The subject matter described and/or illustrated herein generally relates to systems and components for filling containers with gas and, more particularly, filling the containers using fill or charge stations.
Fill or charge stations may be used to fill depleted canisters with compressed gas. Numerous types of canisters exist for storing compressed gas, such as anesthesia, air, oxygen, carbon dioxide, nitrogen, compressed natural gas (CNG), and the like. For example, self-contained breathing apparatuses (SCBAs) include one or more canisters (or cylinders) and may be used in a variety of environments, such as firefighting, medicine, recreational underwater diving, and the like. Various fill stations exist for filling the canisters with the appropriate type of gas and an amount/pressure of the gas.
Fill stations may include a control system, a station housing that is configured to receive one or more of the canisters, and pneumatic components (e.g., valves, tubes, pipes, fittings, etc.) that may be stored within or may be attached to the station housing. The control system has user-activated elements for managing the fill station. Although existing fill stations are effective in supplying compressed gas to the canisters, such fill stations may have some drawbacks. For instance, assembling and maintaining the fill stations may require a substantial amount of labor and costs. When the fill station is constructed, numerous pneumatic components are interconnected through threaded fittings and/or strung together with tubing. Assembling the many pneumatic components can be time consuming. Moreover, multiple connections increase the likelihood that a leak will develop in the fill station. If a leak is detected, the operator may be required to disassemble the fill station and remove any defective components. Frequently, the defective components and/or other components from the disassembling cannot be re-used.
In addition to the above drawbacks, other problems may exist in conventional fill stations. The control system typically includes numerous user-activated elements, such as knobs, switches, buttons, and the like, that may be used to control various functions offered by the fill station. Some functions offered by fill stations include auto-cascade filling, manual cascade filling, bulk storage, and dual pressures. Different fill stations, however, may have different control system configurations and it may not be readily apparent to a new operator how to manage the fill station.
In an embodiment, a gas-filling system is provided. The gas-filling system includes a system housing having a receiving dock that is configured to receive a container for filling the container with a gas. The gas-filling system also includes a base manifold coupled to the system housing. The base manifold includes a flow-control component and a manifold body that is operably coupled to the flow-control component. The manifold body includes a fill port and first and second supply ports that open to an exterior of the base manifold. The first and second supply ports are in fluid communication with a common passage within the manifold body such that the gas flowing through the first supply port or through the second supply port flows through the common passage to the fill port. The flow-control component controls flow of the gas through the common passage. The fill port is configured to be in fluid communication with the container in the receiving dock. The gas-filling system also includes an accessory module removably coupled to the manifold body. The accessory module is connected to the first supply port and has an inlet port. The inlet port is in fluid communication with the first supply port such that the gas flowing through the inlet port flows to the first supply port.
In certain embodiments, the manifold body may include first and second body sides that face in different directions. The first body side includes the first supply port and the second body side includes the second supply port. Optionally, the manifold body may include a front side having a user-activated element for manually controlling the flow of the gas. The front side and the first side may face in opposite directions. The second side may face in a direction that is perpendicular to the directions faced by the front side and the first side. Also optionally, the first and second sides have respective side surfaces. The first and second supply ports may be substantially flush with the side surfaces of the first and second body sides, respectively.
In certain embodiments, the manifold body includes a planar side surface. The first supply port may be substantially flush with the side surface.
In certain embodiments, the flow-control component is a first flow-control component, and the gas-filling system includes a second flow-control component that controls flow of the gas through the common passage. Optionally, the first and second flow-control components are a pressure regulator and a control valve, respectively.
In certain embodiments, the gas-filling system may also include a sealing component that is secured to the base manifold. The sealing component has a component surface that blocks flow of gas through the second supply port.
In certain embodiments, the accessory module may be configured to control flow of the gas therethrough. The accessory module may include an auto-cascade module, a manual cascade module, or a bulk storage module.
Optionally, the base manifold is configured to control the gas when having a pressure in excess of 5000 pounds per square inch (psi).
In an embodiment, a base manifold is provided that includes a manifold body having a fill port and first and second supply ports that open to an exterior of the manifold body. The first and second supply ports are configured to receive gas for filling a container that is in fluid communication with the fill port. The first and second supply ports are in fluid communication with a common passage within the manifold body such that the gas flowing through the first supply port or through the second supply port flows through the common passage to the fill port. The base manifold may also include a flow-control component operably coupled to the manifold body. The flow-control component controls flow of the gas through the common passage.
In certain embodiments, the manifold body may include first and second body sides that face in different directions. The first body side includes the first supply port and the second body side includes the second supply port. Optionally, the manifold body may include a front side having a user-activated element for manually controlling the flow of the gas. The front side and the first side may face in opposite directions. The second side may face in a direction that is perpendicular to the directions faced by the front side and the first side. Also optionally, the first and second sides have respective side surfaces. The first and second supply ports may be substantially flush with the side surfaces of the first and second body sides, respectively.
In certain embodiments, the manifold body includes a planar side surface. The first supply port may be substantially flush with the side surface.
In certain embodiments, the flow-control component is a first flow-control component, and the gas-filling system includes a second flow-control component that controls flow of the gas through the common passage. Optionally, the first and second flow-control components are a pressure regulator and a control valve, respectively.
Optionally, the base manifold is configured to control the gas when having a pressure in excess of 5000 pounds per square inch (psi).
The foregoing summary, as well as the following detailed description of certain embodiments will be better understood when read in conjunction with the appended drawings. As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural of the elements or steps, unless such exclusion is explicitly stated. Further, references to “one embodiment” or “an exemplary embodiment” are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, embodiments “comprising” or “having” an element or a plurality of elements having a particular property may include additional elements not having that property.
The charge station 102 includes a system housing 108, one or more filling ports 110, and a control system 112. The system housing 108 includes one or more receiving docks 114 that receive the canister 106. Each filling port 110 is positioned relative to one of the receiving docks 114 so that the filling port 110 may be fluidly connected to the corresponding canister 106 when the canister 106 is disposed within the corresponding receiving dock 114. The filling ports 110 are fluidly connected to the gas supply 104 through a pneumatic circuit, which may include a plurality of interconnected passages that are in fluid communication with the gas supply 104. In the illustrated embodiment, the gas supply 104 includes a plurality of storage containers 105. Each storage container 105 may represent a single container (e.g., canister, cylinder, tank, and the like) or may represent a bank of such containers. For example, each bank may include four large canisters. The storage containers 105 are typically larger than the canisters 106. As shown, any number of storage containers 105 may be fluidly connected to the charge station 102. In the illustrated embodiment, the storage containers 105 are connected to the charge station 102 through multiple lines 122. In other embodiments, the storage containers 105 may be fluidly connected in one or more shared lines.
Each filling port 110 is configured to be fluidly connected to an inlet 116 of the canister 106 for filling the canister 106 with gas from the gas supply 104. Specifically, when a canister 106 is desired to be filled, the canister 106 is mounted onto one of the receiving docks 114 and the inlet 116 of the canister 106 is fluidly connected to the filling port 110. Although two filling ports 110 and two receiving docks 19 are shown, the charge station 102 may include any number of filling ports 110 and any number of receiving docks 114, for simultaneously filling any number of canisters 106. In the exemplary embodiment, the gas supply 104 is not part of the charge station 102. For example, the gas supply 104 may not be held by or in the system housing 108 of the charge station 102. Alternatively, the gas supply 104 may be part of the charge station 102.
The control system 112 controls filling of the canister 106 with gas from the gas supply 104. For instance, the control system 112 may regulate the flow of gas into the canister(s) 106. The control system 112 may include a control panel 115 that includes a plurality of user-activated elements 124, such as knobs, switches, levers, buttons, and the like. The user-activated elements 124 may be physical or tangible components capable of being touched and moved by an individual. In other embodiments, the user-activated elements 124 may be icons displayed on a touch-screen. The touch-screen may include the hardware and/or software for identifying when a user has contacted the touch-screen and identifying where the contact was made. Although not shown, the control system 112 may also include logic-based circuitry (e.g., processor) that is configured to automatically control some or all portions of the filling process and/or configured to receive instructions from the individual for controlling the filling process. The instructions may be provided by the individual by pressing or moving one of the user-activated elements 124. For example, the individual and/or the logic-based circuitry may activate the filling process, deactivate the filling process, select parameters of the filling process (such as, but not limited to, selecting a pressure to fill the canister 106 with and/or the like), and/or the like.
The control system 112 includes a plurality of stacked manifold modules 130 and 132. Each of the manifold modules 130, 132 is configured to receive gas and direct gas in a predetermined manner from one or more inlet ports to one or more outlet ports. In some cases, the manifold modules may control or manage the flow rate and/or combine one or more of the gases together as the gases flow through the corresponding manifold module.
In the illustrated embodiment, the manifold module 130 is a base manifold 130 and the manifold module 132 is an accessory module 132. The accessory module 132 and the base manifold 130 are removably coupled to each other. As used herein, the term “removably coupled” means that a first component may be readily separable from a second component without destroying either of the first and second components. Components are readily separable when the two components may be separated from each other without undue effort or a significant amount of time spent in separating the two components. For example, the components may be coupled to one another using fasteners, such as screws, latches, buckles, and the like, where a technician may uncouple the two components using a tool or the technician's hands. In addition, removably coupled components may be coupled without a fastener, such as by forming an interference or snap fit with respect to each other. It is understood that a combination of different methods may be used to removably couple to components. For example, the two components may initially be coupled through an interference fit and then a latch or other fastener may further secure the components together.
The base manifold 130 and the accessory module 132 may have a stacked relationship. In the illustrated embodiment, the base and accessory modules 130, 132 are vertically stacked such that gravity pulls the accessory module 132 toward the base manifold 130. In other embodiments, the base manifold 130 and the accessory module 132 may be stacked such that the base manifold 130 is above the accessory module 132 or such that neither is stacked on top of the other. In such embodiments in which neither is stacked on top of the other, the base manifold 130 and the accessory module 132 may be horizontally stacked and removably coupled to each other side-by-side. In an exemplary embodiment, the base manifold 130 is removably coupled to a remainder of the charge station 102. For example, the base manifold 130 may be removably coupled to the system housing 108.
The gas-filling system 100 may include other components that are not shown, such as other compressors or air-purification systems. Embodiments may achieve requirements established by government regulations or other standards. For example, the compressed gas may be Grade D or higher, as specified in the Compressed Gas Association publication CGA G-7.1 entitled Commodity Specification for Air, available from the Compressed Gas Association, Inc., 1725 Jefferson Davis Hwy., Suite 1004, Arlington, Va. 22202. In addition to meeting the requirements of Grade D or higher, the compress may be dry to a dew point of −65° F. (−54° C.) or less.
The base manifold 200 includes a manifold body 202 and a plurality of flow-control components 204-208 operably coupled to the manifold body 202. The manifold body 202 includes a plurality of passages, which are described in greater detail below, and a plurality of ports 220-228 that open to the exterior of the base manifold 200 or the manifold body 202. In other words, the ports 220-228 may be accessed from the exterior of the base manifold 200 or the manifold body 202. Each of the flow-control components 204-208 is configured to regulate or control, in some manner, the flow of gas through the manifold body 202. For example, each of the flow-control components 204-208 may be configured to change the flow rate and/or pressure of the gas within the manifold body 202. In the illustrated embodiment, the flow-control components 204-208 include a pressure regulator 204, a manual control valve 205, a relief valve 206, an automatic control valve 207, and an auxiliary regulator 208. In some cases, the flow-control components 204-208 may be operably coupled to a user-activated element. For example, the manual control valve 205 is operably coupled to a rotatable knob 291 that may be activated (e.g., rotated) by the operator. However, one or more of the flow-control components 204-208 may be modified or omitted in other embodiments and other flow-control components may be added in other embodiments. The flow-control components 204-208 may be operable at separate times or one or more of the flow-control components 204-208 may be operable concurrently. Unlike known gas-filling systems, the flow-control components 204-208 have are secured to the manifold body 202 and have fixed positions with respect to each other.
The manifold body 202 has a plurality of body sides 211-216, including a front body side 211, a back or rear body side 213, lateral body sides 212, 214, a top body side 215, and a bottom or mounting body side 216. The front body side 211 includes a control area 292 and is presented to a user or operator of the base manifold 200 or the gas-filling system (not shown). The control area 292 includes the user-activated elements (e.g., knobs), such as the knob 291, that are accessible by the user. The front and back body sides 211, 213 face in opposite directions. The bottom and top body sides 216, 215 face in opposite directions, and the lateral body sides 212, 214 face in opposite directions. In the illustrated embodiment, the manifold body 202 is shaped as a rectangular block. Alternatively, the manifold body 202 may have other shapes. For example, one or more of the sides 211-216 may have a curved contour. The manifold body 202 may also have additional or fewer sides than shown in
The top body side 215 includes supply ports 222-224, and the back body side 213 includes supply ports 225-227. Each of the supply ports 222-224 may be in fluid communication with a supply passage 240 (shown in
In some embodiments, only one of the supply ports 222-224 provides a continuous line to the common passage 244 (
The supply ports 222-227 may provide quick-connect type interfaces. For example, each of the supply ports 222-227 may be shaped to receive a projection (e.g., nozzle) and have an elastomer seal, such as an o-ring, that seals the connection when the projection is inserted into the corresponding supply port. For example, each of the accessory modules 300, 330, 360 may have nozzles that are configured to be inserted into one or more of the supply ports 222-227.
As shown in
The base port 304 is configured to connect to a supply port of the base manifold, such as the supply port 227 (
As shown in
The auto-cascade module 330 is configured to automatically switch the supply of the gas that is filling the canister (not shown). For example, the auto-cascade module 330 includes one or more flow-control components (not shown) that determine a pressure of the gas in the storage containers fluidly connected to the different storage ports. By way of example, the storage containers may include Container A, Container B, Container C, and Container D. The gas pressure of each container may increase from Container A to Container D such that Container A has the lowest pressure of all the storage containers and Container D has the highest pressure of all the storage containers. The auto-cascade module 330 identifies that Container A has the lowest pressure and, as such, opens the passage to Container A and closes the passages of Containers B-D so that Container A fills the canister. After the pressure in Container A becomes equal to a designated pressure, such as the pressure of the canister, the auto-cascade module 330 automatically closes the valve to Container A and opens the valve to the container having the next highest pressure (or the second lowest pressure), which is Container B in this example. The auto-cascade module 330 continues to open and close the valves until all of the canisters have been filled or all of the storage containers are depleted.
As shown in
As shown in
In
Accordingly, embodiments set forth herein include gas-filling systems and base manifolds. At least one technical effect includes the ability to use a common base manifold that is attachable to different accessory modules. The common base manifold includes a pneumatic circuit that is capable of directing different gas inputs through different supply ports to a common fill port. Also, the user or operator may be familiar with the control area of the common base manifold regardless of the accessory module attached to the base manifold. Another technical effect may include the modular assembling of a control system. For example, the base manifold may be stacked with respect to one or more accessory modules. The accessory module may be removably coupled to the base manifold such that it is easier (compared to more complicated gas-filling systems) to add and remove an accessory module to the desired system. Another technical effect may include the capability of attaching multiple flow-control components simultaneously to a base manifold. For example, the manual cascade module may include multiple control valves. Instead of attaching each control valve individually to the control system, all of the control valves are secured to the module body and may be simultaneously attached to the base manifold. It is understood that embodiments set forth herein are not required to achieve each and every technical effect. In some cases, embodiments may achieve only one.
While various spatial and directional terms, such as top, bottom, front, back lower, mid, lateral, horizontal, vertical, and the like may be used to describe embodiments of the present disclosure, it is understood that such terms are merely used with respect to the orientations shown in the drawings. The orientations may be inverted, rotated, or otherwise changed, such that an upper portion is a lower portion, and vice versa, horizontal becomes vertical, and the like.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the various embodiments of the disclosure without departing from their scope. While the dimensions and types of materials described herein are intended to define the parameters of the various embodiments of the disclosure, the embodiments are by no means limiting and are exemplary embodiments. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the various embodiments of the disclosure should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. §112(f), unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
This written description uses examples to disclose the various embodiments of the disclosure, including the best mode, and also to enable any person skilled in the art to practice the various embodiments of the disclosure, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the various embodiments of the disclosure is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if the examples have structural elements that do not differ from the literal language of the claims, or if the examples include equivalent structural elements with insubstantial differences from the literal languages of the claims.
This application is a continuation of International Patent Application No. PCT/US2014/023981 filed Mar. 12, 2014, which claims the benefit of U.S. Provisional Patent Application No. 61/779,204 filed Mar. 13, 2013, the contents of both of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61779204 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2014/023981 | Mar 2014 | US |
Child | 14852882 | US |