Generally, the present invention relates to a garage door operator system for use on a closure member moveable relative to a fixed member. More particularly, the present invention relates to an operator system that is operative with a remote transmitter that transmits signals in either a secure mode or an unsecure mode. Specifically, the present invention relates to a remote transmitter that activates an operator system with a single button actuation in an unsecure mode or activates the operator system with a sequence of button actuations in a secure mode.
For convenience purposes, it is well known to provide garage doors which utilize a motor to provide opening and closing movements of the door. Motors may also be coupled with other types of movable barriers such as gates, windows, retractable overhangs and the like. An operator is employed to control the motor and related functions with respect to the door. It is also known to provide safety devices that are connected to the operator for the purpose of detecting an obstruction so that the operator may then take corrective action with the motor to avoid entrapment of the obstruction.
There are three basic types of transmitters that can be used to instruct an operator to initiate a desired action. A portable or remote transmitter is usually kept in the user's vehicle and allows the user to open and close the door from inside the vehicle. The portable transmitter may have several buttons, wherein each button is associated with operation of a different door. A wall station transmitter is usually mounted near an interior door of the garage and allows the user to open and close the garage door as needed. The wall station may include function buttons to allow programming of the operator, delay closing of the door, setting of a pet height and other functions. The other type of transmitter is a keypad, which is typically mounted outside the garage, that requires manual entry of a code prior to sending an open/close signal. These remote devices may also be provided with additional features such as the ability to control multiple doors, lights associated with the doors, and other security features.
In order for a transmitter device to work with an operator to control movement of the garage door, the operator must be programmed to learn the particular serial number code for each transmitter. In the past, radio controls utilized a code setable switch, such as a ten-circuit DIP switch to set the data for both the transmitter and the receiver. Both the transmitter and the receiver's code switch must match for the transmitter to activate the receiver's output. This method did not allow for enough unique codes and was relatively easy for someone to copy the code and gain improper access. Accordingly, this process required the setting of transmitter and receiver codes physically switched to identical settings for operation of the garage door.
Presently, most radio controls for garage doors use either a fixed code format wherein the same data for each transmission is sent, or a rolling-code format, wherein some or all of the data changes for each transmission. A fixed code transmitter, also known as a fixed address or a fixed serial number transmitter, is assigned and factory programmed into a transmitter's non-volatile memory during the manufacturing of the product. A receiver is designed to “learn” a transmitter's code and the transmitter's code is stored in the receiver's non-volatile memory. This increased the number of possible codes (from 1024 or 19,683 to millions) and eliminated the DIP switch. This also prevented the code from being visible, as is the case with the DIP switch transmitter, thus preventing theft of the code.
A rolling code transmitter is similar to a fixed code transmitter, but at least a portion of the address, also known as the code or serial number, is changed with every operation of the transmitter. The transmitter and the corresponding receiving unit use an algorithm to determine what the next code to transmit/receive shall be. Only the proper code will activate the receiver.
The use of the portable or remote transmitter is problematic inasmuch as it provides ready access to a home or business if the remote transmitter falls into the wrong hands. For example, an opportunistic thief may steal just the remote transmitter from an automobile, and knowing where that person lives can, at a time when the home or business owner is absent, use the remote transmitter to enter the site and perform whatever mischief. The only known solution to this problem is to clear all transmitter codes from the operator and then re-learn the transmitters so that different codes activate the operator and move the barrier. This is time consuming and, if not done properly, still may allow the stolen transmitter to be used with the operator. Therefore, there is a need in the art to provide a remote transmitter that allows for use in an unsecure, single button actuation mode, or a secure, multiple button actuation mode.
In general, the present invention contemplates a barrier operator with a secure/unsecure transmitter and method of use.
One of the aspects of the present invention, which shall become apparent as the detailed description proceeds, is achieved by a wireless transmitter used with an operator system that controls movement of a barrier between limit positions, the transmitter comprising: at least two transmitter switches; and a controller connected to the switches; the controller having a first mode of operation, wherein actuation of a single one of the switches generates a wireless signal receivable by the operator system; and the controller having a second mode of operation, wherein actuation of the switches in a predetermined sequence generates aid wireless signal.
Another aspect of the present invention is attained by a method for transmitting wireless signals from a transmitter to an operating system that moves a barrier between limit positions, comprising: providing in the transmitter a controller capable of generating a wireless transmission signal; designating one of two transmission modes in the controller, wherein a first mode requires only actuation of one of the switches and wherein a second mode requires actuation of the switches in a predetermined sequence.
Still another aspect of the present invention is attained by a method of programming a multiple-button wireless transmitter that actuates movement of a barrier between limit positions, comprising: in an unsecured mode initiates a function controlled by a moveable barrier operator with a single button actuation, the method comprising: actuating at least two buttons of the transmitter simultaneously for a predetermined period of time; releasing the actuated buttons; an actuating separately at least two buttons of the transmitter in a sequence and one of the at least two buttons to terminate the sequence.
These and other aspects of the present invention, as well as the advantages thereof over existing prior art forms, which will become apparent from the description to follow, are accomplished by the improvements hereinafter described and claimed.
For a complete understanding of the objects, techniques and structure of the invention, reference should be made to the following detailed description and accompanying drawings, wherein:
A garage door operator system which incorporates the concepts of the present invention is generally indicated by the numeral 10 in
Secured to the jambs 16 are L-shaped vertical members 20 which have a leg 22 attached to the jambs 16 and a projecting leg 24 which perpendicularly extends from respective legs 22. The L-shaped vertical members 20 may also be provided in other shapes depending upon the particular frame and garage door with which it is associated. Secured to each projecting leg 24 is a track 26 which extends perpendicularly from each projecting leg 24. Each track 26 receives a roller 28 which extends from the top edge of the garage door 12. Additional rollers 28 may also be provided on each top vertical edge of each section of the garage door to facilitate transfer between opening and closing positions.
A counterbalancing system generally indicated by the numeral 30 may be employed to balance the weight of the garage door 12 when moving between open and closed positions. One example of a counterbalancing system is disclosed in U.S. Pat. No. 5,419,010, which is incorporated herein by reference. Generally, the counter-balancing system 30 includes a housing 32, which is affixed to the header 18 and which contains an operator mechanism 34 and a motor 35 best seen in
The drive shaft 36 transmits the necessary mechanical power to transfer the garage door 12 between closed and open positions. In the housing 32, the drive shaft 36 is coupled to a drive gear wherein the drive gear is coupled to the motor 35 in a manner well known in the art.
Referring now to
The operator mechanism, which is designated generally by the numeral 34 in
Infrared and/or radio frequency signals emitted by the transmitters are received by a receiver 70 which sends the received information to a decoder contained within the controller. The codes emitted from the transmitters have a serial number that is recognized by the controller. Each type of transmitter has a pre-designated range of serial numbers that are distinguishable by the controller. In other words, the controller is able to determine whether a transmission is from a keypad, a wall station or a portable transmitter. In any event, the controller 60 converts the received radio frequency signals or other types of wireless signals into a usable format. It will be appreciated that an appropriate antenna is utilized by the receiver 70 for receiving the desired signals. It will also be appreciated that the controller 60 is capable of directly receiving transmission type signals from a direct wire source as evidenced by the direct connection to the wall station 42a. A skilled artisan will appreciate that a wall station 42 (or keypad 44) is either hard-wired to the operator 34 or emits an RF signal. In the preferred embodiment, the wall station is either hard-wired or wireless, but not both. Since a hard-wired device sends a signal directly to the controller there is no need to store that device's serial number in the memory device. Accordingly, only serial numbers from wireless devices are learned by the operator and stored in the memory device 62. Any number of remote transmitters 40a-x can transmit a signal that is received by the receiver 70 and further processed by the controller 60 as needed. Likewise, there can be any number of wall stations 42b-x, and keypads 44. If the signals received from any one of the transmitting devices are acceptable and stored in the memory device 62, the controller 60 generates the appropriate electrical signals for performing the desired function, such as energizing the motor 35 which in turn rotates the drive shaft 36 and opens and/or closes the movable barrier. A light 59, which may be turned on and off independently or whenever an open/close cycle is initiated, is also connected to the controller 60.
As best seen in
The remote transmitter 40 includes a transmitter controller 90 which provides the necessary hardware, software and memory for implementing the concepts of the present invention. A memory device 92 may be directly connected to the controller 90 or, in the alternative, the memory 92 may be internally incorporated with the controller 90. Extending from the controller 90 is an antenna 94 which is utilized to transmit wireless signals. In the preferred embodiment, the transmitter emits radio frequency signals, although it will be appreciated that infrared, acoustic or other wireless type signals may be generated by the transmitter as long as they are receivable by the operator system 32. It will also be appreciated that the controller 90 and all internal components of the remote transmitter are powered by a battery (not shown) in a manner well known in the art.
The transmitter 40 provides two modes of transmitting signals to the operator. In the first mode, the portable transmitter 40 functions as a one button “unsecure” transmitter. In other words, any one of the different buttons 82-86 may be individually actuated so as to send a particular functional signal to the operator 34. Accordingly, the larger button 86 may be used to primarily actuate movement of a preferred or main barrier, while the button 82 may be used to individually or separately actuate the light 59. The other button 84 may be used to actuate a secondary operator system such as a community managed gate opener or an opener that is not commonly used by the person possessing the remote transmitter 40. The functions associated with actuation of the various buttons may be re-programmed as deemed appropriate. It will be appreciated that the unsecure mode is the standard mode of the remote transmitter as shipped by the manufacturer.
The “unsecure” mode may be converted or changed to a “secure” mode such that the functional operation of the transmitter is significantly changed. As will be described in further detail, the transmitter 40 only emits a radio frequency signal upon completion or actuation of the buttons 84-86 in a predetermined manner. In other words, the remote transmitter 40 is enabled to function like a keypad transmitter inasmuch as a specific sequence of buttons must be actuated prior to the sending of a radio frequency signal.
Referring now to
Referring now to
If at step 128 the count is not equal to the number of attempts allowed, then the process returns to step 122 for repeating of steps 124 and 126. If at step 126 the key sequence does match a key code sequence stored in memory, then at step 132, the radio frequency code to initiate function of the operator system is transmitted to the operator. After this, the counter is reset to a predetermined starting value and then at step 136 the use sequence is exited.
Referring now to
Based upon the foregoing, it is readily apparent that the above-described system and remote transmitter and related method of use is advantageous inasmuch as the remote transmitter is modifiable and can be used in a secure mode. Accordingly, the user is provided with a high level of confidence that if the transmitter falls into the wrong hands, it cannot be used to access a residence or place of business. And, if a remote transmitter is lost there is not an immediate need to replace all the remote transmitters or require that all the remote transmitters be reprogrammed to the operator system. Such a configuration is also advantageous in that the remote transmitter is useable in either an unsecured or secured mode depending upon the wishes of the end user. This reduces the number of remote transmitters that need to be manufactured. The disclosed remote transmitter is also advantageous in that it can be switched back to an unsecure mode by following the steps outlined in the description above and using only a single button key code.
Thus, it can be seen that one or more of the objects of the invention have been satisfied by the structure and its method for use presented above. While in accordance with the Patent Statutes, only the best mode and preferred embodiment has been presented and described in detail, it is to be understood that the invention is not limited thereto or thereby. Accordingly, for an appreciation of the true scope and breadth of the invention, reference should be made to the following claims.