This disclosure relates generally to the field of circuit protection devices and more particularly to circuit protection devices that utilize the Metcalf effect.
The Metcalf effect, sometimes referred to as the M-effect, is a technique used to reduce the capacity (e.g., temperature melt-point, current carrying capacity, or the like) of a fuse link. The Metcalf effect operates on principles of diffusion, where during a current overload condition, a low-melt point metal melts and diffuses into a fuse link formed from a high-melt point metal, thereby reducing the current carrying capacity of the fuse link. For example, a low-melt point metal (e.g., tin) may be disposed on a fuse link made of a high-melt point metal (e.g., copper). During a current overload condition, the tin will melt and rapidly diffuse into the copper fuse link, thereby reducing the melting temperature and the current carrying capacity of the copper fuse link below that of pure copper.
The Metcalf effect is often used to create fuse links having opening time versus current characteristics that are not realizable from fuse links formed from a single material. As will be appreciated, the diffusion of the low-melt point metal into the high-melt point metal is dependent upon temperature and the time. Solid state diffusion of the low-melt point metal into the high-melt point fuse link will occur, even at temperatures below the melt point of the low-melt metal. This solid state diffusion is dependent on the types of metal, their grain structure, temperature and time. Accordingly, such fuses must typically be operated in environments having relatively low ambient temperatures, and at relatively low currents, in order to ensure that the solid state diffusion does not adversely affect the operating lifetime of the fuse. Said differently, high ambient operating temperatures may cause the low-melt point metal to prematurely diffuse into the high-melt point metal, thereby changing the intended time and/or current protection characteristics of the fuse. Furthermore, premature diffusion of the low melt-point metal into the high-melt point metal may cause unintended failure of the fuse.
This is particularly problematic in the case of time delay fuses. During a current overload condition, the low melt-point metal first diffuses into the high-melt point metal, causing the fuse to “blow.” Without the low-point metal, the fuse would not blow until the link reached its melting temperature (e.g., 1085° C. for copper). On a short circuit high-current fault this happens very rapidly, but on an overload lower-current fault, the time required to reach the melting temperature might be excessive, resulting in damage to the related circuit or equipment. If the low-melt point metal has already diffused into the high-melt point metal, however, (e.g., due to high ambient operating temperatures, and/or extended operating time), the fuse may blow at lower currents than intended. Thus, there is a need for a fuse that uses the Metcalf effect which is capable of being operated at higher temperatures and/or currents yet still maintain the desired time-current characteristics.
In accordance with the present disclosure, fuses utilizing the Metcalf effect are provided. In particular, a barrier layer formed from a third conductive material different than the fuse element or diffusion layer materials is provided. The barrier layer acts to slow down and/or prevent premature diffusion of the diffusion material into the fuse element during normal operation. As a result, the fuse may be operated in environments having higher ambient temperatures and/or higher currents, and/or for longer periods of time than otherwise possible.
In some embodiments, a fuse is provided. The fuse may include a fuse element formed from a first conductive material, a barrier layer disposed on a surface of the fuse element, the barrier layer formed from a second conductive material different from the first conductive material, and a diffusion layer disposed on a surface of the barrier layer, the diffusion layer formed from a third conductive material different from the second conductive material and first conductive material.
In some embodiments, a time delay fuse is provided. The time delay fuse may include a fuse element formed from a first conductive material, the fuse element, a barrier layer disposed on a surface of the fuse element, the barrier layer including first and second portions separated by a gap, the barrier layer formed from a second conductive material different from the first conductive material, and a diffusion layer disposed in the gap on the surface of the fuse element, the diffusion layer formed from a third conductive material different from the second conductive material and first conductive material.
In some embodiments, a method of forming a fuse is provided. The method may include forming a fuse element on a substrate, the fuse element formed from a first conductive material, forming first and second barrier layer portions on a surface of the fuse element, the first and second barrier layer portions separated by a gap and formed from a second conductive material different from the first conductive material, and forming a diffusion layer in the gap on the surface of the fuse element, the diffusion layer formed from a third conductive material different from the second conductive material and first conductive material.
By way of example, specific embodiments of the disclosed device will now be described, with reference to the accompanying drawings, in which:
A barrier layer (e.g., the barrier layer 120 described below) operates to slow down and or prevent premature diffusion of the diffusion layer into the fuse element, which might result in premature failure and/or premature opening of the fuse. As a result, the fuse 100 may be operated in environments having higher ambient temperatures and/or at higher current levels than otherwise might be possible. More specifically, the fuse 100 may be operated in environments (e.g., high ambient temperature, and/or higher currents, and/or for longer periods of time) without prematurely causing the diffusion layer to melt and diffuse into the fuse element. In some examples, high ambient temperatures may correspond to temperatures above 60 degrees Celsius.
As depicted, the fuse 100 includes a fuse element 110, a barrier layer 120, and a diffusion layer 130. The barrier layer 120 is disposed on a surface of the fuse element 110 (denoted as the surface 112) and the diffusion layer 130 is disposed on a surface of the barrier layer 120 (denoted as the surface 122.) In some embodiments, the diffusion layer 130 may be formed over a portion of the barrier layer 120 (e.g., as depicted in
The fuse element 110 may be formed from a conductive material having a first melt-point. In some embodiments, the fuse element 110 is formed from a conductive material that includes copper, silver, aluminum, and/or other conductive materials having desirable fuse element characteristics. The diffusion layer 130 may be formed from a conductive material having a second melt-point. In some embodiments, the diffusion layer 130 is formed from a conductive material that includes tin, lead, zinc, and/or other conductive materials having desirable diffusion characteristics. More specifically, the diffusion layer 130 may be formed from a material, which, when diffused into the fuse element 110 creates desirable intermetallic layers that reduce the capacity of the fuse element 110.
It is important to note that in some embodiments, the first melt-point will have a higher temperature value than the second melt-point. Said differently, the conductive material of which the diffusion layer 130 is formed will melt at a lower temperature than the conductive material of which the fuse element 110 is formed will melt.
The barrier layer 120 disposed between the fuse element 110 and the diffusion layer 130 may be formed from a conductive material having a third melt-point. In some embodiments, the barrier layer 120 may be formed from a conductive material that includes nickel, and/or other conductive materials having desirable diffusion barrier or diffusion slowing characteristics. In some embodiments, the third melt-point may have a higher temperature value than the first melt-point and the second melt-point. Said differently, the conductive material of which the barrier layer 120 is formed will melt at a higher temperature than the conductive material of which the diffusion layer is formed, and at a higher temperature than the conductive material of which the fuse element is formed will. Accordingly, when the fuse 100 is operated in environments with elevated ambient temperatures and or operating currents, the diffusion layer 130 may not prematurely (e.g., prior to a current overload conditions, or the like) diffuse into the fuse element 110.
In some embodiments, the thickness (denoted by thickness 152) of the barrier layer 120 may be selected such that desired resistance and/or current protection is achieved. Said differently, the thickness 152 of the barrier layer 120 may be selected to achieve a desired resistance of the fuse element 110 during normal operating conditions. Additionally, the thickness 152 may be selected such that diffusion of the diffusion layer 130 into the fuse element 110 is slowed for a desired amount of time during normal operation of the fuse in environments with high ambient temperatures. Furthermore, the thickness 152 may be selected such that the fuse element has a desired current-carrying capacity or ampere rating (e.g., 0.125 Amps, 0.25 Amps, 0.5 Amps, 1 Amp, 5 Amps, 10 Amps, 20 Amps, or the like.) In some examples, the thickness 152 may be between 5 and 500 micro inches.
Turning now to
The fuse element 210 may be formed from a conductive material having a first melt-point. In some embodiments, the fuse element 210 is formed from a conductive material that includes copper, silver, aluminum, and/or other conductive materials having desirable fuse element characteristics. The diffusion layer 230 may be formed from a conductive material having a second melt-point. In some embodiments, the diffusion layer 230 is formed from a conductive material that includes tin, lead, zinc, and/or other conductive materials having desirable diffusion characteristics. More specifically, the diffusion layer 230 may be formed for a material, which, when diffused into the fuse element 210 creates desirable intermetallic layers that reduce the capacity of the fuse element 210.
It is important to note, that in some embodiments, the first melt-point will have a higher temperature value than the second melt-point. Said differently, the conductive material of which the diffusion layer 230 is formed will melt at a lower temperature than the conductive material of which the fuse element 210 is formed will melt.
The barrier layer 220 disposed between the fuse element 210 and the diffusion layer 230 may be formed from a conductive material having a third melt-point. In some embodiments, the barrier layer 220 may be formed from a conductive material that includes nickel, and/or other conductive materials having desirable diffusion barrier or diffusion slowing characteristics. In some embodiments, the third melt-point may have a higher temperature value than the first melt-point and the second melt-point. Said differently, the conductive material of which the barrier layer 220 is formed will melt at a higher temperature than the conductive material of which the diffusion layer is formed, and at a higher temperature than the conductive material of which the fuse element is formed will melt. Accordingly, when the fuse 200 is operated in environments with elevated ambient temperatures or at higher operating currents, the diffusion layer 230 may not prematurely (e.g., prior to a current overload conditions, or the like) diffuse into the fuse element 210.
In some embodiments, the thickness (denoted by thickness 252) of the barrier layer 220 may be selected such that desired resistance and/or current protection is achieved. Said differently, the thickness 252 of the barrier layer 220 may be selected to achieve a desired resistance of the fuse element 210 during normal operating conditions. Additionally, the thickness 252 may be selected such that diffusion of the diffusion layer 230 into the fuse element 210 is slowed for a desired amount of time during normal operation of the fuse in environments with high ambient temperatures and/or high operating currents. Furthermore, the thickness 252 may be selected such that the fuse element has a desired current-carrying capacity or ampere rating (e.g., 0.125 Amps, 0.25 Amps, 0.5 Amps, 1 Amp, 5 Amps, 10 Amps, 20 Amps, or the like.) In some examples, the thickness 252 may be between 5 and 500 micro inches.
During a current overload condition, the diffusion layer 230 may melt and diffuse into the fuse element 210 thereby changing the intermetallic characteristics of the fuse element 210 and causing the fuse element 210 to open due to the current overload condition. In non-current overload conditions, the barrier layer portions 220-1 and 220-2 may prevent premature diffusion of the diffusion layer 230 into the fuse element 210, even when operated in environments with elevated ambient temperatures. The width of the gap 224 (denoted by the width 254) may be selected such that the diffusion of the diffusion layer 230 into the fuse element 210 is appropriately slowed. Said differently, the width 254 may be selected such that the fuse 200 may be operated in environments having desired ambient temperature ranges and/or high operating currents without the diffusion layer 230 prematurely diffusing into the fuse element 210. In some examples, the width 254 may be between 1.5 mils and 20 mils.
Turning now to
The fuse element 310 may be formed from a conductive material having a first melt-point. In some embodiments, the fuse element 310 is formed from a conductive material that includes copper, silver, aluminum, and/or other conductive materials having desirable fuse element characteristics. The diffusion layer 330 may be formed from a conductive material having a second melt-point. In some embodiments, the diffusion layer 330 is formed from a conductive material that includes tin, lead, zinc, and/or other conductive materials having desirable diffusion characteristics. More specifically, the diffusion layer 330 may be formed from a material, which, when diffused into the fuse element 310 creates desirable intermetallic layers that reduce the capacity of the fuse element 310.
It is important to note that in some embodiments, the first melt-point will have a higher temperature value than the second melt-point. Said differently, the conductive material of which the diffusion layer 330 is formed will melt at a lower temperature than the conductive material of which the fuse element 310 is formed will melt.
The barrier layer 320 disposed between the fuse element 310 and the diffusion layer 330 may be formed from a conductive material having a third melt-point. In some embodiments, the barrier layer 320 may be formed from a conductive material that includes nickel, and/or other conductive materials having desirable diffusion barrier or diffusion slowing characteristics. In some embodiments, the third melt-point may have a higher temperature value than the first melt-point and a higher temperature value than the second melt-point. Said differently, the conductive material of which the barrier layer 320 is formed will melt at a higher temperature than the conductive material of which the diffusion layer is formed, and at a higher temperature than the conductive material of which the fuse element is formed will. Accordingly, when the fuse 300 is operated in environments with elevated ambient temperatures and/or higher operating current levels, the diffusion layer 330 may not prematurely (e.g., prior to a current overload conditions, or the like) diffuse into the fuse element 310.
In some embodiments, the thickness (denoted by thickness 352) of the barrier layer 320 may be selected such that desired resistance and/or current protection is achieved. Said differently, the thickness 352 of the barrier layer 320 may be selected to achieve a desired resistance of the fuse element 310 during normal operating conditions. Additionally, the thickness 352 may be selected such that diffusion of the diffusion layer 330 into the fuse element 310 is slowed for a desired amount of time during normal operation of the fuse in environments with high ambient temperatures and/or high operating currents. Furthermore, the thickness 352 may be selected such that the fuse element has a desired current-carrying capacity or ampere rating (e.g., 0.125 Amps, 0.25 Amps, 0.5 Amps, 1 Amp, 5, Amps, 10 Amps, 20 Amps, or the like.) In some examples, the thickness 352 may be between 5 and 500 micro inches.
During a current overload condition, the diffusion layer 330 may melt and diffuse into the fuse element 310 thereby changing the intermetallic characteristics of the fuse element 310 and causing the fuse element 310 to open due to the current overload condition. In non-current overload conditions, the barrier layer portions 320-1 and 320-2 may prevent premature diffusion of the diffusion layer 330 into the fuse element 310, even when operated in environments with elevated ambient temperatures and/or high operating current levels. The width of the gap 324 (denoted by the width 354) may be selected such that the diffusion of the diffusion layer 330 into the fuse element 310 is appropriately slowed. Said differently, the width 354 may be selected such that the fuse 300 may be operated in environments having desired ambient temperature ranges without the diffusion layer 330 prematurely diffusing into the fuse element 310. In some examples, the width 354 may be between 1.5 mils and 20 mils.
The fuses 300, 301, and 302 depicted in