmington, Del. Similar dry films include other duPont products such as the Riston brand dry film and dry films made by other chemical providers. The orifice plate
13
comprises, for example, a planar substrate comprised of a polymer material and in which the orifices are formed by laser ablation, for example as disclosed in commonly assigned U.S. Pat. No. 5,469,199, incorporated herein by reference. The orifice plate can also comprise, by way of further example, a plated metal such as nickel.
The ink chambers
19
in the ink barrier layer
12
are more particularly disposed over respective ink firing resistors
56
formed in the thin film substructure
11
, and each ink chamber
19
is defined by the edge or wall of a chamber opening formed in the barrier layer
12
. The ink channels
29
are defined by further openings formed in the barrier layer
12
, and are integrally joined to respective ink firing chambers
19
. The orifice plate
13
includes orifices
21
disposed over respective ink chambers
19
, such that an ink firing resistor
56
, an associated ink chamber
19
, and an associated orifice
21
form an ink drop generator
40
.
The ink drop generators are thus arranged in columns
61
,
62
,
63
,
64
aligned with the longitudinal axis L of the printhead and located on opposing ink feed sides or edges of ink feed slots
71
. The columns
61
,
64
are adjacent longitudinal edges of the thin film substructure
11
and comprise outboard columns of ink drop generators, while the columns
62
,
63
are between the outboard columns and comprise inboard columns of ink drop generators.
While the disclosed printhead is described as having a barrier layer and a separate orifice plate, it should be appreciated that the printhead can be implemented with an integral barrier/orifice structure that can be made, for example, using a single photopolymer layer that is exposed with a multiple exposure process and then developed.
Referring now to
FIG. 3
, set forth therein is a schematic depiction of layers of the thin film substructure
11
which comprises a silicon substrate
111
a
, a device stack
111
b
in which actives devices (such as FET circuits) and heater resistors are formed, and a composite passivation layer
111
c
comprising for example a silicon nitride layer and a silicon carbide layer. A patterned silicon dioxide layer
111
d
is disposed on the composite passivation layer
111
c
, and a patterned tantalum mechanical passivation layer
111
e
is disposed on the silicon dioxide layer
111
d
. A patterned gold layer comprised of a plurality of elongated gold conductive traces
41
in accordance with the invention is disposed on the tantalum layer
111
e.
The ink barrier layer
12
is laminarly attached to the top of the thin film substructure
11
and is in contact with the elongated gold traces
41
portions of the tantalum layer
111
e
, and portions of the silicon dioxide layer
111
d
, depending on the patterning of such layers.
As depicted in
FIG. 1
, the elongated gold traces
41
extend along the longitudinal extent L of the printhead, and can comprise for example power traces that provide ink firing energy to drive circuits that switchably energize the heater resistors. By way of illustrative example, an outboard elongated gold trace
41
is located between a longitudinal edge of the thin film substructure
11
and the outboard column
61
of ink drop generators, while a generally centrally located elongated gold trace
41
. is located between the inboard columns
62
,
63
of ink drop generators. Another outboard elongated gold trace
41
can be located between the other longitudinal edge of the thin film substructure
11
and the outboard column
64
of ink drop generators. By way of specific example, the centrally located elongated gold trace
41
can be wider than the outboard elongated gold traces
41
.
As schematically depicted in
FIGS. 5-8
, the elongated gold trace
41
is more particularly patterned with openings
43
a
,
43
b
,
43
c
to enhance adhesion of the barrier layer
12
to the thin film substructure
11
. The opening can be an enclosed opening
43
a
(
FIGS. 5 and 7
) wherein the opening is contained within the gold trace such that the entire boundary of the opening is gold. The opening can be an indented opening
43
b
(
FIGS. 5-7
) that is outside the perimeter of the gold trace and is like an indentation, cut-out or notch at the edge of a gold trace. Indented openings effectively provide for gold traces having non-linear edges. The opening can also be a gap opening
43
c
(
FIG. 8
) that extends the lateral extent of the gold trace which with the gaps effectively is comprised of a series of gold segments. Thus, a gap opening includes two separate non-gold boundary sections that create a structural discontinuity in the gold trace, while enclosed and indented openings do not create a structural discontinuity in the gold trace.
By way of illustrative example, the elongated gold trace and the openings therein can occupy a generally rectangular area.
The openings
43
a
,
43
b
,
43
c
are sufficiently large such that the ink barrier layer reliably adheres to the region of a layer that underlies an opening in the gold trace and is exposed by the opening
12
. By way of illustrative example, the areas of the openings can be at least 400 microns
2
. The area of an indented opening can be considered as the area of gold that is removed from a gold trace having a linear edge to make the indentation. The area of a gap opening can be considered as the area of gold that is removed between opposing sides or edges to form the gap.
The region exposed by an enclosed opening
43
a
or an indented opening
43
b
in a gold trace can comprise a region of the tantalum layer
111
e
or a region of the silicon dioxide layer
111
d
. In the latter case, an opening
113
is formed in the tantalum layer
111
e
beneath the opening in the gold trace, as schematically depicted in FIGS.
2
and
4
-
6
. The openings
113
in the tantalum layer
111
e
can be coextensive with the corresponding openings
43
in the gold trace
41
, or they can be larger, for example extending beyond the lateral boundaries of the gold trace. The region exposed by a gap opening
43
c
preferably comprises a region of the tantalum layer
111
e
so as to provide for electrical continuity along the longitudinal extent of the gold trace.
An opening in a gold trace can include linear sides, and can more particularly comprise a polygon.
FIG. 5
schematically depicts rectangular enclosed and indented openings.
FIG. 6
schematically depicts a gold trace having triangularly shaped indented openings
43
, such that the elongated gold trace has a zig-zag pattern.
FIG. 7
schematically depicts a gold trace having a cross-shaped enclosed openings
43
a
, and stepped indented openings
43
c
.
FIG. 8
schematically depicts a gold trace having rectangular gap openings
43
c.
Although the foregoing has been a description and illustration of specific embodiments of the invention, various modifications and changes thereto can be made by persons skilled in the art without departing from the scope and spirit of the invention as defined by the following claims.
Claims
- 1. An ink jet printhead comprising:a thin film substructure including an elongated patterned gold trace disposed on a top portion thereof and having a plurality of ink firing heater resistors defined therein; a plurality of openings formed in said elongated gold trace such that regions of said thin film substructure underlying said openings are exposed; an ink barrier layer disposed on said thin film substructure and in contact with said elongated gold trace and said exposed regions; and said openings in said elongated gold trace configured to provide reliable adhesion between said ink barrier layer and said exposed regions.
- 2. The ink jet printhead of claim 1 wherein said openings comprise enclosed openings.
- 3. The ink jet printhead of claim 1 wherein said openings comprise indented openings.
- 4. The ink jet printhead of claim 1 wherein said openings comprise gaps in said gold trace, and wherein said regions exposed by said gaps comprise a conductive material.
- 5. The ink jet printhead of claim 1 wherein said openings include linear sides.
- 6. The ink jet printhead of claim 1 wherein said openings comprise polygons.
- 7. The ink jet printhead of claim 1 wherein each of said openings has an area of at least 400 micrometers2.
- 8. The ink jet printhead of claim 1 wherein said gold trace and said openings occupy an elongated, generally rectangular region.
- 9. An ink jet printhead comprising:a thin film substructure including an elongated patterned gold trace on a top portion thereof and having a plurality of heater resistors formed therein; said plurality of heater resistors defined in a plurality of thin film layers; a plurality of openings formed in said elongated gold trace such that regions of said thin film substructure underlying said openings are exposed, said regions comprising tantalum regions; an ink barrier layer disposed on said thin film substructure so as to be in contact with said elongated gold trace and said tantalum regions; and said openings in said elongated gold trace configured to provide reliable adhesion between said ink barrier layer and said exposed tantalum regions.
- 10. The ink jet printhead of claim 9 wherein said openings comprise enclosed openings.
- 11. The ink jet printhead of claim 9 wherein said openings comprise indented openings.
- 12. The ink jet printhead of claim 9 wherein said openings comprise gaps in said gold trace.
- 13. The ink jet printhead of claim 9 wherein said openings include linear sides.
- 14. The ink jet printhead of claim 9 wherein said openings comprise polygons.
- 15. The ink jet printhead of claim 9 wherein each of said openings has an area of at least 400 micrometers2.
- 16. The ink jet printhead of claim 9 wherein said gold trace and said openings occupy an elongated, generally rectangular region.
- 17. An ink jet printhead comprising:a thin film substructure including an elongated patterned gold trace on a top portion thereof and having a plurality of ink firing heater resistors defined therein; a plurality of openings formed in said elongated gold trace such that regions of said thin film substructure underlying said openings are exposed, said regions comprising silicon dioxide regions; an ink barrier layer disposed on said substructure so as to be in contact with said elongated gold trace and said silicon dioxide regions; and said openings in said elongated gold trace configured to provide reliable adhesion between said ink barrier layer and said silicon dioxide regions.
- 18. The ink jet printhead of claim 17 wherein said openings comprise enclosed openings.
- 19. The ink jet printhead of claim 17 wherein said openings comprise indented openings.
- 20. The ink jet printhead of claim 17 wherein said openings have linear sides.
- 21. The ink jet printhead of claim 17 wherein said openings comprise polygons.
- 22. The ink jet printhead of claim 17 wherein each of said openings has an area of at least 400 micrometers2.
- 23. The ink jet printhead of claim 17 wherein said gold trace and said openings occupy an elongated, generally rectangular region.
- 24. An ink jet printhead comprising:a thin film substructure including an elongated patterned gold trace on a top portion thereof and having a plurality of ink firing heater resistors defined therein; said elongated patterned gold trace having a non-linear edge extending between longitudinally separated ends of said gold trace; an ink barrier layer disposed on said substructure so as to be in contact with said elongated gold traces and regions of said thin film substructure that are adjacent said non-linear edge; and said non-linear edge configured to provide reliable adhesion between said ink barrier layer and said regions adjacent said non-linear edge.
- 25. The printhead of claim 24 wherein said non-linear edge includes indentations.
- 26. The printhead of claim 25 wherein said indentations include linear sides.
- 27. The printhead of claim 24 wherein said gold trace includes another non-linear edge extending between said longitudinally separated ends and configured to reliable adhesion between said ink barrier layer and regions of said thin film substructure adjacent said another non-linear edge.
US Referenced Citations (2)
Number |
Name |
Date |
Kind |
4719477 |
Hess |
Jan 1988 |
A |
5317346 |
Garcia |
May 1994 |
A |