In industries where barriers are common and sometimes where other tools are rotated while passing through barriers, such as in downhole industries, there is potential for damage to barriers that then would require repair or replacement at not inconsiderable expense. In view hereof, the relevant arts would be receptive to alternative configurations that reduce or eliminate damage to barriers while rotating other tools therethrough.
A barrier includes a housing; valve member disposed in the housing; a flow tube within the housing; and an actuator disposed in the housing and in operable communication with the flow tube, the flow tube configured to rotate within other components of the barrier without imparting rotational torque to the actuator or the other components.
A barrier includes a flow tube axially positionable by an actuator of the barrier and rotationally independent of other components of the barrier.
A drilling barrier valve for a downhole operation including a housing; a valve member; a flow tube in operable communication with the valve member; an alignment component rotationally fixed to the housing a spring in operable communication with the flow tube and the housing; isolation components operable to isolate rotational movement of the flow tube from the housing, valve member, and spring.
A method of drilling through a barrier including running a drill string through a barrier having a structure such that a flow tube of the barrier is rotationally independent of other components of the barrier; and decoupling any rotational input imparted to the flow tube from the drill string from other components of the barrier.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
Referring to
A spring 24, which may be a power spring, is a compression spring that opposes the action of the piston rod 20. The power spring 24 urges the flow tube 18 axially in an opposite direction to that of the piston rod 20 when hydraulic pressure in the cylinder is below a threshold number that can overcome the force of the power spring 24. To aid in description, the power spring 24 has a first end 25 and a second end 27.
In order to achieve the benefit of the invention, the flow tube is configured to be rotationally independent of the other components of the barrier. More specifically, the flow tube is configured to interact with the other components of the barrier through bearings and or bushings that will allow the flow tube to be axially shifted as noted above to do its primary job while also allowing the flow tube to spin in the housing 12 without damaging or applying torque to any of the other components of the barrier. This substantially protects the barrier from rotationally active tools running through the barrier in use. More specifically, and using a drill string D as an example, as the turning drill passes through the barrier 10, it is possible for the drill to become unintentionally engaged with the flow tube 18. In such instance, the flow tube may begin to rotate. In the prior art, such rotation can be damaging to the barrier in that other components of the barrier will be subjected to a torque for which they were not designed and damage thereto may result. This, as noted above could result in repair or replacement of the barrier and hence the incursion of not insubstantial cost. With the benefit of this invention however, the flow tube may so engage the drill string D and be rotated therewith without any negative effect on the barrier.
Still referring to
The actuator coupling 30, being isolated from rotational movement of flow tube 18 by bearing 32 is nevertheless fixed in its alignment by an alignment component 50. This prevents movement of the actuator coupling 30 in the rotational direction due to friction in the bearings or bushings 32, 42, and 44 while allowing movement in the axial direction that is necessary for actuation of the barrier. The actuator coupling 30 is so fixed with respect to rotational movement by one or more alignment lugs 52 that interact each with an alignment groove 54 in the alignment component 50 (see
The barrier as described herein may be employed in a downhole drilling operation to ensure that the operation may proceed without damage to the barrier through rotational coupling of the flow tube with the drill string. The method for effecting such is to install or have preinstalled the barrier described wherein the structure of the barrier is such that the flow tube is rotationally independent of the other components of the barrier, running a drill string through the barrier so constructed; decoupling any rotational input imparted to the flow tube from the drill string from other components of the barrier.
Set forth below are some embodiments of the foregoing disclosure:
Embodiment 1: A barrier comprising: a housing; valve member disposed in the housing; a flow tube within the housing; and an actuator disposed in the housing and in operable communication with the flow tube, the flow tube configured to rotate within other components of the barrier without imparting rotational torque to the actuator or the other components.
Embodiment 2: The barrier of embodiment 1 further comprising an actuator coupling operatively connected to the flow tube through a bearing or bushing so that the flow tube is rotationally independent of the actuator coupling.
Embodiment 3: The barrier of embodiment 2 wherein the actuator coupling is operatively connected to the actuator.
Embodiment 4: The barrier of embodiment 1 wherein the actuator is a piston rod and cylinder.
Embodiment 5: The barrier of embodiment 1 further comprising a spring, the spring interactive with a bearing or bushing at a first end of the spring, a bearing or bushing at a second end of the spring, or both.
Embodiment 6: The barrier of embodiment 5 further comprising a spring coupling at the second end of the spring.
Embodiment 7: The barrier of embodiment 6 wherein the spring coupling comprises a circumferential groove therein receptive to a pin extending from the actuator such that the spring coupling and actuator remain axially fixed together while rotationally independent.
Embodiment 8: The barrier of embodiment 1 further comprising an alignment component, fixed to the housing and including a groove interactive with a lug attached to the actuator such that the actuator is axially movable and rotationally fixed relative to the alignment component.
Embodiment 9: A barrier comprising: a flow tube axially positionable by an actuator of the barrier and rotationally independent of other components of the barrier.
Embodiment 10: A drilling barrier valve for a downhole operation comprising: a housing; a valve member; a flow tube in operable communication with the valve member; an alignment component rotationally fixed to the housing a spring in operable communication with the flow tube and the housing; isolation components operable to isolate rotational movement of the flow tube from the housing, valve member, and spring.
Embodiment 11: A method of drilling through a barrier comprising: running a drill string through a barrier having a structure such that a flow tube of the barrier is rotationally independent of other components of the barrier; and decoupling any rotational input imparted to the flow tube from the drill string from other components of the barrier.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Further, it should further be noted that the terms “first,” “second,” and the like herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., it includes the degree of error associated with measurement of the particular quantity).
While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms “first”, “second”, etc., do not denote any order or importance, but rather the terms “first”, “second”, etc. are used to distinguish one element from another. Furthermore, the use of the terms “a”, “an”, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
This application claims priority to U.S. provisional application No. 62/143,906, filed Apr. 7, 2015, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62143906 | Apr 2015 | US |