Base for an electrical lamp and a method of assembling a base for an electrical lamp

Information

  • Patent Grant
  • 9702530
  • Patent Number
    9,702,530
  • Date Filed
    Monday, March 3, 2014
    10 years ago
  • Date Issued
    Tuesday, July 11, 2017
    7 years ago
Abstract
According to an aspect there is provided a base for an electric lamp which may be assembled in an efficient and convenient manner. The base comprises: a tubular enclosure (2) extending along an axial direction between a first and a second end portion of the enclosure, an insulator (4) attached to the first end portion of the enclosure such that a rotation of the insulator relative to the enclosure about the axial direction is prevented, the insulator having an inner portion (4b) facing towards an inner space of the enclosure, an outer portion (4a) facing away from said inner space and at least one channel for receiving an electrically conducting contact pin (5), the channel extending from the outer portion, through the insulator and leading into said inner space, and a housing (3) for accommodating electrical circuitry (11) for operating the electric lamp, wherein an end portion (5a) of the electrically conducting contact pin (5) has a lateral projection or recess being adapted to engage with an engagement portion (3c) of the housing such that a separation between the insulator and the housing is prevented in at least said axial direction, and wherein the housing is attached to the inner portion of the insulator such that a rotation of the housing relative to the insulator about the axial direction is prevented, wherein a rotation of the housing relative to the enclosure is prevented.
Description
FIELD OF THE INVENTION

The present inventive concept relates to a base for an electrical lamp and a method of assembling a base for an electrical lamp.


BACKGROUND OF THE INVENTION

The development in the field of light emitting diodes (LEDs) has made it practicable and economical to replace traditional light sources, such as incandescent light lamps or fluorescent lamps, with LED lamps for both indoor and outdoor lighting. Given their favorable energy efficiency and long lifespan LED lamps are often considered more environmentally friendly than their traditional counter parts.


Today, LED lamps are available in various designs. Some LED lamp designs are compatible with existing lighting fixtures and sockets. For example a LED lamp may be provided with a threaded base which may be screwed into a socket (i.e. an Edison screw fitting). In one design a LED lamp comprises a lighting module including one or more LEDs arranged on a base comprising a threaded conducting enclosure and a housing including electrical circuitry such as an LED driver. The lighting module is attached to the housing which in turn is pinched to the enclosure, thereby providing a torsion resistant connection between the housing and the enclosure wherein the lamp may be screwed into a socket. U.S. Pat. No. 7,965,023 discloses another design comprising a heat dissipation housing, an insulation housing and an Edison electrode cap. The insulation housing comprises a power printed circuit board (PCB). An upper opening edge of the electrode cap is connected to a lower end of the insulation housing to combine into one piece by screw-connection manner. The electrode cap and the insulation housing are then installed in an axial through-hole of the heat dissipation housing.


SUMMARY OF THE INVENTION

It has been realized that there is room for improvement upon the above-described LED lamp designs. More specifically it has been realized that pinching of a housing to an enclosure or a screw-connection between an insulation housing and an electrode cap inter alia may limit the efficiency by which the base may be assembled. It is therefore an object of the present invention to address and at least partly reduce this shortcoming by providing a base which better lends itself for an efficient assembly.


According to a first aspect of the invention, this and other objects are achieved by a base for an electric lamp, comprising: a tubular enclosure extending along an axial direction between a first and a second end portion of the enclosure, an insulator attached to the first end portion of the enclosure such that a rotation of the insulator relative to the enclosure about the axial direction is prevented, the insulator having an inner portion facing towards an inner space of the enclosure, an outer portion facing away from said inner space and at least one channel for receiving an electrically conducting contact pin, the channel extending from the outer portion, through the insulator and leading into said inner space, and a housing for accommodating electrical circuitry for operating the electric lamp, wherein an end portion of the electrically conducting contact pin has a lateral projection or recess being adapted to engage with an engagement portion of the housing such that a separation between the insulator and the housing is prevented in at least said axial direction, and wherein the housing is attached to the inner portion of the insulator such that a rotation of the housing relative to the insulator about the axial direction is prevented, wherein a rotation of the housing relative to the enclosure is prevented.


In accordance with the inventive first aspect it has been realized that an improved base, which may be assembled in an efficient and convenient manner, may be achieved by attaching the housing to the insulator such that a rotation of the housing is transferred to the insulator wherein a rotation of the housing relative to the insulator is prevented. Since a rotation of the housing relative to the enclosure is prevented a lamp comprising the inventive base may easily be inserted in a twisting movement into a corresponding socket, such as an Edison screw fitting socket or a bayonet mount socket. It has further been realized that the housing, which advantageously may be made of a plastic, a glass or a ceramic material, easily may be provided with features enabling a quick and reliable connection to the end portion of the electrically conducting contact pin. Thereby a separate assembly step of pinching the housing to the enclosure or screwing the housing to the enclosure, which may be time consuming, may be avoided.


The engagement of the lateral projection or recess of the end portion of the electrically conducting pin with the engagement portion of the housing furthermore prevents a separation between the insulator and the housing in at least said axial direction. The housing may thereby be arranged at a fixed axial position with respect to the enclosure. Hence both a rotation and an axial displacement of the housing with respect to the enclosure may be prevented.


According to one embodiment an interface between the insulator and the housing is arranged to separate an inner space of the housing from an annular space formed between an outside of the housing and an inside of the enclosure. In case potting material is entered into the housing, the interface may prevent a leakage of potting material into the annular space which otherwise could occur. This may reduce the risk of potting material interfering with other parts of the base (leading to a disconnection between the driver and the threaded conducting enclosure), and may also reduce the amount of potting material required to fill the housing.


According to one embodiment the inner portion of the insulator is provided with a first surface extending in said axial direction towards an end portion of the housing, and an end portion of the housing is provided with a second surface extending in said axial direction towards the inner portion of the insulator, wherein the first surface and the second surface are arranged to extend along and in contact with each other. The first and the second surface may thus cooperate to prevent a rotation of the housing relative to the insulator about the axial direction. The torsion resistance of the connection between the housing and the insulator may thereby be advantageously strengthened.


According to one embodiment the insulator comprises a partition member arranged at the inner portion of the insulator and extending in said axial direction towards an end portion of the housing. In case potting material is entered into the housing, the partition member may thus prevent a leakage of potting material past the partition member. Alternatively, the housing may comprise a partition member arranged at an end portion of the housing and extending in said axial direction towards the inner portion of the insulator.


According to one embodiment the insulator comprises a partition member arranged at the inner portion of the insulator and extending in said axial direction towards an end portion of the housing, the housing comprises a partition member arranged at an end portion of the housing and extending in said axial direction towards the inner portion of the insulator, and a side surface of the partition member of the insulator extends along and in contact with a side surface of the partition member of the housing. This embodiment enables the torsion resistance of the connection between the housing and the insulator to be advantageously strengthened and may in addition prevent a leakage of potting material from the housing as previously discussed.


In some embodiments the housing may comprise a wire channel arranged to accommodate a connection wire extending from an inner space of the housing into an annular space formed between an outside of the housing and an inside of the enclosure. Circuitry arranged in the housing may thereby be galvanically connected to a conducting portion of the enclosure in a convenient manner.


According to one embodiment the housing comprises a connection portion arranged at the end portion of the housing and comprising a first channel being axially aligned with the at least one channel of the insulator arranged to receive the electrically conducting contact pin, the connection portion being arranged to receive an end portion of the contact pin and a connection wire extending from an inner space of the housing. Circuitry in the housing may thereby be galvanically connected to the contact pin in a convenient manner by arranging the connection wire in the first channel of the connection portion and thereafter inserting the contact pin therein. The connection portion may further comprise a second channel extending through a wall of the connection portion and leading into the channel, the second channel being arranged to receive the connection wire. The connection wire may thus be arranged to extend through the second channel and into the first channel. The second channel may thereby serve as a holding portion for the connection wire before and while the contact pin is inserted into the first channel.


According to a second aspect there is provided an electrical lamp comprising a base, in accordance with the first aspect or any of the above-mentioned embodiments thereof, and a lighting module arranged on the base and including at least one light source.


According to a third aspect there is provided a method comprising:


providing a tubular enclosure extending along an axial direction between a first and a second end portion of the enclosure, and an insulator attached to the first end portion of the enclosure such that a rotation of the insulator relative to the enclosure about the axial direction is prevented, the insulator having an inner portion facing towards an inner space of the enclosure, an outer portion facing away from said inner space and at least one channel for receiving an electrically conducting contact pin, the channel extending from the outer portion, through the insulator and leading into said inner space, and attaching a housing for accommodating electrical circuitry for operating the electric lamp to the inner portion of the insulator such that a rotation of the housing relative to the insulator about the axial direction is prevented, wherein a rotation of the housing relative to the enclosure is prevented, and


attaching an end portion of the electrically conducting contact pin such that a lateral projection or recess of the end portion engage with an engagement portion of the housing such that a separation between the insulator and the housing is prevented in at least said axial direction.


The details and advantages discussed in connection with the first aspect and the embodiments thereof apply correspondingly to the second and third aspects of the present inventive concept. For brevity, the discussion will therefore not be repeated here.


It is noted that the invention relates to all possible combinations of features recited in the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

This and other aspects of the present invention will now be described in more detail, with reference to the appended drawings showing embodiments of the invention wherein like reference numerals refer to like elements throughout unless stated otherwise.



FIG. 1 is a perspective view of an electrical lamp in an unassembled condition in accordance with an embodiment of the invention.



FIG. 2 is a perspective view of the electrical lamp in an assembled condition.



FIG. 3 is a perspective view of a base in an unassembled condition in accordance with an embodiment of the invention.



FIG. 4 is a perspective view of the enclosure and the insulator shown in FIG. 3.



FIG. 4′ is a perspective view of the enclosure and an alternative embodiment of the insulator.



FIG. 4″ is a perspective view of the enclosure and yet an alternative embodiment of the insulator.



FIG. 5 is a sectional view of an enclosure, and insulator and a housing in accordance with an embodiment of the invention.



FIG. 6 is a perspective view of a base in accordance with an alternative embodiment of the invention.



FIGS. 7-8 are sectional views of the base illustrated in FIG. 6.





DETAILED DESCRIPTION

The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which currently preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided for thoroughness and completeness, and fully convey the scope of the invention to the skilled person.



FIGS. 1 and 2 illustrate an electric lamp 10 in accordance with one embodiment. FIG. 1 illustrates the electric lamp 10 in an unassembled condition. FIG. 2 illustrates the electric lamp 10 in an assembled condition. The electric lamp 10 comprises a base 1, electrical circuitry 11 and a lighting module 30. The base 1 comprises an electrically conducting tubular enclosure 2. Thus, the enclosure 2 includes an electrically conducting material, such as a metal. The enclosure 2 is provided with an outer thread. The outer thread enables the base 1 to be screwed into an Edison-type socket. The enclosure 2 extends between a first end portion 2a and a second end portion 2b. This direction of extension may be referred to as an axial direction of the enclosure 2 and analogously an axial direction of the base 1. The enclosure 2 forms a first contact or side contact of the base 1.


The base 1 comprises an electrically insulating housing 3. The housing 3 may comprise a polymer material, such as an engineering thermoplastic, for instance polybutylene terephthalate (PBT) or polycarbonate (PC), a glass or a ceramic material. The housing 3 extends along the axial direction between a first end portion 3a and a second end portion 3b. The housing 3 is arranged to be received in the enclosure 2 from the open end of the enclosure 2 at the second end portion 2b thereof. When the enclosure 2 and the housing 3 are assembled, at least a portion of the housing 3 extends into the cylindrical inner space enclosed by the enclosure 2. The first end portion 3a extends into the inner space enclosed by the enclosure 2. The second end portion 3b extends out of the inner space enclosed by the enclosure 2. Thus, in the illustrated embodiment only a portion of the housing 3 is received inside the enclosure 2. However, in alternative embodiments the entire housing 3 may be received inside the enclosure 2. The housing 3 is arranged to receive and accommodate the electrical circuitry 11 for operating the electric lamp 10, e.g. in the form of a printed circuit board. The light source of the electric lamp 10 may comprise one or more light emitting diodes (LEDs) wherein the electrical circuitry 11 may comprise an LED driver for driving the LED(s).


The base 1 comprises an electrically insulating end member, hereinafter referred to as the insulator 4. The insulator 4 may comprise a polymer material, such as an engineering thermoplastic, for instance, polybutylene terephthalate (PBT) or polycarbonate (PC), a glass or a ceramic material. The insulator 4 may advantageously be injection molded. The insulator 4 is attached to the first end portion 2a of the enclosure 2 such that a rotation of the insulator 4 relative to the enclosure 2 about the axial direction is prevented. The housing 3 in turn is attached to the insulator 4 such that a rotation of the housing 3 relative to the insulator 4 about the axial direction is prevented. Consequently, a rotation of the housing 3 relative to the enclosure 2 may be prevented. This will be described in greater detail below.


As illustrated in FIGS. 1 and 2 the second end portion 3b may be provided with features for connecting the housing 3 to further components such as the lighting module 30 including one or more light sources. Thereby the electric lamp 10 may be provided comprising the base 1 and the lighting module 30 including one or more light sources. By way of example reference numeral 30 in FIGS. 1 and 2 schematically indicates the lighting module comprising one or more LEDs which are mounted on a finned cooling element. The LEDs may be protected by a transparent cover. The lighting module 30 may be attached to the second end portion 3b such that a rotation of the lighting module 30 relative the housing 3 about the axial direction may be prevented. As illustrated, the lighting module 30 may be attached to the housing 3 by means of a snap-lock. Alternatively the lighting module 30 may be glued to the housing 3. The lighting module 30 may serve as a gripping part of the lamp, allowing a user to handle the lamp and insert the base 1 into a socket by rotation of the gripping part. Alternatively or additionally the housing 3 may present a portion extending outside the enclosure and forming a gripping part.



FIGS. 3-5 illustrate a base 1 for an electric lamp in an unassembled condition in accordance with an embodiment of the present invention. The base 1 comprises the tabular enclosure 2, a housing 3, an insulator 4, and an electrically conducting contact pin 5. FIG. 3 is a perspective view of a base in an unassembled condition in accordance with an embodiment of the invention. FIG. 4 is a perspective view of the enclosure 2 and the insulator 4 as seen from the second end portion 2b of the enclosure 2. FIG. 5 illustrates an axial sectional view of the enclosure 2, the housing 3, the insulator 4, and the contact pin 5.


An end portion 5a of the contact pin 5 is arranged to provide a snap-in function, enabling, in an assembled condition, the insulator 4, the housing 3 and the enclosure 2 to be attached to each other in a snap-lock configuration.


The end portion 5a of the contact pin 5 and the engagement portion 3c are arranged to cooperate such that an axial separation of the insulator 4 and the housing 3 is, at least in the axial direction, prevented. The contact pin 5 extends through an opening at a first end portion 3a of the housing 3 and past the edge of the opening such that the end portion 5a of the contact pin 5 engages an engagement portion 3c of the housing 3. The housing 3 may thereby be arranged at a fixed axial position with respect to the enclosure 2.


An advantage being that the assembly of the base 1 is simplified allowing for automated, reliable and cheap assembly.


Another advantage of this embodiment is that no other means for attachment of the housing 3 to the insulator 4 are needed, whereby the design and fabrication of these parts are simplified. Instead the housing 3 is attached to the insulator 4 by means of the end portion 5a of the contact pin 5 functioning as a means for attachment engaging the engagement portion 3c of the housing 3.



FIG. 3 shows a perspective view of the base 1 in an unassembled condition. The base 1 comprising the enclosure 2, the housing 3, the insulator 4, and the contact pin 5. The first end portion 3a of the housing 3 is provided with an opening that, in an assembled condition, faces the inner portion 4b of the insulator 4. The edge of the opening provides an engagement portion 3c for the end portion 5a of the contact pin 5. The housing 3 comprises a connection portion 12 arranged at the first end portion 3a thereof. The connection portion 12 is here also centrally arranged at the end portion 3a. The connection portion 12 comprises an axially extending channel 12a. The channel 12a is enclosed circumferentially by a wall 12b of the connection portion 12. The connection portion 12 further comprises a lateral channel 12c extending through the wall 12b and leading into the channel 12a. The axial channel 12a is arranged to receive the end portion 5a of the contact pin 5 so that the axial channel and the portion 5a of the contact pin 5 are attached to each other in a snap-lock configuration.


Now referring to FIG. 5, the lateral channel 12c is arranged to receive a connection wire 14 so that a portion of the connection wire can be connected to the contact pin 5 as a portion of the contact pin 5 is received in the channel 12a. Hence the connection wire 14 may be brought into galvanic contact with a portion of the contact pin 5 at a fixed position without the need of soldering.


The connection wire 14 is arranged to extend from the electrical circuitry 11 inside the housing 3, through an opening in the end portion 3a of the housing 3, and to the contact pin 5. A first end portion of the connection wire 14 is galvanically connected to the circuitry 11. A second end portion of the connection wire 14 opposite the first end portion is galvanically connected to the contact pin 5. The channel 12c may be provided with a cross sectional dimension falling below a cross sectional dimension of the connection wire 14 wherein a portion of the connection wire 14 received in the channel 12c may be tight fit or press-fit therein. This may facilitate handling of the housing 3 and the connection wire 14 during assembly. The connection wire 14 may thus be arranged to extend from the inner space of the housing 3 into the channel 12c, wherein a free end of the connection wire 14 may be arranged to extend into the channel 12a. As the end portion 5a of the contact pin 5 is received in the channel 12a, the free end of the connection wire 14 may be sandwiched and press-fit between the end portion 5a and the wall 12. The connection wire 14 may thus be brought into galvanic contact with the end portion 5a of the contact pin 5 at a fixed position without soldering.


The base 1 may further comprise a second connection wire 16. The housing 3 may further include a channel 9 for accommodating the second connection wire 16. The connection wire 16 may be arranged to extend from the electrical circuitry 11 inside the housing 3, through the channel 9, and to the inner surface of the enclosure 2. A first end portion of the connection wire 16 may be galvanically connected to the circuitry 11. A second end portion of the connection wire 16, opposite the first end portion, may be galvanically connected to the inner surface of the enclosure 2. The relative radial dimensions of the enclosure 2 and the housing 3 may be such that a radial thickness of the annular space falls below a thickness of the connection wire 16 wherein the connection wire 16 may be sandwiched and press-fit between the enclosure 2 and the housing 3. The connection wire 16 may thus be brought into galvanic contact with enclosure 2 at a fixed position without soldering.


Still referring to FIG. 5, the interface between the housing 3 and the insulator 4 prevents a leakage of potting material into the space between the housing 3 and the enclosure 2. Thereby, the risk of having potting material, which may present thermal expansion during use of the lamp, interfering with the contact between the connection wire 16 and the enclosure 2 may be reduced. A reliable connection between the connection wire 16 and the enclosure 2 may thus be achieved without soldering, even when potting material is used.


The above described arrangement of the connection wire 16 is applicable also to embodiments not including the connection portion 12. In embodiments not including the connection portion 12 a connection wire corresponding to the connection wire 14 may instead be attached to the contact pin 5 by soldering.


As can be seen in FIGS. 3 and 5, the housing 3 further comprises a partition member 8 arranged on the first end portion 3a of the housing 3 and extending in the axial direction towards the first end portion 2a of the enclosure 2. The partition member 8 may be integrally formed, in a single piece, with the housing 3 or separately formed and mounted thereon by means of welding, gluing or the like.


Moreover, as seen in FIG. 3 the first end portion 3a of the housing 3 is provided with a wire channel 9 extending through the partition member 8 to allow for a connection wire to extend from an inner space of the housing 3 into the annular space formed between the housing 3 and an inner surface of the enclosure 2.


The isolator 4 illustrated in the FIGS. 3-5 comprises a central opening for insertion of an electrode. However, according to the present invention the isolator 4 further comprises a partition member 7 arranged on the inner portion 4b of the insulator 4, as shown in FIG. 4. The partition member 7 is in an assembled configuration extending in the axial direction towards the second end portion 2b of the enclosure 2. The partition member 7 may be provided with another shape than the rectangular shape shown in FIG. 4, the partition member may present a triangular, a rhomboidal shape or more generally a polygonal shape.


The partition member 7 may alternatively be provided with an arrangement for interlocking as will be discussed below.


The partition member 7 may be integrally formed, in a single piece, with the insulator 4 or separately formed and mounted thereon by means of welding, gluing or the like.


The insulator 4 also comprises an axially outer portion 4a. The outer portion 4a faces axially away from the inner space of the enclosure 2. The outer portion 4a thus provides an outer surface of the base 1. The insulator 4 comprises an axially inner portion 4b. The inner portion 4b faces axially towards the inner space of the enclosure 2. The inner portion 4b thus provides an inner surface within the enclosure 2.


The insulator 4 comprises a through-hole extending axially from the outer portion 4a to the inner portion 4b and leading into the inner space of the enclosure 2. The through-hole is arranged to receive the contact pin 5. The contact pin 5 extends into the through-hole of the insulator 4. The contact pin 5 forms a second contact or end contact of the base 1.


Referring to FIG. 5, the partition member 8 is arranged radially outside of the partition member 7. The radially outer side surface of the partition member 7 engages the radially inner side surface of the partition member 8. In alternative embodiments the partition member 7 may instead be arranged radially outside of the partition member 8. According to these alternative embodiments a radially outer side surface of the partition member 8 engages a radially inner side surface of the partition member 7.


The partition member 7 may, also according to this embodiment, extend the full distance from the inner portion 4b of the insulator 4 to the first end portion 3a of the housing 3. The partition member 7 may thus engage or abut against the first end portion 3a of the housing 3. Alternatively, the partition member 7 may extend only a part of the distance from the inner portion 4b of the insulator 4 to the first end portion 3a of the housing 3. Similarly, the partition member 8 may extend the full distance from the first end portion 3a of the housing 3 to the inner portion 4b of the insulator 4. The partition member 8 may thus engage or abut against the inner portion 4b of the insulator 4. Alternatively, the partition member 8 may extend only a part of the distance from the first end portion 3a of the housing 3 to the inner portion 4b of the insulator 4. In any event, the partition member 7 and the partition member 8 may present an axial extension such that they overlap along the axial direction.



FIG. 4′ and FIG. 4″ illustrate alternative embodiments of the partition member 7 of the insulator 4. FIG. 4′ is a perspective view of the enclosure 2 and the insulator 4 as seen from the second end portion 2b of the enclosure 2. The partition member 7 is shaped as a circular battlement 70 comprising embrasures 72 alternating with merlons 74. The partition member 7 and a corresponding partition member 8 of the housing 3 (not shown) are arranged to engage or lock together during assembly of the lamp base such that a substantially homogenous circular wall may be obtained. In other words, the battlements of the partition members 7 and 8 interlace such that an interlock is formed at the interface between of the two partition members 7 and 8.


The person skilled in the art should realize that the battlement of the partition members 7 may have different shapes and comprise different numbers of embrasures 72 and merlons 74 than what is disclosed in FIG. 4′. As an example, FIG. 4″ illustrates another embodiment of the partition member 7. The partition member 7 comprises, as in FIG. 4′, a circular battlement 70 with embrasures 72 and merlons 74, but also a circular wall structure 76 arranged on a radially outside surface of the battlement 72. The partition member 7 and a corresponding partition member 8 of the housing 3 (not shown) are arranged to engage or lock together along an inner radially surface of the circular wall structure 76. The circular wall structure 76 thereby provides additional stability to the junction formed by the partition members 7 and 8. The circular wall structure 76 further hinders that gaps may be formed at the interfaces in between the partition members 7 and 8.


The partition members 7, 8 may according to other embodiments comprise a saw-tooth structure.


The partition members 7 and 8 described above provide a two-fold advantage:


Firstly, the partition member 7 and 8 provide an interface between the insulator 4 and the housing 3 which separates an inner space of the housing 3 from the annular space formed between the exterior of the housing 3 and the inner surface of the enclosure 2. In case potting material is entered into the housing 3, the interface may prevent a leakage of potting material from the housing 3 into said annular space via the opening in the first end portion 3a of the housing 3. Thereby the risk of electrical contact failure and the amount of potting material needed be reduced.


Secondly, the partition members 7 and 8 contribute to a torsion resistant connection between the housing 3 and the insulator 4 required to when in use withstand the torque as the base 1 of the lamp may be inserted to a socket during lamp (dis)assembly.


In use of an electric lamp comprising the base 1 according to any of the above described embodiments, the base 1 of the lamp may be inserted to a socket. Insertion of the base 1 may include rotation of the lamp about the axial direction, e.g. by the user applying a torque in the axial direction to a portion of the lamp which is accessible to touch such as the above mentioned gripping part. The socket may comprise threads corresponding to the threads of the enclosure 2. The outer dimensions of the enclosure 2 and the corresponding inner dimensions of the socket may by way of example correspond to those of the E14 or E27 Edison screw fitting. The rotation resulting from the applied torque may be transferred to the housing 3. From the housing 3, the rotation may be transferred to the insulator 4 via the partition member 8 and the partition member 7. A rotation of the insulator 4 may be transferred to the enclosure 2 wherein the enclosure 2, and thus the base 1, may be screwed into the socket. An analogous transfer of torque and rotation may arise during unscrewing of the base 1 from the socket. Consequently, the housing 3 is attached to the insulator 4 such that a rotation of the housing 3 relative to the insulator 4 about the axial direction is prevented and the insulator 4 is attached to the enclosure 2 such that a rotation of the insulator 4 relative to the enclosure 2 about the axial direction is prevented, wherein a rotation of the housing 3 relative to the enclosure 2 is prevented.


The base 1 may be efficiently and conveniently assembled by aligning the housing 3 and the insulator 4 axially and bringing the housing 3 and the insulator 4 together such that (where applicable) the partition member 7 is enclosed by the partition member 8 (or in some embodiments vice versa) and such that the end portion 5a of the contact pin 5 snap to the engagement portion 3c. The insulator 4 may have been assembled with the enclosure 2 in a previous step wherein the base 1 may be assembled by introducing the housing 3 into the enclosure 2, from the second end portion 2b thereof, and bring the housing 3 in contact with the insulator 4.



FIG. 6 illustrates a base 21 of an alternative embodiment. The base 21 is similar to the base 1 however differs in that comprises an enclosure 22 which is arranged to be inserted into a bayonet-type socket, such as a B22 socket, a BA15 socket, a B15 socket or the like.


As illustrated in FIG. 6 the base 21 may be provided with features for connecting components such as a lighting module 30 including one or more light sources. Thereby an electric lamp 10 may be provided comprising the base 21 and the lighting module 30 including one or more light sources.


In contrast to the enclosure 2, the enclosure 22 does not present any threading. Instead the enclosure 22 includes a first and a second pin 22a, 22b arranged at radially opposite sides of the enclosure 22 and each extending in a radially outward direction from the enclosure 22. The enclosure 22 may hence be inserted in a corresponding bayonet-type socket including L-shaped slots in which the respective pins 22a, 22b may be received and fixed by means of a rotational movement.



FIGS. 7 and 8 are sectional views of the base 21 taken along two mutually perpendicular axial sections of the base 21. The insulator 24, which corresponds to the insulator 4, comprises a partition member 27 corresponding to the partition member7. The housing 23, which corresponds to the housing 3, comprises a partition member 28 corresponding to the partition member 8. The housing 23 is attached to the insulator 24 by means of the end portions 25a, 26a of the electrically conducting contact pins 25, 26 being adapted to engage with engagement portions 23c′, 23c″ of the housing 23 in a snap-lock configuration.


As illustrated in FIGS. 6-8 the insulator 24 comprises a first and a second channel for receiving a respective contact pin 25 and 26 forming two end contacts of the base 21. The housing 23 may be provided with a pair of connection portions 29a, 29b arranged to receive respective end portions 23c′, 23c″ of the contact pins 25, 26. The contact pins 25, 26 may be received in the respective connection portions 29a, 29b in a tight-fit manner. The contact pins 25 and 26 may be galvanically connected to a respective connection wire in a similar manner as described above. During insertion or removal of the base from a socket, a portion of the torque applied to the housing 23 may be transferred to the insulator 24 via the connection portions 29a, 29b and the contact pins 25 and 26. In fact, in some embodiments the torque transfer capacity of the connection portions 29a, 29b and the contact pins 25 and 26 may be sufficient wherein the partition members 27, 28 may be omitted.


The base 21, comprising at least one electrically conducting contact pin and a corresponding engagement portion of the housing, facilitates a connection between the insulator and the housing such that a separation between the insulator and the housing is prevented in at least the axial direction and the electrically conducting contact pins and the engagement portions are further arranged such that a rotation of the housing relative to the insulator about the axial direction is prevented.


The person skilled in the art realizes that the present invention by no means is limited to the preferred embodiments described above. On the contrary, many modifications and variations are possible within the scope of the appended claims. For example, the housing 3, 23 may be provided with another shape than cylindrical, the housing may have a triangular, a rectangular cross section or more generally a polygonal cross section.


The electrically conducting contact pins 5, 25, 26 may be provided with another shape than the cylindrical like shape disclosed above.


Moreover, in the illustrated embodiments the partition members 7, 8, 27, 28 are provided with a substantially rectangular cross sectional shape. In alternative embodiments the partition members may instead be provided with a triangular shape or more generally a polygonal shape. In some embodiments the insulator and the housing may be provided with a respective circular or annular partition member. Annular partition members may simplify assembly of a base since a relative rotation of the housing and the insulator about the axial direction need not be considered for bringing the pieces together. Annular partition members may for example be used in applications wherein the torque transfer capacity of the contact pins 5, 25, 26 is considered sufficient. In some embodiments a radially inner surface of an outer annular partition member (of the housing or the insulator) may be provided with one or more axially extending ribs and a radially outer surface of an inner annular partition member (of the housing or the insulator) may be provided with one or more axially extending ribs, the one or more ribs of the outer and the inner partition members being arranged to engage each other such that a relative rotation the outer partition member and the inner partition member about the axial direction is prevented. Thereby annular partition members may be arranged to transfer a torque between the housing and the insulator.


Furthermore, although the illustrated embodiments have been described with reference to LED light sources the present invention, as defined in the claims, may be used in connection with other types of light sources. For example an electric lamp comprising one or more halogen light sources wherein the electrical circuitry in the housing may comprise circuitry for driving the halogen light source(s); or an electric lamp comprising a fluorescent light source wherein the electrical circuitry may comprise circuitry for starting and driving the fluorescent light source.


Additionally, variations to the disclosed embodiments can be understood and effected by the skilled person in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measured cannot be used to advantage.

Claims
  • 1. A base for an electric lamp, comprising: a tubular enclosure extending along an axial direction between a first and a second end portion of the enclosure,an insulator attached to the first end portion of the enclosure such that a rotation of the insulator relative to the enclosure about the axial direction is prevented, the insulator having an inner portion facing towards an inner space of the enclosure, an outer portion facing away from said inner space and at least one channel for receiving an electrically conducting contact pin, the channel extending from the outer portion, through the insulator and leading into said inner space, anda housing for accommodating electrical circuitry for operating the electric lamp, wherein an end portion of the electrically conducting contact pin has a lateral projection or recess being adapted to engage with an engagement portion of the housing such that a separation between the insulator and the housing is prevented in at least said axial direction, and wherein the housing is attached to the inner portion of the insulator such that a rotation of the housing relative to the insulator about the axial direction is prevented, wherein a rotation of the housing relative to the enclosure is prevented.
  • 2. A base according to claim 1, wherein an interface between the insulator and the housing is arranged to separate an inner space of the housing from an annular space formed between an outside of the housing and an inside of the enclosure.
  • 3. A base according to claim 2, wherein: the inner portion of the insulator provides a first surface extending in said axial direction towards an end portion of the housing andthe end portion of the housing provides a second surface extending in said axial direction towards the inner portion of the insulator,wherein the first surface and the second surface are arranged to extend along and in contact with each other.
  • 4. A base according to claim 3, wherein the insulator comprises a partition member arranged at the inner portion of the insulator and extending in said axial direction towards an end portion of the housing.
  • 5. A base according to claim 4, wherein the housing comprises a partition member arranged at an end portion of the housing and extending in said axial direction towards the inner portion of the insulator.
  • 6. A base according to claim 5, wherein a side surface of the partition member of the insulator extends along and in contact with a side surface of the partition member of the housing.
  • 7. A base according to claim 6, wherein partition member of the insulator and the partition member of the housing forms an interface between the insulator and the housing is arranged to separate an inner space of the housing from an annular space formed between an outside of the housing and an inside of the enclosure.
  • 8. A base according to claim 5, wherein the partition member of the housing comprises a wire channel arranged to accommodate a connection wire extending from an inner space of the housing into an annular space formed between an outside of the housing and an inside of the enclosure.
  • 9. A base according to claim 8, wherein the housing comprises a connection portion arranged at the end portion of the housing and comprising a first channel being axially aligned with said at least one channel of the insulator and being arranged to receive an end portion of the electrically conducting contact pin and a connection wire extending from an inner space of the housing.
  • 10. A base according to claim 1, wherein the connection portion comprises a second channel extending through a wall of the connection portion and leading into the channel, the second channel being arranged to receive the connection wire.
  • 11. An electrical lamp comprising a base according to claim 10 and a lighting module arranged on the base and including at least one light source.
  • 12. A method of assembling a base for an electrical lamp, comprising: providing a tubular enclosure extending along an axial direction between a first and a second end portion of the enclosure, and an insulator attached to the first end portion of the enclosure such that a rotation of the insulator relative to the enclosure about the axial direction is prevented, the insulator having an inner portion facing towards an inner space of the enclosure, an outer portion facing away from said inner space and at least one channel for receiving an electrically conducting contact pin, the channel extending from the outer portion, through the insulator and leading into said inner space, andattaching a housing for accommodating electrical circuitry for operating the electric lamp to the inner portion of the insulator such that a rotation of the housing relative to the insulator about the axial direction is prevented, wherein a rotation of the housing relative to the enclosure is prevented, andattaching an end portion of the electrically conducting contact pin such that a lateral projection or recess of the end portion engage with an engagement portion of the housing such that a separation between the insulator and the housing is prevented in at least said axial direction.
CROSS-REFERENCE TO PRIOR APPLICATIONS

This application is the U.S. National Phase application under 35 U.S.C. §371 of International Application No. PCT/IB14/059375, filed on Mar. 3, 2014, which claims the benefit of U.S. Provisional Patent Application No. 61/776,002, filed on Mar. 11, 2013. These applications are hereby incorporated by reference herein.

PCT Information
Filing Document Filing Date Country Kind
PCT/IB2014/059375 3/3/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2014/140983 9/18/2014 WO A
US Referenced Citations (15)
Number Name Date Kind
7965023 Liang Jun 2011 B1
8727572 Kawagoe May 2014 B2
20020117692 Lin Aug 2002 A1
20020191416 Wesson Dec 2002 A1
20070103901 Reid May 2007 A1
20100097811 Betsuda Apr 2010 A1
20110028015 Mostoller et al. Feb 2011 A1
20120025706 Wang Feb 2012 A1
20120120661 Uemoto May 2012 A1
20120140480 Taniuchi Jun 2012 A1
20120147608 Kawagoe Jun 2012 A1
20130077285 Isogai Mar 2013 A1
20130128573 Leung May 2013 A1
20130170221 Isogai Jul 2013 A1
20150330580 Reier Nov 2015 A1
Foreign Referenced Citations (11)
Number Date Country
2906319 May 2007 CN
201449992 May 2010 CN
201812782 Apr 2011 CN
1577921 Sep 2005 EP
1833069 Sep 2007 EP
2034508 Mar 2009 EP
2149742 Feb 2010 EP
2295844 Mar 2011 EP
2914732 Oct 2008 FR
08329834 Dec 1996 JP
2013182939 Dec 2013 WO
Related Publications (1)
Number Date Country
20160018087 A1 Jan 2016 US
Provisional Applications (1)
Number Date Country
61776002 Mar 2013 US