The present disclosure relates generally to mechanical anchors, and specifically to mechanical anchors for cables.
Barrier cable installations are restraint systems used in parking garages, along highways, and in other structures. Barrier cable installations typically include one or more barrier cables placed under tension to restrain movement of vehicles and pedestrians. The barrier cables are typically extended between structures such as columns, walls, or posts and are anchored thereto.
The present disclosure provides for a barrier cable anchor for coupling a barrier cable to a concrete member. A barrier cable anchor may include an anchor body, which may include an inner surface. The barrier cable anchor may further include a retainer, the retainer having a retainer body and optionally a head, the head having a width greater than that of the retainer body and the retainer body being retained to the anchor body. The retainer body may be a threaded pin that engages a threaded inner surface of the anchor body, a threaded box that engages a threaded outer surface of the anchor body, or any other mechanical configuration that couples the retainer to the anchor body. The barrier cable anchor may further include a collar, the collar having a collar outer surface, the collar positioned at least partially within the anchor body, the collar including an inner surface, one or more wedges positioned within the inner surface of the collar, and a nut that engages the collar and is retained to the anchor body. In some embodiments, the nut may include a threaded inner surface that is threaded onto the outer surface of the anchor body, a threaded outer surface that is threaded into the anchor body, or any other mechanical configuration that couples the nut to the anchor body.
The nut may include a driving head. The barrier cable anchor may further include an anchor plate and the anchor body may be coupled to the anchor plate by the retaining pin. The collar outer surface may be unthreaded. The barrier cable anchor may further include a cap retained to the anchor body and a spring positioned between the cap and the one or more wedges. The wedges may be tapered. The barrier cable anchor may further include an end plug inserted into the anchor body.
In some embodiments, a barrier cable system may include a first concrete member and a second concrete member, each concrete member including: an anchor plate, each anchor plate having at least one anchor hole therethrough; and a barrier cable anchor, each barrier cable anchor positioned within a hole of the respective anchor plate, each barrier cable anchor coupling the barrier cable to the respective concrete member. Each barrier cable anchor may include an anchor body, the anchor body including an inner surface, the inner surface defining a bore; a retainer having a pin end and optionally a head, the head having a width greater than that of the hole, the retainer being retained to the anchor body; a collar, the collar having a collar outer surface, the collar positioned at least partially within the anchor body, the collar including an inner surface; one or more wedges positioned within the inner surface of the collar; and a nut engaging the collar and retained to the inner surface of the anchor body. The nut may include a driving head. The anchor body may be coupled to the anchor plate by the retainer.
The barrier cable system may further include a cap retained to the anchor body and a spring positioned between the cap and the one or more wedges. The outer surface of the collar may be unthreaded. The wedges may be tapered.
In some embodiments, a method includes a) providing a concrete member, b) coupling an anchor plate to the concrete member, the anchor plate having at least one hole therethrough, c) assembling a barrier cable anchor to the anchor plate including the steps of: i) supplying an anchor body, the anchor body including an inner surface and first and second ends and defining a bore, ii) inserting a retainer through a hole in the anchor plate and into engagement with the anchor body at a first end of the anchor body, iii) inserting one or more wedges and a collar at least partially into the anchor body at a second end of the anchor body, and iv) retaining the collar at least partially within the anchor body, d) inserting a barrier cable into the barrier cable anchor and the collar so as to engage the wedges, and e) tensioning the barrier cable by advancing the collar into the anchor body.
Step d) may be performed before step c.iii). Step c) may further include before step c.iii) the steps of iia) inserting a cap into the anchor body and retaining the cap at a point within the bore of the anchor body and iib) inserting a spring into the anchor body, such that the spring is retained between the cap and the wedges. The collar may have a collar outer surface that is not threaded and step c.iii) may include sliding the collar into the anchor body. Step c.iv) may include retaining a nut to the second end of the anchor body, the nut engaging the collar. The nut may threadedly engage the anchor body and step e) may comprise rotating the nut. The method may further include positioning an end plug in the second end of the anchor body after step e).
The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
In some embodiments, barrier cables 10 may be coupled to concrete members 20 by barrier cable anchors 100. In some embodiments, barrier cable anchors 100 may be coupled to a concrete member 20 by anchor plate 25. Anchor plate 25 may be, for example and without limitation, a plate, bar, or cylinder. In some embodiments, anchor plate 25 may be constructed of metal or polymer. Although described herein as a plate, anchor plate 25 may be any structure for mounting barrier cable anchor 100 to concrete member 20, and may be one or more pieces of rebar. Anchor plate 25 may be coupled to concrete member 20 by mechanical fasteners, such as bolts, or be welded. In other embodiments, anchor plate 25 may be integrally formed with concrete member 20. Anchor plate 25 may include one or more holes 30, each hole 30 positioned to receive a corresponding barrier cable anchor 100. Hole 30 may have, in non-limiting embodiments, a cylindrical, square, hexagonal partially hexagonal, or partially square cross section. In other embodiments, one or more barrier cable anchors 100 may be at least partially embedded in concrete member 20 as concrete member 20 is cast. In some embodiments, anchor plate 25 may likewise be at least partially embedded into concrete member 20.
Referring now to
In some embodiments, barrier cable anchor 100 may include a retainer 109 including a retainer body 111 and a head 112. Retainer body 111 may be retained to or coupled to anchor body 101 at first end 101a of anchor body 101. As used herein, “retain” refers to, retention by, for example and without limitation, threading, pins, snaps, mechanical welding, a friction fit, or any similar type of closure known in the art. Thus, retainer body 111 may be a threaded pin that engages a threaded inner surface of the anchor body, a threaded box that engages a threaded outer surface of the anchor body, or any other mechanical configuration that mechanically couples the retainer to the anchor body.
In the embodiments of
In some embodiments, barrier cable anchor 100 may include an anchor plate 113. Anchor plate 113 may include an anchoring face 114 positioned to retain barrier cable anchor 100 in place within concrete member 20. In some embodiments, anchor plate 113 may correspond to anchor plate 25 (
As mentioned above, retainer 109 is not limited to the configuration illustrated in
Referring again to
In some embodiments, collar 127 may be retained within anchor body 101 by a nut 129. Nut 129 may have, in non-limiting embodiments, a cylindrical, square, hexagonal partially hexagonal, or partially square cross section. In some embodiments, the nut may include a threaded inner surface that is threaded onto the outer surface of the anchor body, a threaded outer surface that is threaded into the anchor body, or any other mechanical configuration that mechanically couples the nut to the inside or outside of anchor body 101, including but not limited to crimping, a bayonet-type connection, welding, interference fit, adhesive, or the like.
In the non-limiting embodiments illustrated in
Similarly, while various components are described herein as engaging the first or second “end” of anchor body 101, that terminology is intended to describe the relative positions of those components. In particular, the first and second “ends” indicate the respective positions of the two mechanical engagements through which the tensile forces are applied to the barrier cable anchor. Hence, the invention is not limited to embodiments in which the components are located at one end or another, or even exactly at a terminus, of the anchor body 101. Rather, description of items as engaging the first or second end includes items that may each engage the anchor body at a point in the middle section of the anchor body.
Referring to
With respect to
Wedges 135 may be used to retain barrier cable 10 within collar 127 when barrier cable 10 is inserted into collar 127. Wedges 135 may be tapered such that any tensile force applied to the length of barrier cable 10 may cause wedges 135 to be pulled farther into collar 127 and to bear on tapered inner surface 133, thereby increasing normal force on the sides of barrier cable 10, and resisting the removal of the barrier cable 10 from collar 127.
In some embodiments, wedges 135 may be urged into collar 127 by a spring 137. Spring 137 may be positioned between wedges 135 and a cap 139. Cap 139 may be a cap having a threaded outer surface 141 and may be retained, such as by threaded coupling, to internal thread 107 of anchor body 101. In alternative embodiments, cap 139 may be non-threaded and may be a cap inserted with a friction or press fit into the interior of anchor body 101. In some embodiments, a spring plate 143 may be positioned between spring 137 and wedges 135.
In some embodiments, during assembly of barrier cable anchor 100, cap 139 may be inserted into second end 101b of anchor body 101, followed by spring plate 143 if present, wedges 135, and collar 127. Nut 129 may then be threadedly coupled to second end 101b of anchor body 101 such that nut 129 retains spring 137, wedges 135, and collar 127 within anchor body 101.
In some embodiments, once assembled as depicted in
In some embodiments, when barrier cable 10 is tensioned and access to nut 129 is not required, an end plug 151 may be inserted into second end 101b of anchor body 101. In some non-limiting embodiments, end plug 151 may be formed from rubber. End plug 151 may, for example and without limitation, retard or prevent fluid ingress into the interior of anchor body 101 through second end 101b of anchor body 101. In some embodiments, end plug 151 may be positioned about barrier cable 10 before barrier cable 10 is inserted into anchor body 101. In other embodiments, end plug 151 may be present with or in anchor body 101 when barrier cable 10 is inserted therethrough and may be removed from anchor body 101 and slid along barrier cable 10 so as to allow access to nut 129. In other embodiments, end plug 151 may include a longitudinal slit that allows end plug 151 to be placed onto barrier cable 10 after barrier cable 10 engages barrier cable anchor 100.
In some embodiments, barrier cable anchor 100 may be used at a right angle to concrete member 20 such that barrier cable 10 extends generally horizontally. In other embodiments, as depicted in
The foregoing outlines features of several embodiments so that a person of ordinary skill in the art may better understand the aspects of the present disclosure. Such features may be replaced by any one of numerous equivalent alternatives, only some of which are disclosed herein. One of ordinary skill in the art should appreciate that the present disclosure may be used as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. One of ordinary skill in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure and that various changes, substitutions, and alterations herein may be made without departing from the scope of the present disclosure. Likewise, unless an order of steps is explicitly stated, the sequential recitation of steps in the claims that follow is for clarity only and is not a requirement that the steps be performed in the sequence recited.
This application is a non-provisional application which claims priority from U.S. provisional application No. 62/490,914, filed Apr. 27, 2017, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3049775 | Ondeckelmerj | Aug 1962 | A |
3163904 | Ziolkowski | Jan 1965 | A |
4896470 | Sorkin | Jan 1990 | A |
5015023 | Hall | May 1991 | A |
5072558 | Sorkin et al. | Dec 1991 | A |
5440842 | Sorkin | Aug 1995 | A |
5701707 | Sorkin | Dec 1997 | A |
5720139 | Sorkin | Feb 1998 | A |
5749185 | Sorkin | May 1998 | A |
5755065 | Sorkin | May 1998 | A |
5770286 | Sorkin | Jun 1998 | A |
5788398 | Sorkin | Aug 1998 | A |
5839235 | Sorkin | Nov 1998 | A |
5897102 | Sorkin | Apr 1999 | A |
6012867 | Sorkin | Jan 2000 | A |
6017165 | Sorkin | Jan 2000 | A |
6023894 | Sorkin | Feb 2000 | A |
6027278 | Sorkin | Feb 2000 | A |
6098356 | Sorkin | Aug 2000 | A |
6151850 | Sorkin | Nov 2000 | A |
6176051 | Sorkin | Jan 2001 | B1 |
6234709 | Sorkin | May 2001 | B1 |
6381912 | Sorkin | May 2002 | B1 |
6393781 | Sorkin | May 2002 | B1 |
6513287 | Sorkin | Feb 2003 | B1 |
6560939 | Sorkin | May 2003 | B2 |
6631596 | Sorkin | Oct 2003 | B1 |
6733203 | Carlsen | May 2004 | B2 |
6761002 | Sorkin | Jul 2004 | B1 |
6817148 | Sorkin | Nov 2004 | B1 |
6843031 | Sorkin | Jan 2005 | B1 |
7424792 | Sorkin | Sep 2008 | B1 |
7657976 | Nakamura | Feb 2010 | B2 |
7676997 | Sorkin | Mar 2010 | B1 |
D615219 | Sorkin | May 2010 | S |
7823345 | Sorkin | Nov 2010 | B1 |
7841061 | Sorkin | Nov 2010 | B1 |
7856774 | Sorkin | Dec 2010 | B1 |
7866009 | Sorkin | Jan 2011 | B1 |
7950196 | Sorkin | May 2011 | B1 |
8015774 | Sorkin | Sep 2011 | B1 |
8065845 | Sorkin | Nov 2011 | B1 |
8069624 | Sorkin | Dec 2011 | B1 |
8087204 | Sorkin | Jan 2012 | B1 |
8251344 | Sorkin | Aug 2012 | B1 |
9097014 | Sorkin | Aug 2015 | B1 |
20140138596 | Ross | May 2014 | A1 |
20180003202 | White | Jan 2018 | A1 |
20180094436 | Sorkin | Apr 2018 | A1 |
20180094450 | Sorkin | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
3305987 | Apr 2018 | EP |
2011058574 | Mar 2011 | JP |
Entry |
---|
Extended Search Report issued in European Application No. 18169830.9, dated Sep. 21, 2018, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20180313047 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
62490914 | Apr 2017 | US |