Office space can be relatively expensive, not only due to the basic costs of the location and size of the office space, but also due to any construction needed to configure the office space in a particular way. Furthermore, as an organization's needs change, it is often necessary to have a convenient and efficient means to reconfigure the existing office space rather than having to move to a new office space. For example, interior office space is sometimes partitioned into smaller areas, such as conference rooms, offices, cubicles, and the like. Furthermore, other interior spaces (e.g., residential spaces) can be divided into partitions for various purposes.
Interior spaces can be divided utilizing prefabricated wall systems (e.g., modular wall systems) that include one or more prefabricated wall modules. The prefabricated wall modules can be arranged/secured adjacent to one another to form interior partitions, such as office cubicles, rooms, etc. The prefabricated wall modules can affix to ceiling and floor connection components (e.g., ceiling track(s) and floor/base track(s)) to provide stable partitioning walls. Many organizations address their configuration and reconfiguration issues by dividing large, open office spaces into individual work areas using prefabricated wall systems.
Many interior spaces, however, lack a uniformly level floor upon which prefabricated wall systems can rest. Consequently, some prefabricated wall systems implement leveling apparatuses to enable leveling of the prefabricated wall modules within the prefabricated wall system.
Conventional leveling apparatuses for prefabricated wall systems are often large and/or unsightly. To hide such leveling apparatuses from view, some prefabricated wall systems conceal such leveling apparatuses in between wall panels of prefabricated wall modules. Accordingly, many prefabricated wall systems that include thin wall modules (e.g., with wall panels that are close in proximity to provide a sleek aesthetic) and/or single-substrate wall modules (e.g., glass panel modules) fail to accommodate conventional leveling apparatuses for prefabricated wall systems.
In addition, the unevenness of a floor and/or ceiling can necessitate different leveling configurations for adjacent prefabricated wall modules in a prefabricated wall system. Such variations between adjacent prefabricated wall modules can cause the adjacent prefabricated wall modules to interface with the ceiling and/or floor connection components at different heights, resulting in an unappealing aesthetic.
Furthermore, many prefabricated wall systems include doors, such as hinge, pivot, and/or sliding doors. Pivot doors in prefabricated wall systems often include a pivot door rail that is screwed into the door panel(s) of the pivot door. However, conventional pivot door assemblies can be unsuitable for single-substrate door panels composed of hard and/or brittle materials (e.g., glass door panels). For example, during use, forces exerted on a door panel from a pivot positioned within a hole of the door panel may crack a door panel that is composed of hard and/or brittle material.
Accordingly, there are a number of difficulties associated with components for prefabricated wall systems that can be addressed.
The subject matter claimed herein is not limited to embodiments that solve any disadvantages or that operate only in environments such as those described above. Rather, this background is only provided to illustrate one exemplary technology area where some embodiments described herein may be practiced.
Implementations of the present disclosure extend to systems, apparatuses, and components for forming, assembling, and installing components for a prefabricated wall system with single-substrate wall panels. More specifically, the present disclosure relates to prefabricated wall system leveling assemblies and pivot door assemblies that are suitable for prefabricated wall systems that include single-substrate prefabricated wall panels.
For example, at least one embodiment comprises a base assembly that includes a base extrusion, a base track, and a leveling assembly configured to reside within both the base track and the base extrusion. In at least another embodiment, a prefabricated wall system includes a single-substrate prefabricated wall panel, a base assembly, and a top assembly that includes a ceiling track, trim elements, and retainer wipes. In at least another embodiment, a pivot door assembly for a single-substrate prefabricated panel includes first and second half channels, a pivot door receiver, and a pivot door rail.
The embodiments disclosed and claimed herein can provide prefabricated wall systems with single-substrate prefabricated wall panels in an advantageous manner. For instance, the leveling assemblies of the base assemblies of the present disclosure can compactly reside below a prefabricated wall module and above a base track, rather than between wall panels of a prefabricated wall module. In addition, the pivot door assemblies of the present disclosure can affix to single-substrate door panels of a prefabricated wall system without creating holes in the single-substrate door panel.
For example, a base assembly of a prefabricated wall system can comprise a base extrusion, a base track, and a leveling assembly. The base extrusion can include an upper channel that is at least partially defined by first and second vertical members, and the upper channel can be configured to receive an edge of a prefabricated wall panel. The base extrusion can also include a lower channel opposite to the upper channel. An opening of the upper channel and an opening of the lower channel can be oriented in opposite directions.
The base track can comprise a base track channel, and the base track can be configured to affix to a floor of a building. The leveling assembly can be configured to reside within both the lower channel of the base extrusion and the base track channel of the base track. The leveling assembly can be adjustable to adjust a vertical position of the base extrusion with respect to the base track.
In another example, a prefabricated wall system can comprise a single-substrate prefabricated wall panel that has a top end and a bottom end. The prefabricated wall system can also include a base assembly and a top assembly. The base assembly can comprise a base extrusion, a base track, and a leveling assembly.
The base extrusion can include an upper channel that is at least partially defined by first and second vertical members, and the upper channel can be configured to receive an edge of a prefabricated wall panel. The base extrusion can also include a lower channel opposite to the upper channel. An opening of the upper channel and an opening of the lower channel can be oriented in opposite directions.
The base track can comprise a base track channel, and the base track can be configured to affix to a floor of a building. The leveling assembly can be configured to reside within both the lower channel of the base extrusion and the base track channel of the base track. The leveling assembly can be adjustable to adjust a vertical position of the base extrusion with respect to the base track.
The top assembly can comprise a ceiling track that has first and second ceiling trim elements and first and second retainer wipes. The first and second ceiling trim elements can extend downward from opposing lateral sides of the ceiling track, and the first and second ceiling trim elements can form a ceiling track channel. The first and second retainer wipes can extend inward, respectively, from the first and second ceiling trim elements. The top end of the single-substrate prefabricated wall panel can be configured to reside between the first and second retainer wipes within the ceiling track channel.
In yet another example, a pivot door assembly for a single-substrate prefabricated panel of a prefabricated wall system can comprise a first half channel configured to affix to a first surface of a bottom portion of the single-substrate prefabricated panel and at least partially cover a bottom edge of the single-substrate prefabricated panel. The pivot door assembly can also comprise a second half channel configured to affix to a second surface of the bottom portion of the single-substrate prefabricated panel and at least partially cover the bottom edge of the single-substrate prefabricated panel.
The pivot door assembly can also comprise a pivot door rail. The pivot door rail can include an upward-facing channel configured to receive the bottom portion of the single-substrate prefabricated panel and the first and second half channels when the first and second half channels are affixed to the bottom portion of the single-substrate prefabricated panel. Channel walls of the upward-facing channel can include inward protrusions for retaining the first and second half channels within the upward-facing channel.
The pivot door rail can also include a downward-facing channel configured to house a pivot door receiver. The pivot door receiver can include a hole configured to receive a pivot.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
Additional features and advantages will be set forth in the description which follows, and in part will be apparent to one of ordinary skill in the art from the description, or may be learned by the practice of the teachings herein. Features and advantages of embodiments described herein may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. Features of the embodiments described herein will become more fully apparent from the following description and appended claims.
To further clarify the above and other features of the embodiments described herein, a more particular description will be rendered by reference to the appended drawings. It is appreciated that these drawings depict only examples of the embodiments described herein and are therefore not to be considered limiting of its scope. The embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Implementations of the present disclosure extend to systems, apparatuses, and components for forming, assembling, and installing components for a prefabricated wall system with single-substrate wall panels. More specifically, the present disclosure relates to prefabricated wall system leveling assemblies and pivot door assemblies that are suitable for prefabricated wall systems that include single-substrate prefabricated wall panels.
For example, at least one embodiment comprises a base assembly that includes a base extrusion, a base track, and a leveling assembly configured to reside within both the base track and the base extrusion. In at least another embodiment, a prefabricated wall system includes a single-substrate prefabricated wall panel, a base assembly, and a top assembly that includes a ceiling track, trim elements, and retainer wipes. In at least another embodiment, a pivot door assembly for a single-substrate prefabricated panel includes first and second half channels, a pivot door receiver, and a pivot door rail.
The embodiments disclosed and claimed herein can provide prefabricated wall systems with single-substrate prefabricated wall panels in an advantageous manner. For instance, conventional leveling assemblies reside between opposing wall panels of a prefabricated wall module, necessitating relatively thick prefabricated wall modules to accommodate conventional leveling assemblies. In contrast, at least some leveling assemblies of the present disclosure can compactly reside below a prefabricated wall module and above a base track, while still being concealed from view. Accordingly, at least some leveling assemblies of the present disclosure can be implemented into prefabricated wall systems that include thin prefabricated wall modules, such as those with single-substrate prefabricated wall panels (e.g., glass panels).
In addition, conventional pivot door assemblies for prefabricated wall systems include a pivot door rail that is screwed to the door panel of the pivot door, which can be unsuitable for door panels that are composed of hard and/or brittle materials (e.g., single-substrate door panels, such as glass door panels). At least some pivot door assemblies of the present disclosure can affix to door panels of a prefabricated wall system without creating holes in the door panel. Accordingly, at least some of the pivot door assemblies of the present disclosure can be implemented into prefabricated wall systems that include single-substrate door panels composed of hard and/or brittle materials (e.g., glass door panels).
In some implementations, one or more of the prefabricated wall panels 105 comprise single-substrate panels, such as glass or polymer panels (see
In some instances, the door panel 130 can comprise the same material as the prefabricated wall panels 105. In other instances, the door panel 130 and the prefabricated wall panels 105 of a prefabricated wall system 100 comprise different materials. For example, one or more of the wall panels 105 of a prefabricated wall system 100 can comprise glass, while the door panel 130 of a prefabricated wall system can comprise a polymer substrate.
In addition,
The base track 205 of the base assembly 115 illustrated in
The leveling assembly 207 of the base assembly 115 shown in
The leveling assembly 207 can be adjustable to provide a raised configuration (illustrated in
The leveling collar 227 may also include an anchor protrusion 240 that extends radially from the collar body 235. The anchor protrusion 240 can be configured to reside within the lower channel 215 of the base extrusion 203 and be retained within the lower channel 215 by the inward protrusions 220A, 220B of the lower channel 215.
Those skilled in the art will recognize, in view of the present disclosure, that the anchor protrusion 240 can take on various forms in various implementations. For example, the anchor protrusion 240 can comprise a substantially annular radial protrusion, and/or can include any other suitable shape. Furthermore, the anchor protrusion 240 can comprise any number of radial protrusions extending away from the collar body 235 (e.g., two, three, four, or more radial protrusions).
Thus, in some instances, a user can operate a tool (e.g., a wrench) to engage with the tool interface 243 of the leveling collar 227 to rotate the leveling collar 227 about the leveling stud 230, thereby adjusting the relative positioning of the leveling collar 227 and the leveling stud 230 (e.g., by advancing or retracting the leveling collar 227 along the leveling stud 230 via the corresponding threads). For example, as noted above,
The first and second lateral side channels 247A, 247B can be at least partially defined, respectively, by the vertical members 213A, 213B that define the upper channel 210 of the base extrusion 203 and by additional vertical members 250A, 250B of the base extrusion 203. For instance,
For example,
In at least some implementations, a user can adjust the engagement between the first and second engagement channels 255A, 255B of the first and second trim elements 253A, 253B and the first and second lateral side channels 247A, 247B by adjusting the leveling assembly 207 (e.g., by rotating the leveling collar 227 about the leveling stud 230).
For example,
One will appreciate, in view of the present disclosure, that the first and second trim elements 253A, 253B and the first and second lateral side channels 247A, 247B may remain engaged with one another regardless of the leveling configuration of the leveling assembly 207. In this regard, in some instances, the height of the first and second lateral side channels 247A, 247B corresponds to the leveling range of the leveling assembly 207. Accordingly, in some instances, the base assemblies 115 of the present disclosure may provide a consistent base aesthetic regardless of the unevenness of a floor of an installation space.
When installed in the seal channels 260A, 260B, the seals 263A, 263B can be configured to abut opposing surfaces of the prefabricated wall panel 105 arranged within the upper channel 210 of the base extrusion 203. The seals 263A, 263B may prevent dust and/or debris from entering the base assembly 115 and may also prevent contact between the first and second trim elements 253A, 253B and the prefabricated wall panel 105 (e.g., to protect a glass prefabricated wall panel 105 from contact with metal trim elements 253A, 253B).
In some instances, the second trim element 253B can be selectively removed from the base track 205 by disengaging the connection element 267 from the vertical element 265 and by disengaging engagement channel 255B of the second trim element 253B from the second lateral side channel 247B of the base extrusion 203. For instance,
In some instances, providing a selectively removable trim element may provide access to the leveling assembly 207 to enable adjustment of the leveling assembly 207 when the leveling assembly 207 is arranged between the base track 205 and the base extrusion 203, as indicated in
Although
Those skilled in the art will recognize, in view of the present disclosure, that a prefabricated wall panel 105 in a prefabricated wall system 100 can include any number of leveling assemblies 207 positioned thereunder. For example, a base extrusion 203 that receives a single prefabricated wall panel 105 can interface with a first leveling assembly 207 proximate to one end of the base extrusion 203 and with a second leveling assembly 207 proximate to a second end of the base extrusion 203. As such, in some instances, a user can adjust a leveling height of a prefabricated wall panel 105 on two separate ends of the prefabricated wall panel 105.
Furthermore, those skilled in the art will recognize, in view of the present disclosure, that various components of a base assembly 115 can be configured to interface with any number of prefabricated wall panels 105. For example, in some implementations, a prefabricated wall system 100 can include a base track 205 that spans multiple adjacently arranged prefabricated wall panels 105. In such implementations, the first and second trim elements 253A, 253B of the base track 205 (and the seals 263A, 263B) may provide a continuous base aesthetic across multiple adjacently arranged prefabricated wall panels 105.
In addition, in some implementations, a prefabricated wall system 100 can include a separate base extrusion 203 and/or one or more separate leveling assemblies 207 for at least some of the prefabricated wall panel 105 within the prefabricated wall system 100. In some instances, providing one base extrusion 203 and/or one or more separate leveling assembles 207 for each prefabricated wall panel 105 in a prefabricated wall system 100 enables customized leveling for each prefabricated wall panel 105 of the prefabricated wall system, which can accommodate unevenness variations throughout an installation space.
Furthermore, multiple base extrusions 203 and leveling assemblies 207 of multiple prefabricated wall panels 105 can interface with the same base track 205. Accordingly, the benefits of per-panel leveling and a continuous base aesthetic may, in at least some instances, be realized simultaneously.
In some implementations, a base assembly of the present disclosure can be configured to complement a subfloor of an installation space, such that a floor covering of an installation space may substantially abut a prefabricated wall panel 105 to provide a desirable aesthetic.
For example,
The ceiling track 505 of the top assembly 120 can comprise a first ceiling trim element 510A and a second ceiling trim element 510B.
Accordingly,
One will appreciate, in view of the present disclosure, that the top seals 530A, 530B may differ from the seals 263A, 263B associated with the base track 205. For example, in some implementations, the top seals 530A and 530B may be configured to reside within and extend downward from top seal channels that are implemented into the first and second retainer wipes 520A and 520B, respectively (e.g., rather than or in addition to the top seal channels 525A and 525B of the first and second ceiling trim elements 510A and 510B illustrated in
For example, a user may slide the bottom portion of the door panel 130, with the first and second half channels 605A and 605B affixed thereto, into the upward-facing channel 625 through an end of the upward-facing channel 625.
In addition,
In this regard, at least some pivot door assemblies of the present disclosure (e.g., pivot door assembly 135B) provide a pivot door receiver (e.g., pivot door receiver 640) that receives a pivot in a compact manner that omits holes (e.g., threaded holes) in the bottom portion of the door panel (e.g., door panel 130).
In some embodiments, the first and second half channels 605A, 605B comprise the pivot door rail 620. For example, in some embodiments, the pivot door rail can be implemented in separate halves, with one half being configured to affix (e.g., with adhesives) to the first surface 610A of the door panel 130 and with the other half being configured to affix to the second surface 610B of the door panel 130. The two halves may both affix to the pivot door receiver 640 and one or more end caps 765 (e.g., with screws).
Those skilled in the art will recognize, in view of the present disclosure, that the principles disclosed herein with reference to pivot assembly 135B may also be applicable, in at least some instances, to a top pivot assembly, such as pivot assembly 135A (see
Although, in various instances, the present disclosure states singular elements (e.g., a base extrusion, a leveling assembly) and/or plural elements (e.g., pivot assemblies, vertical members), those skilled in the art will appreciate, in view of the present disclosure, that one or more of any of the elements described herein can be used according to the present disclosure.
Those skilled in the art will recognize, in view of the present disclosure, that any denotations of first, second, front, back, top, bottom etc. (e.g., top assembly, bottom portion, first lateral side channel, second trim element, etc.) in the present disclosure can be somewhat arbitrary and are provided for illustrative purposes and/or for ease of description. Thus, any ordinal and/or other denotations included herein are in no way limiting of the present disclosure. One will appreciate that any other denotations not explicitly included herein are within the scope of this disclosure.
The foregoing description and Figures illustrate features, properties, details, implementations, and variations of components for a prefabricated wall system with single-substrate (or otherwise thin) wall panels. One will appreciate, in view of the present disclosure, that various embodiments of components for a prefabricated wall system with single-substrate (or otherwise thin) wall panels, can include any combination of the various features, properties, details, etc. described hereinabove.
In a first embodiment, a base assembly 115 for a prefabricated wall system 100 includes a base extrusion 203. The base extrusion 203 includes an upper channel 210 at least partially defined by first and second vertical members 213A and 213B. The upper channel 210 is configured to receive an edge of a prefabricated wall panel 105. The base extrusion 203 also includes a lower channel 215 opposite to the upper channel 210, wherein an opening of the upper channel 210 and an opening of the lower channel 215 are oriented in opposite directions.
The base assembly 115 also includes a base track 205 comprising a base track channel 223. The base track 205 is configured to affix to a floor of a building. The base assembly 115 also includes a leveling assembly 207 configured to reside within both the lower channel 215 of the base extrusion 203 and the base track channel 223 of the base track 205. The leveling assembly 207 is adjustable to adjust a vertical position of the base extrusion 203 with respect to the base track 205.
In a second embodiment, the base assembly corresponds to the base assembly of the first embodiment, and the leveling assembly includes a leveling collar. The leveling collar comprises a collar body that defines a threaded opening extending at least partially through the leveling collar, an anchor protrusion extending from the collar body and configured to reside within the lower channel of the base extrusion, and a tool interface disposed on the collar body offset from the anchor protrusion and configured to interface with a tool.
The leveling assembly also includes a leveling stud comprising a threaded body with threads that correspond to threads of the threaded opening of the leveling collar, and a leveling base affixed to the leveling stud, the leveling base being configured to reside within the base track channel.
In a third embodiment, the base assembly corresponds to the base assembly of the second embodiment, and the lower channel comprises inward protrusions for retaining the anchor protrusion of the leveling assembly within the lower channel.
In a fourth embodiment, the base assembly corresponds to the base assembly of the second embodiment, and the base track channel comprises inward protrusions for retaining the leveling base within the base track channel.
In a fifth embodiment, the base assembly corresponds to the base assembly of any one of the first, second, third, or fourth embodiment, and the upper channel and the lower channel of the base extrusion share a channel wall that intervenes between the upper channel and the lower channel.
In a sixth embodiment, the base assembly corresponds to the base assembly of any one of the first, second, third, fourth, or fifth embodiment, and the base extrusion includes first and second lateral side channels disposed on opposite lateral sides of the upper channel. The first lateral side channel is at least partially defined by the first vertical member and a third vertical member of the base extrusion, and the second lateral side channel is at least partially defined by the second vertical member and a fourth vertical member of the base extrusion.
In a seventh embodiment, the base assembly corresponds to the base assembly of the sixth embodiment, and the first vertical member and the second vertical member have a height that is greater than a height of the third vertical member and the fourth vertical member.
In an eighth embodiment, the base assembly corresponds to the base assembly of the sixth or seventh embodiment, and a height of the first and second lateral side channels corresponds to a leveling range of the leveling assembly.
In a ninth embodiment, the base assembly corresponds to the base assembly of any one of the first, second, third, fourth, fifth, sixth, seventh, or eighth embodiment, and the base track comprises first and second trim elements extending upward from opposing lateral sides of the base track.
In a tenth embodiment, the base assembly corresponds to the base assembly of the ninth embodiment, and the first and second trim elements each comprise a seal channel configured to house a respective seal. The respective seals, when installed in the seal channels, are configured to abut opposing surfaces of one or more prefabricated wall panels arranged within the upper channel of the base extrusion.
In an eleventh embodiment, the base assembly corresponds to the base assembly of the ninth or tenth embodiment, and the first and second trim elements each comprise engagement channels configure to adjustably engage with, respectively, first and second lateral side channels disposed on opposite lateral sides of the upper channel.
In a twelfth embodiment, the base assembly corresponds to the base assembly of the eleventh embodiment, and an engagement between the engagement channels of the first and second trim elements and the first and second lateral side channels of the upper channel is adjustable by adjusting the leveling assembly.
In a thirteenth embodiment the base assembly corresponds to the base assembly of the eleventh or twelfth embodiment, and the base track comprises a vertical element on a second lateral side of the base track channel. The second trim element comprises a connection element for selectively engaging with the vertical element on the second lateral side of the base track. Furthermore, the second trim element is selectively removable from the base track by disengaging the connection element of the second trim element from the vertical element of the base track and disengaging the engagement channel of the second trim element from the second lateral side channel of the base extrusion.
In a fourteenth embodiment, the base assembly corresponds to the base assembly of any one of the ninth, tenth, eleventh, twelfth, or thirteenth embodiment, and the first and second trim elements of the base track each comprise a cantilever extension extending laterally therefrom. The cantilever extension is configured to support a floor base.
In a fifteenth embodiment, the base assembly corresponds to the base assembly of any one of the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh, twelfth, thirteenth, or fourteenth embodiment, and the prefabricated wall panel is a single-substrate wall panel.
In a sixteenth embodiment, a prefabricated wall system 100 comprises a single-substrate prefabricated wall panel 105 that has a top end and a bottom end.
The prefabricated wall system 100 also includes a base assembly 115 that comprises a base extrusion 203. The base extrusion 203 includes an upper channel 210 at least partially defined by first and second vertical members 213A and 213B. The upper channel 210 is configured to receive an edge of a prefabricated wall panel 105. The base extrusion 203 also includes a lower channel 215 opposite to the upper channel 210, wherein an opening of the upper channel 210 and an opening of the lower channel 215 are oriented in opposite directions.
The base assembly 115 also includes a base track 205 comprising a base track channel 223. The base track 205 is configured to affix to a floor of a building. The base assembly 115 also includes a leveling assembly 207 configured to reside within both the lower channel 215 of the base extrusion 203 and the base track channel 223 of the base track 205. The leveling assembly 207 is adjustable to adjust a vertical position of the base extrusion 203 with respect to the base track 205.
The prefabricated wall system also includes a top assembly 120. The top assembly comprises a ceiling track 505 configured to affix to a ceiling of a building. The ceiling track 505 comprises first and second ceiling trim elements 510A, 510B extending downward from opposing lateral sides of the ceiling track 505, wherein the first and second ceiling trim elements 510A, 510B form a ceiling track channel 515. The ceiling track 505 also comprises first and second retainer wipes 520A, 520B extending inward, respectively, from the first and second ceiling trim elements 510A, 510B.
The top end of the single-substrate prefabricated wall panel 105 is configured to reside between the first and second retainer wipes 520A, 520B within the ceiling track channel 515.
In a seventeenth embodiment, the prefabricated wall system corresponds to the prefabricated wall system of the sixteenth embodiment, and the first and second ceiling trim elements each comprise a top seal channel configured to house a respective top seal. The respective top seals, when installed in the top seal channels, are configured to abut opposing surfaces of the single-substrate prefabricated wall panel when the top end of the single-substrate prefabricated wall panel is arranged between the retainer wipes within the ceiling track channel.
In an eighteenth embodiment, the prefabricated wall system corresponds to the prefabricated wall system of the sixteenth or seventeenth embodiment and a distance between a top portion of the ceiling track and the first and second retainer wipes corresponds to a leveling range of the leveling assembly.
In a nineteenth embodiment, a pivot door assembly 135A, 135B for a single-substrate prefabricated panel 130 of a prefabricated wall system 100 comprises a first half channel 605A configured to affix to a first surface 610A of a bottom portion of the single-substrate prefabricated panel 130 and at least partially cover a bottom edge 615 of the single-substrate prefabricated panel 130.
The pivot door assembly 135A, 135B also comprises a second half channel 605B configured to affix to a second surface 610B of the bottom portion of the single-substrate prefabricated panel 130 and at least partially cover the bottom edge 615 of the single-substrate prefabricated panel 130. The pivot door assembly 135A, 135B also includes a pivot door receiver 640 comprising a hole 745 configured to receive a pivot.
The pivot door assembly 135A, 135B also includes a pivot door rail 620 that comprises an upward-facing channel 625 configured to receive the bottom portion of the single-substrate prefabricated panel 130 and the first and second half channels 605A, 605B when the first and second half channels 605A, 605B are affixed to the bottom portion of the single-substrate prefabricated panel 130. Channel walls of the upward-facing channel 625 include inward protrusions 630A and 630B for retaining the first and second half channels 605A, 605B within the upward-facing channel 625.
The pivot door rail 620 also includes a downward-facing channel 635 configured to house the pivot door receiver 640.
In a twentieth embodiment, the pivot door assembly corresponds to the pivot door assembly of the nineteenth embodiment and the first and second half channels are configured to affix to the bottom portion of the single-substrate prefabricated wall panel with a tape adhesive.
Various alterations and/or modifications of the inventive features illustrated herein, and additional applications of the principles illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, can be made to the illustrated embodiments without departing from the spirit and scope of the invention as defined by the claims, and are to be considered within the scope of this disclosure. Thus, while various aspects and embodiments have been disclosed herein, other aspects and embodiments are contemplated. While a number of methods and components similar or equivalent to those described herein can be used to practice embodiments of the present disclosure, only certain components and methods are described herein.
It will also be appreciated that systems, devices, products, kits, methods, and/or processes, according to certain embodiments of the present disclosure may include, incorporate, or otherwise comprise properties, features (e.g., components, members, elements, parts, and/or portions) described in other embodiments disclosed and/or described herein. Accordingly, the various features of certain embodiments can be compatible with, combined with, included in, and/or incorporated into other embodiments of the present disclosure. Thus, disclosure of certain features relative to a specific embodiment of the present disclosure should not be construed as limiting application or inclusion of said features to the specific embodiment. Rather, it will be appreciated that other embodiments can also include said features, members, elements, parts, and/or portions without necessarily departing from the scope of the present disclosure.
Moreover, unless a feature is described as requiring another feature in combination therewith, any feature herein may be combined with any other feature of a same or different embodiment disclosed herein. Furthermore, various well-known aspects of illustrative systems, methods, apparatus, and the like are not described herein in particular detail in order to avoid obscuring aspects of the example embodiments. Such aspects are, however, also contemplated herein.
The present disclosure may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. While certain embodiments and details have been included herein and in the attached disclosure for purposes of illustrating embodiments of the present disclosure, it will be apparent to those skilled in the art that various changes in the methods, products, devices, and apparatus disclosed herein may be made without departing from the scope of the disclosure or of the invention, which is defined in the appended claims. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application is a 371 US nationalization of PCT Patent Application No. PCT/US2020/036946, filed Jun. 10, 2020, which claims priority to U.S. provisional patent application No. 62/859,417, filed Jun. 10, 2019. The entire content of the aforementioned patent applications is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/036946 | 6/10/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/251985 | 12/17/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
9982431 | Del Missier | May 2018 | B2 |
20100242378 | Cifelli | Sep 2010 | A1 |
20130192141 | Kopish | Aug 2013 | A1 |
20150204070 | Gierens | Jul 2015 | A1 |
20180045363 | Mitrovic | Feb 2018 | A1 |
20190177973 | Mitrovic | Jun 2019 | A1 |
20190234078 | McDonald | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
1913292 | Sep 1970 | DE |
2520925 | Jun 2015 | GB |
2018185679 | Oct 2018 | WO |
Entry |
---|
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2020/036946, dated Dec. 23, 2021, 14 pages. |
International Search Report and Written Opinion for PCT/US2020/036946 dated Nov. 12, 2020. |
Office Action received for European Patent Application No. 20751352.4, dated Jul. 18, 2023, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20220127847 A1 | Apr 2022 | US |
Number | Date | Country | |
---|---|---|---|
62859417 | Jun 2019 | US |