Various embodiments relate to a base member for a door assembly, such as a sliding door or a pivoting door in a shower door assembly.
Shower or bathing enclosures often have glass doors that move or slide to enclose the bathing area and keep liquid water in the bathing area. The sliding doors move or slide on or over a frame system that has a base member, or lower frame member. Liquid water may escape the enclosure underneath the door, for example, in a region between the doors and the base member or shower sill into an otherwise dry area outside the enclosure.
According to an embodiment, a shower door assembly is provided with a door panel with an upper edge portion and a lower edge portion. The door panel has an inner surface to face a bathing enclosure and an outer surface opposed thereto. The assembly has a base member with an upper surface positioned between an inner side and an outer side. The inner side of the base member at least partially defines a recess. The base member is positioned such that the inner side of the base member is between the inner surface of the door panel and the outer side of the base member. The inner side of the base member is shaped to receive liquid from the bathing enclosure via the lower edge portion of the door panel and divert liquid back to the bathing enclosure.
According to another embodiment, a base for a moveable door is provided with a substrate extending along a longitudinal axis. The substrate defines an upper surface and an opposed lower surface, with the upper and lower surfaces extending between first and second longitudinal edge regions of the substrate. The base has a first leg section extending outwardly from the lower surface of the substrate and extending longitudinally, with the first leg section being offset from the first longitudinal edge region. The first leg section and the first longitudinal edge region of the substrate cooperate to define a liquid diverter extending longitudinally to redirect flow away from the upper surface of the substrate.
According to yet another embodiment, a lower frame member for moveable doors is provided with a base extending along a longitudinal axis. The base has an upper surface positioned between a first inner side and a second outer side. At least a section of the upper surface of the base is substantially planar. The first inner side of the base defines a diverter surface having a tangent line oriented at an acute angle relative to the upper surface. The diverter surface is shaped to receive liquid from a bathing enclosure via a lower edge portion of a door panel and divert liquid back to the bathing enclosure.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely examples of the invention and may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
The walls 12 and the threshold 16 cooperate to provide the entrance, opening or doorway to the bathing enclosure 10 for gaining access to or leaving the bathing enclosure 10. A door assembly 18 fits within and extends across at least a portion of the opening. The door assembly 18 includes one or more doors or door panels 20. In the example shown, two sliding door panels 20 are provided. In other embodiments, a greater or fewer number of door panels 20 may be used with the bathing enclosure 10. Furthermore, the one or more door panels 20 may be pivotally mounted for movement relative to the bathing enclosure 10, and/or one or more door panels may be fixed to provide another wall section of the enclosure.
The door panels 20 may be framed or frameless glass panels, may be made from a plastic panel, or from another material as is known in the art. Each door panel 20 has an upper edge portion 22 and a lower edge portion 24. Each door panel 20 also has an inner surface or inner side 26 to face the bathing enclosure 10 and an outer surface or outer side 28 opposed thereto and facing away from the bathing enclosure 10. The door panels 20 may additionally include one or more towel bars or handles 30 mounted to the door.
The door panels 20 are supported by frame members of the door assembly 18. Door assembly frame members may be separate from and installed into an existing bathing enclosure, or at least some of the frame members may be integrally formed with components of the bathing enclosure, e.g. with a one piece shower stall or the like. Frame members of the door assembly 18 include a base member 32 that extends across and is mounted to the threshold 16 of the bathing enclosure 10. The door assembly 18 may also include additional frame members such as an upper track or upper frame member 34, and side frame members 36. An optional sealing member 38 may be provided to reduce or prevent liquid flow between adjacent door panels 20. In various examples, at least one of the upper frame member 34, side frame members 36, and sealing member 38 may be omitted from the door assembly 18 based on the frame members needed to support pivoting or sliding door panels in a specific bathing enclosure 10 configuration.
The upper frame member 34 may be mounted to two opposed side walls 12 or a ceiling or top wall (not shown). The upper member 34 supports the door panel 20 for movement of the door panel 20 relative to the upper member 34 and base member 32. In the present example, the door panels 20 are sliding door panels and are hung on the upper member 34. A mechanism 40, such as a roller system or the like, may be used to connect the upper portions 22 of the door panels 20 to the upper frame member 34 and allow the sliding doors to move along a longitudinal axis 42 of the door assembly 18. The upper track 34 may have a pair of guide rails, one for each mechanism 40 on each door panel 20 such that the door panels 20 are offset from one another along a transverse or lateral axis 44. This also allows one door panel 20 to slide behind the other door panel 20, and vice versa, to open and close the opening to the enclosure 10. In the present embodiment, the second sliding door panel is positioned to be parallel with the first sliding door panel, and the first sliding door panel is positioned between the second sliding door panel and the bathing enclosure 10. In other embodiments, a single sliding door panel 20 may be provided that slides over an adjacent wall section in an open position, for example, one of the door panels 20 as shown may be fixed in place while the other is movable. The upper frame member is spaced apart from the base member along a third axis 46, such as a vertical axis, that is orthogonal to the longitudinal and transverse axes 42, 44.
The side frame members 36 may be used to provide additional structural support for the upper frame member 34 and the door panels 20. The frame members 36 may cooperate with the upper and base frames 34, 32 to act as a surround for the door panels 20 and provide a finished appearance for the assembly 18. The side frame members 36 and/or sealing member 38 may additionally provide seals to prevent liquid within the bathing enclosure from passing through the door assembly and into the outside environment.
Note that for a door assembly 18 having pivoting doors 20, the doors may be pivotally mounted on the side frame members 36, and the upper frame member may be optional.
A guide member 48 may be positioned adjacent to, be connected to, or extends from the base member 32. In other examples, the door assembly 18 may be provided without a guide member 48. The guide member 48 has a structure that is formed to interact with the door panels 20 to guide the door panels 20 along a desired path, or prevent motion of the door panels in a specified direction. In an example, the guide member 48 is used with sliding door panels and defines a channel 50 for each door panel 20. In the present example, the guide member 48 has first and second channels 50 associated with the first and second door panels 20, and the first and second channels 50 may be parallel to one another and extend longitudinally. Each channel 50 receives a corresponding lower edge portion 24 of an associated door panel 20 to allow longitudinal movement and restrict transverse or lateral movement of the lower edge portion and door panel 20. In other examples, the guide member 48 may provide a stop for a pivoting door panel, or otherwise guide and restrict motion of one or more of the door panels.
The door panel 20 may be formed from glass, plastic, or another material. At least the inner surface 26 of the door panel 20 may be treated or coated such that liquids resist adhering to the surface and run off easily to prevent water spotting, soap or other bathing product build-up, and the like. In other examples, the door panel 20 may be uncoated or untreated. When a stream of liquid 62, for example from a shower head 60, contacts the inner surface 26 of the door panel 20, the stream of liquid 62 forms a contact patch or region 64 and then tends to funnel into a narrow stream as it travels with gravity down the inner surface 26, and the treatment or coating on the door panel 20 may further enhance this liquid flow. The liquid flow may develop a funneling, narrowing, or constricted flow path 66 over the inner surface 26 of the door panel 20 based on the strong surface tension and/or internal molecular cohesion of the liquid, e.g. liquid water, the effects of which may be enhanced by being in contact with a hydrophobic surface such as the coating or treatment on the door panel.
The funneling liquid 66 may form a focal point 68 as it flows, after which a large localized flow or stream 70 of liquid water occurs on and travels down the inner surface 26 of the door panel 20. The stream 70 of liquid below the focal point 68 may maintain a generally constant width on the panel 20 or may widen slightly as it travels down the remainder of the door panel. In one example, the widest portion of the funnel 66, or impact area 64, of the liquid stream onto the inner surface 26 of the door panel, is approximately 7-8 inches, and the stream at the focal point 68 and in the stream 70 below is 1-2 inches, with a flow rate of 2.5 gallons per minute.
The stream 66, 70 of liquid may experience a rapid laminar flow as it moves down the inner surface 26 of the door panel 20, moving much faster than the individual drops for beads of liquid impacting and running down the inner surface of the door panel away from the impact region and stream. The stream 70 of liquid runs downward and then changes flow direction at the lower edge 24 of the door panel 20 as the liquid stream 70 is drawn to follow the lower edge 24 of the door panel based on adhesion of the stream with the changing shape of the surface of the panel 20. The stream 70 of liquid is therefore diverted to flow towards the outer surface 28 of the door panel, as indicated by arrow 72, and away from the bathing enclosure 10. For a door panel 20 installed in a bathing enclosure 10 without any base member 32, or for a door panel installed in a bathing enclosure with a conventional base member having a vertical or convex inner side facing the enclosure 10, the stream 70 of liquid may be further directed and form a spray 74 of liquid out of the bathing enclosure 10 as the stream of liquid has a sufficient momentum to overcome gravitational forces. This 74 spray may have a significant flow rate, and may be similar to, or on the order of, the flow rate of the stream 70.
The base member or lower frame member 100 may be formed from a metal, such as aluminum or an aluminum alloy, or another suitable material, including plastic. In various examples, the base member 100 is formed using an extrusion process, a molding process, or the like. The base member 100 may have a uniform cross sectional shape and size along the length of the base member 100.
The base member 100 has a substrate or a base 102 that extends along a longitudinal axis 42. The substrate 102 defines an upper surface 104. The upper surface 104 is positioned between or extends between a first longitudinal edge region 106 on a first, inner side 108 of the base 102 and a second longitudinal edge region 110 on a second, outer side 112 of the base 102. At least a transverse section of the upper surface 104 may be a planar surface, or may be a substantially planar surface, for example, having a radius of curvature several times greater than or at least an order of magnitude greater than a transverse width of the surface 104. The upper surface 104 may be sloped or angled towards the bathing enclosure 10 to provide drainage back towards the enclosure, for example, by twenty degrees or less, fifteen degrees or less, ten degrees or less of five degrees or less in various embodiments. The guide member 48 of
The substrate or base 102 also defines a lower surface 114. The lower surface 114 also extends between the first longitudinal edge region 106 on the first, inner side 108 of the base 102 and the second longitudinal edge region 110 on the second, outer side 112 of the base 102.
The base member 100 may have a flange or an edge section 116 extending longitudinally adjacent to or directly adjacent to the second longitudinal edge region 110 of the substrate 102. The flange 116 extends outwardly from the upper surface 104 of the substrate 102 and towards the upper member or towards an upper edge region of a door panel when installed in a bathing enclosure. The flange or edge section 116 may form at least a portion of the outer side 112 of the base member. The upper surface 104 of the base member may be further defined as a substantially planar surface extending between the flange 116 and the inner side 108. In other examples, the base member 100 is provided without a flange 116 such that the upper surface 104 extends between the inner side 108 and the outer side 112 of the base member 100.
In the embodiment shown, the base member 100 has at least one leg section extending outwardly from the lower surface of the substrate, and extending longitudinally along the base member 100. In other examples, the function of the leg sections may be included in the structure of the substrate, for example, as an increasing or decreasing thickness of the substrate in a wedge or other similar shape. For example, the lower surface of the substrate 102 and base member 100 may extend between the outer side 112 and the diverter region as described below on the inner side 108 to support the base member 100 on an underlying surface and provide a similar function as a leg section.
In the example shown, the base member 100 has a first leg section 120 and a second leg section 122. The first leg section 120 extends outwardly from the lower surface 114 of the substrate 102, and extends longitudinally along the substrate 102. The first leg section 120 is offset transversely from the first longitudinal edge region 106 by a distance A. In one example, the first longitudinal edge region and the first leg section cooperate to form the first, inner side of the base member 100.
The second leg section 122 extends outwardly from the lower surface 114 of the substrate 102 and extends longitudinally along the substrate. The second leg section 122 is adjacent to or directly adjacent to the second longitudinal edge region 110 of the substrate 102. In one example, the flange 116 and the second leg section 122 cooperate to form the second, outer side 112 of the base member 100. In a further example, the flange 116 and the second leg section 122 are directly aligned with one another as shown in
In another example, as shown in
In a further example, the base member 100 has a third leg section 124. The third leg section 124 extends outwardly from the lower surface 114 of the substrate 102 and extends longitudinally along the substrate. The third leg section 124 is positioned between the first and second leg sections 120, 122. In one example, the third leg section 124 may be provided as a caulk locating feature, and/or as an additional support structure for installation of the base member 100 on underlying thresholds 16 having various widths. In further examples, the base member 100 may be provided with more than three leg sections. Additionally, various leg sections of the base member 100 may extend the length of the base member, or only partially along the length of the base member.
The first inner side 108 of the base member 100 defines a diverter surface, liquid diverter, or undercut region 130. The inner side 108 defines a recess to form the diverter 130, or at least partially defines the recessed area in cooperation with the underlying threshold 16 or underlying surface when installed to form the diverter 130. The inner side 108 is shaped to receive liquid from the bathing enclosure 10 via the lower edge portion 24 of the door panel 20 and divert liquid back to the bathing enclosure 10 to reduce or prevent the flow of liquid to the outside environment 17. The diverter 130 extends longitudinally along the inner side 108 of the base member 100. The diverter 130 surface is shaped to receive the stream 70 of liquid from the bathing enclosure 10 that is flowing around the lower edge portion of the door panel as shown by arrow 72 in
In one example, the first longitudinal edge region 106 and the first leg section 120 cooperate to define the liquid diverter 130 that extends longitudinally and redirects flow away from the upper surface 104 of the substrate. The under surface of the first longitudinal edge region 106 and a surface of the first leg section 120 may be shaped to define the diverter 130. The first leg section 120 may additionally be offset, by distance A, from the first edge region 106 to provide a predetermined transverse depth for the diverter 130.
In a further example, the surface of the diverter 130 has a tangent line 140 that is oriented at an acute angle α relative to the tangent line 142 of the upper surface 104 or plane substantially defining the upper surface 104, where the acute angle extends through the structure of the substrate 102 as shown.
The diverter 130 surface may be formed as a concave shape or surface that extends longitudinally on inner side 108 of the base member. The concave shape or surface may be defined by at least one of the first leg section 120 and the first longitudinal edge region 106. The concave surface may have a constant radius of curvature along the length of the base member 100. In other examples, the concave surface may be provided by a varying radius of curvature or another spline function. The diverter 130 shape in
The diverter 130 may be provided on the inner side of the base member 100 with various concave or undercut shapes, for example, varying diagonal cuts, radii and concave-positive curves, and the like.
In
The inner side 108 of the base member 100 in
Referring back to
Referring back to
As the size of the undercut region 130 increases, the capacity of the diverter 130 to redirect liquid to the bathing area 10 may correspondingly increase. A limit to the size of the diverter 130 may be reached based on manufacturability limitations. The diverter 130 may additionally reduce noise associated with the flowing liquid, for example, by reducing the sound created by bubbling or splashing liquid water to a softer hissing noise.
A shower door assembly 18 may be installed into a bathing area or enclosure 10 as follows. A first door panel 20 is installed in an opening to a bathing area 10 with a first side 26 of the first door panel facing the bathing area, for example, by installing the first door panel onto an upper track 34 or other frame member. A second door panel 20 may additionally by installed in the opening of the bathing enclosure 10 with a first side 26 of the second door panel facing the bathing area, and the first door panel positioned between the second door panel and the bathing area, for example, by installing the second door panel 20 onto the upper track 34 or other frame member.
A base 32, 100 is installed in the opening to the bathing area 10, for example, on a threshold 16 of the opening. The base is installed such that the first longitudinal edge region 106 of the substrate 102 is positioned between the bathing area 10 and the first leg section 120. The base 100 is installed and positioned such that the first door panel 170 is positioned between the second longitudinal edge region 110 of the substrate and the bathing area 10. The base 100 is installed and positioned such that the first longitudinal edge region 106 of the substrate is positioned between the first side 26 of the first door panel 170 and the first side 26 of the second door panel 172. Alternatively, the base 100 is installed and positioned such that the first longitudinal edge region 106 of the substrate is positioned between the first side 26 of one of the door panels 20 and the outside environment 17.
A guide member 48 may be installed onto or near the upper surface 104 of the substrate to restrict and guide the motion of the door panels 20. In one example, a bottom edge 24 of the first door panel is received within a first channel 50 defined by the guide member to allow longitudinal movement and restrict transverse movement of the first door panel 20, 170.
While various embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3384998 | Abramson | May 1968 | A |
3808610 | Mortensen | May 1974 | A |
4546506 | Houle | Oct 1985 | A |
4569092 | Baus | Feb 1986 | A |
4769949 | Glendowne | Sep 1988 | A |
4829608 | Stevens | May 1989 | A |
4868935 | Van Weelden | Sep 1989 | A |
4878530 | Jean | Nov 1989 | A |
5023965 | Reichel | Jun 1991 | A |
5351345 | Sills | Oct 1994 | A |
5675936 | Kurth | Oct 1997 | A |
5690157 | Chen | Nov 1997 | A |
5852837 | Husting | Dec 1998 | A |
6148451 | DeBraal et al. | Nov 2000 | A |
6802161 | Robinson | Oct 2004 | B1 |
6826867 | McDonald et al. | Dec 2004 | B1 |
7607199 | Sprague | Oct 2009 | B2 |
8060955 | Johnson et al. | Nov 2011 | B2 |
8161582 | Hatrick-Smith | Apr 2012 | B2 |
8341774 | Norris | Jan 2013 | B1 |
8707475 | Johnson et al. | Apr 2014 | B2 |
9364121 | Sprague | Jun 2016 | B2 |
9743809 | Shaukat | Aug 2017 | B1 |
20140068853 | Opwald | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
4008160 | Sep 1991 | DE |
H0913715 | Jan 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20180049598 A1 | Feb 2018 | US |