The invention concerns a base part for a medication delivery device. The base part is during use fastened to a patient's skin and connected to a separate cannula part which cannula part is positioned at least partly subcutaneous. The base part is also connected to a sensor unit which can detect one or more components e.g. glucose content in the patients blood.
The document US 2009/0118592 discloses (FIG. 28C, example 4, page 14) a medical drug delivery device comprising a transcutaneous device unit and a reservoir unit in combination with a Blood Glucose Meter (820), a Continuous blood Glucose Meter (816) and a wireless remote control unit (830) comprising an infusion calculator which parts together form a system (802). A transcutaneous sensor (817) can be formed as part of the transcutaneous device unit and the sensor electronics adapted to process and/or transmit the sensor data is formed as part of the reservoir unit. The sensor can be replaced together with the transcutaneous device or independently thereof.
The document US 2008/0200897 discloses an infusion device an integrated infusion device and analyte monitoring system. This document provides several methods and systems for modular combination of medication delivery and physiological condition monitoring.
Neither of the devices allows for subcutaneously positioned units such as cannulas and sensors can be pointed in different directions when positioned on one single patch or mounting surface and neither of the devices allows for retraction of a cannula without removing the base part or patch which the cannula(s) are part of.
US 2004/0162521 discloses a needle device comprising a housing, a base portion having a mounting surface adapted for application to the skin of a patient and a plurality of needles. Each needle comprises a distal pointed end adapted to penetrate the skin of a patient and each needle has a first position in which the distal end is retracted relative to the mounting surface and a second position in which the distal end projects from the mounting surface. A needle device according to this document being mounted on the patients has to have a height at least corresponding to the length of a needle as the needles before and after use are retracted in their full length perpendicular to the mounting surface, also the cannulas according to the shown embodiments have to be hard, self-penetrating cannulas provided with a side inlet opening.
US 2008/0004515 discloses an integrated analyte monitoring system combined with an on-body patch pump provided with multiple cannulas and a sensor combination. In accordance with an embodiment of this document a first cannula can be configured for transcutaneous delivery of a medication at a first infusion site for an initial time period of e.g. three to four days. Thereafter the first cannula is retracted from the infusion site under the control and operation of one or more controller and infusion management units. After retraction of the first cannula, a second cannula can be inserted at a second infusion site. The second cannula may be inserted automatically by using an insertion device such as an insertion gun configured to couple to the second cannula e.g. including a spring bias driven insertion mechanism. The second cannula (290) is mounted on a base part separate from the patch pump (210) in connection with which the first cannula is mounted.
The current invention provides an assembly comprising an insertion device for subcutaneously introduction of a penetrating member, where a “penetrating member” is understood to be a needle, a cannula, a sensor or the like. The penetrating member is normally prior and during insertion kept in a position where it is not visible to the patient and where it can not get in contact with the user or the patient before it is actually inserted.
The object of the invention is to provide a base part to be combined with a detachable reservoir/delivery part, the base part comprising fastening means which fastening means releasably attach the reservoir/delivery part to the base part during use and a first fluid path or means corresponding to a first fluid path from a reservoir permitting a flow of fluid between the reservoir/delivery part and the base part when the reservoir/delivery part is attached to the base part, the first fluid path comprises means for interrupting the fluid flow when the detachable reservoir/delivery part is not attached to the base part and opening the fluid path when the delivery part is attached to the base part, the base part also comprises a lower mounting surface and one or more openings through which two or more subcutaneous units in the form of at least one cannula and at least one sensor part or at least two cannulas extend, a second fluid path permitting a flow of fluid from the outlet of the first fluid path to an inlet of a subcutaneously positioned cannula during use, and a signal path is provided from the reservoir/delivery part to a sensor contact part, wherein the second fluid path is in fluid connection with an end opening of a subcutaneously positioned cannula during use.
The end opening connecting to the second flow path being an end opening which is placed above the patient's skin during use. The construction of the base part according to claim 1 allows for the use of soft cannulas although it does not exclude the use of hard cannulas. In some of the illustrating embodiments hard cannulas are used and in some of the embodiments soft cannulas which normally are inserted with an insertion needle are used. The flat base part with openings allows for the use of a separate inserter which can be removed from the base part after mounting of the subcutaneously position units. Secondly, it is difficult to provide a fluid path by a side opening in a soft unsupported cannula i.e. no rigid walls supports the circumference of the soft cannula as the soft walls might move in a longitudinal direction or might give in to fluid pressure which might reduce inner diameter of the cannula.
Definition of end opening: a cannula consists of an elongated tube-shaped piece made by either a soft and flexible material such as elastomer or a hard and rigid material such as metal or hard plastic and this elongated tube-shaped piece can have two end openings: an inlet opening and an outlet opening. If the cannula is of the sprinkler type it might have one or more side outlet openings as well. If the cannula at one end is provided with a part having an extended diameter such as a hub which e.g. is normally used when fastening a moulded cannula inside a holding body of a hard material, this hub is not considered to the part of the elongated tube-shaped piece.
According to an embodiment of the base part the first fluid path can be formed by a connector needle either being part of the base part or a connector needle being part of the reservoir/delivery part and a corresponding entrance for the connector needle on the other part which entrance is normally protected by a protective sealing membrane.
The first fluid path is interrupted when the delivery part is detached and moved away from the base part as at least a sealing membrane covering the outlet of the reservoir is self-closing and upon retraction of the connector needle from the membrane, the membrane will prevent fluid from flowing from the reservoir to the second fluid path. This of cause is only the case when the same reservoir is mounted several times. Often, the protective membranes are covering both the outlet of the reservoir as well as the inlet of the second fluid path of the base part.
According to an embodiment of the base part the second fluid path includes one surface opening surrounded with a gasket having a central opening through which fluid can flow, and a second surface opening surrounded with a hard smooth surface. The second fluid path can comprise a movable part which movable part has at least two different positions each position providing a separate second fluid path connecting the first fluid path to a given cannula.
According to an embodiment of the base part the delivery part has more than one fastening position relative to the base part and each position forms a second fluid path different from all others.
According to an embodiment of the base part one or more of the cannula parts comprise a body of a hard and rigid material having a fluid inlet and a fluid outlet, the fluid outlet from the body corresponding to the inlet end of a cannula. The cannula of the cannula part can e.g. be made of a soft and flexible material such as an elastomer and the hard body of the cannula part can be provided with a top opening.
When the cannula is soft and flexible it is necessary to insert the cannula with an insertion needle which normally passes through a top opening in the hard body i.e. an opening placed opposite and in extension of the tube-shaped cannula which top opening is protected by a septum i.e. a self-closing membrane. According to this embodiment the base part can comprise attachment member for an inserter in connection with each opening and position and fastening means adapted for fastening of each cannula or cannula part or sensor part which is inserted after mounting the base part on the patient's skin. E.g. one cannula and one sensor is inserted e.g. simultaneously through the opening(s) in and attached to the base part on day 0, normally at least one inserter is normally attached to the base part during the manufacturing procedure and when the user receives a device including the base part, the device comprises both a base part comprising a mounting surface and an inserter releasably attached to the base part in a ready-to-use position. The attachment member for the inserter allows for the user to remove the insertion needle e.g. together with remains of inserter after inserting the cannula and/or sensor. Therefore no penetrating needle is necessarily mounted during use, instead only soft cannulas or soft sensor parts are mounted subcutaneously during use, this is more comfortable for the patient.
The current invention might provide an assembly comprising an insertion device for subcutaneously introduction of a penetrating member, where a “penetrating member” is understood to be a needle, a cannula, a sensor or the like. The penetrating member is normally prior and during insertion kept in a position where it is not visible to the patient and where it can not get in contact with the user or the patient before it is actually inserted.
The object of the invention is to provide a base part comprising or being connectable to at least one cannula to be placed subcutaneously which base part also comprises
According to one embodiment the at least two cannulas are placed with a distance I1 of at least 10 mm between each other, normally with a distance I1 of at least 20 mm between each other.
According to an embodiment the base part comprises a connection part being a part of the base part which connection part comprises a fluid connection having at least one inlet opening and at least one outlet opening where the inlet opening forms a fluid connection to a medication supply or the like and the second opening forms a fluid connection to a cannula part. The connection part is stationary relative to the mounting surface and the base part further comprises a movable part which movable part can move relative to the connection part and the mounting surface comprises at least two separated fluid paths where one fluid path guides fluid to a first cannula and the second fluid path guides fluid to a second cannula. The base part can comprise guiding means where each guiding means guides a subcutaneously placed part to its fully forward i.e. subcutaneous position. Further, the guiding means can direct each subcutaneous positioned part to cut through the patients skin in a direction which deviates 15-85° from a direction parallel to the patients skin surface at the area where the mounting surface is attached during use.
According to one embodiment the at least one of the cannula parts is a separate part which has to be inserted and fastened to the base part before the base part can transfer fluid to the patient.
According to one embodiment the sensor part is a separate unit which has to be inserted and fastened to the base part before it is possible to establish a measurement of the desired parameter.
According to one embodiment the sensor part measures glucose or an analyte corresponding to glucose and the medication delivered through the at least one cannula is insulin.
According to another aspect of the invention, the invention relates to a system comprising a base part according any of the preceding claims and a delivery device which can be attached to and worn by the patient together with the base part which delivery device comprises a reservoir containing fluid, pumping means for transferring fluid from the reservoir to the base part, and a power source which power source provides power to both the pumping means and to the sensor of the base part.
Another object of the invention is to provide a base part being connectable to a separate cannula part and comprises means for receiving a separate cannula part, the base part comprising
“Parallel” or “essentially parallel” as used herein refers to a second movement in a direction, plane, item or the like defined in relation to a first or a reference plane or direction which reference plane or direction has a direction defined as the angle α=0°; and the second plane or direction deviates at maximum ±10°; normally not more than ±5° from the first or reference direction α.
In the context of the application “horizontal” or “essentially horizontal” means that a movement in a direction, a direction, plane, item or the like is horizontal or essentially horizontal is parallel or essentially parallel to the surface of the skin of a patient as defined above. For example, the base part to which the insertion device is fastened can be horizontal, or essentially horizontal, parallel or essentially parallel to the skin.
“Perpendicular” or “essentially perpendicular” as used herein refers to a second movement in a direction, a direction, plane, item or the like defined in relation to a reference plane or direction which reference plane or direction has a position or a direction in the angle β=0°; and the second plane or direction deviates between 80-100°; normally between 85-95° from the first reference R.
In the context of the application “Transversal” or “essentially transversal” can be used interchangeably with perpendicular or essentially perpendicular as defined above.
“Means”: As used herein, the expression “means” can comprise one or more means. This is irrespective, if with respect to grammar, the verb relating to said means indicates singular or plural.
A detailed description of embodiments of the current invention will be made with reference to the accompanying figures, wherein like numerals designate corresponding parts in different figures.
The base part can e.g. deliver insulin based on a measurement of glucose in the patient's blood.
The sensor part is not shown in
The opening 12C for the sensor is placed at the opposite end of the surface plate 1 relative to the opening 12A for the cannula part 7. This ensures that the interference between medication input and a measurement of a physiological effect of the medication is as small as possible. A necessary minimum distance between the two points i.e. the point of inflow of medication and the point of measurement of a physiological effect relating to the decomposition of medication, will depend both on the kind of medication and concentration of the medication which is supplied to the patient and also of which subcutaneous depth each of the two points are positioned in. Often a distance of at least 20 mm between the two points will be acceptable.
The two release handles 9 are formed as s-shaped bands where one end is fastened hinge-like to the housing of the delivery part 8 and the first curve in the s-shape is slightly extending the outer surface of the housing of the delivery part whereas the second curve is free i.e. not attached to the housing of the delivery part 8 and is provided with a hook-like shape which can fold around the fastening means 15 protruding from the distal surface of the base part 1. When the delivery part 8 is locked to the base part 1 both release handles 9 are folded round the fastening means 15, when the delivery part 8 is to be removed from the base part, the two opposite release handles 9 are pushed together whereby the hook-like parts of the release handles 9 are released from the protruding parts and the delivery part 8 can be moved backwards i.e. in the direction away from the cannula part 7 and removed from the base part in this direction.
In
In
The present device is especially directed towards use of a subgroup of cannulas known as soft needle cannulas and they have a wide range of applications, e.g. in automated drug delivery devices such as insulin delivery devices. The soft needle cannulas are in general more flexible and softer than other cannulas.
The soft needle cannulas are generally used together with an introducer needle 11, where the needle is used to penetrate the barrier to the body e.g. the skin and assist the introduction of the cannula. The needle is removed after introduction of the cannula into a body cavity. The soft needle cannula is left in the body cavity for a desired period of time in which it functions as the means for drug delivery. The soft needle cannula is removed from the body cavity, by simple withdrawing after end of use.
A soft needle cannula often comprises a tube-shaped flexible part and a hub. The tube-shaped flexible part is adapted for insertion into a patient and it facilitates the fluid transport to or from a body cavity. The tube-shaped part must be flexible in order to allow the carrier of the cannula, e.g. a patient, to move without serious unpleasantness. However it must not be so flexible that it is capable of forming kinks which may stop the drug delivery. The hub is the connecting means on the tube shaped part adapted for connecting the tube shaped part to either the drug delivery devise, to the fluid collecting container or to another connecting means e.g. a second tube. Preferably soft needle cannulas are composed of a material which are sufficiently flexible to bend, when the carrier moves and sufficiently rigid to avoid kinking closing off the drug supply. Further the material must be compatible with medical use i.e. irritation of the skin must be kept at a minimum, being non-toxic it must not decompose in the body, etc. Thermoplastic elastomers (TPE) are a type of material which fulfils these requirements. Examples of such useful elastomers are: polyester ethers, ECDEL, styrene based TPE, olefin based TPE, urethane based TPE, ester based TPE, amid based TPE, polyolefines and silicone rubbers. In a preferred embodiment the material is selected from the group consisting of polypropylene, C-FLEX™, mixtures of C-FLEX™ and polypropylene, LUPOLEN™ 1840H, LUPOLEN™ 3020D, PELLETHANE™ 2363-75D, PELLETHANE™ 2363-55D, TECOTHANE™ and CARBOTHANE™.
According to one embodiment a cannula part can comprise a hard hub or body provided with a cannula and with a protruding front having a flat surface provided with an opening. The protruding front of the cannula part need not be flat; it can actually have any desired shape as long as it is possible to create a corresponding surface on the connection part 3 facing the cannula part. The front can be inclined in such a way that the cross-section at the upper i.e. distal end of the cannula part is larger than the cross-section at the proximal end of the front, i.e. the end closest to the patient after insertion. The opening of the protruding front is an inlet or outlet through which liquid can enter or exit the cannula part. The body is further provided with a top opening which can be covered with a self closing membrane. The top opening need some kind of entrance protection as it is facing an outer surface which is in contact with the surroundings. The top opening is primarily used when inserting the cannula part if the cannula 22 is a soft cannula. That the cannula is soft means that it is made of a relatively soft material which cannot by itself penetrate the patients skin, in this case it is necessary to use a pointy insertion needle of a relatively hard material when inserting the cannula and this pointy needle can be inserted through the top opening, pass through an inner hollow in the body of the cannula part and further pass through the full length of the cannula in such a way that the pointy end of the insertion needle stick out of the open end of the hollow cannula. After insertion i.e. after the cannula has been placed sub- or transcutaneous in the patient, then the insertion needle is retracted and the cannula is left inside the patient. The cannula part can also provided with fastening means which can have the form of a series of outward hooks being flexibly fastened to the body in such a way that the hooks can pivot inwards toward the centre of the cannula part. When the cannula part is pressed toward the base part, the hooks passes an edge which pushes them toward the centre as they passes the edge and when the hooks have passed the edge they return to their original position and as a upward surface of one or more of the hooks touch a downward surface of the edge the cannula part is locked unreleasably against the edge.
The cannula part might also be provided with a guiding track on opposite sides of the body corresponding to protruding parts on the not shown connection part 3. Further the opening to the top placed septum can be provided with an upright edge helping by providing an injection site if the user want to perform injections of liquid by a syringe.
The fastening means of the cannula part lock the cannula part to the base part at the time where it is fully inserted. The fastening means can comprise outward hooks that can pivot around an axe close to the body of the cannula part in such a way that the diameter formed by the outermost edge of the hooks can be reduced when the hooks are pressed inward i.e. towards the centre of the cannula part. When the pressure is removed the hooks will return to their original position due to the flexibility of the material. The hooks will be pushed inwards when they pass an opening such as e.g. the opening 12B or a corresponding opening in the surface plate having a cross-section which at least in one dimension is smaller than the outer edge of the hooks and as the hooks return to their original position after having passed through the opening, the hooks will lock the cannula part in the inserted position.
The body of the cannula part might also have the shape or profile of a truncated cone i.e. in each horizontal cross-section of the body it is round having varying diameters. The body might then be provided with two permanently attached circular sealings or gaskets. Between these two gaskets is the opening positioned which opening allows for fluid to enter the inner through going opening of the cannula part. The cannula part is to be placed in a part of the base part e.g. the connection part 3 provided with a corresponding cavity 12A also having the shape of a truncated cone. The cavity 12A has an inlet/outlet opening 12 for fluid flowing to or from the cannula.
A sealing has to be provided between the opening in a side surface of the body of the cannula part and the opening 12 of the fluid path of the connection part 3. The sealing can have the form of an O-ring i.e. a cylindrical tube attached to or pushed into the connector part 3 encircling the opening. The sealing can be provided with an inner support which can have the form of a cylindrical tube. When the cannula part is inserted into the opening 12A the sealing might be distorted due to the tight fit of the body of the cannula part as the cannula part will touch and slide along the sealing. This movement can cause the sealing to get pulled out of position and when the sealing is pulled out of position it might either cause liquid to leak or the inserted part to jump back thereby pulling the subcutaneously positioned part away from the desired position. One solution to this problem is to lubricate the sealing e.g. with silicone or otherwise ensure that the sealing is very smooth, a second solution would be to lubricate the part to be Inserted and a third solution would be to provide a bevelled edge below the lower edge of the sealing. Such an opening can be provided by cutting of the edge below the sealing as illustrated in
The sensor part comprises a body 70 having a through-going opening in the longitudinal direction i.e. the direction of insertion. This through-going opening allows for an insertion needle to pass through the body of the sensor part while surrounding the subcutaneous part of the sensor part is protected at the surface end by a septum 73 in order to prevent micro-organisms from entering into the through-going opening from the surface of the device during use. An insertion needle used to insert such a sensor part needs to have an open cross-section e.g. a U-shaped cross-section embracing part of the periphery of the subcutaneous sensor part in stead of completely surrounding the subcutaneous sensor part. The sensor part further comprises two contact points 71 which contact points establish electrical contact with the power source e.g. the battery of the delivery device when the delivery device is fixed to the base part and the unit is in working condition. The battery or power source of the delivery device normally provides power to both the pump delivering fluid from the reservoir to the cannula part and to the sensor part. The delivery device provides the sensor part with current through these contacts. Normally, the power source will send an electrical impulse to the sensor part and the sensor part will react and return a signal i.e. in the form of a voltage as a response to the electrical impulse being transmitted to the sensor part from the power source of the delivery device. Also, the sensor part comprises a protruding sensor unit 72 which is to be inserted subcutaneously during use whereby it can get in contact with the patients blood. This sensor type will register a potential difference over the inserted part and return a signal for the potential difference to the delivery device. The sensor part is provided with retention means 23 of the same type as the cannula part.
Cannula parts 7 which can be used with the base part according to the present invention are known and detailed descriptions of such cannula parts can be seen e.g. in WO 2009/101130 (published 20 Aug. 2009) in the description corresponding to
The two cannulas will normally not be delivering medication to the patient simultaneously. The object of having two cannulas is to be able to retract one cannula while inserting another cannula and still be using the same patch and e.g. also the same sensor. This feature will increase the service life of a patch including both cannula and sensor as the cannula normally will have to be retracted after 3 days while the sensor normally can stay inserted in 6-10 days. It is indicated at
Step 1: The patch including a base part 1 provided with an opening 12C for at least one cannula 22b to be inserted with an inserter 80 and an opening 12D for a sensor part is attached to the surface of the patients skin e.g. by a mounting pad 2 which has been adhered or welded to the base part 1. An inserter 80 might be attached to the patch at delivery or the user might have to position an inserter 80 on the patch in order to be able to insert the first cannula 22b and the sensor. Also, two different inserters might be used for inserting respectively the first cannula and the sensor part.
Step 2: The inserter 80 or each of the two inserters inserting respectively the first cannula 22b and the sensor part 72 is/are activated and the subcutaneous parts are positioned. Afterwards, the inserter(s) are removed and disposed of.
Step 3: The patch including the base part 1 and a mounting part is now firmly secured to the patient's skin and the primary subcutaneous units are in working position. The user or the patient can then place a delivery device 8 including reservoir, pumping facilities and controller means on the base part, thereby putting the delivery device to work.
Step 4: After a period of e.g. 2-3 days, the first cannula 22b is retracted and the second cannula 22a having been kept under sterile conditions inside the base part is inserted, thereby making it possible to use the patch for another 2-3 days.
The embodiment comprises an inlet opening 13 through which medication from a reservoir can enter. This inlet opening is also the inlet opening of the second fluid path. The inlet opening 13 is protected with a membrane 17 to prevent contamination with microorganisms. The second fluid path further comprises the connection part 3 provided with both a connector needle 19 and which at a pointy end is protected by the bubble shaped self closing membrane 17. A reservoir positioned within the delivery device can also be provided with a bubble shaped self closing membrane being part of the first fluid path as a first fluid path between the delivery device and an inlet on the base part can be established providing transfer of medication e.g. insulin, other medication or nutrients from the reservoir to the base part via a connector part 3 when the delivery part is attached to the base part. As both parts are provided with self closing membranes it will be possible to separate the two units from each other and rejoin them at a later time without the connection part 3 and thereby the patient being contaminated.
Fluid from a reservoir in the delivery part will enter into the connection part 3 through the inlet opening 13; the connection part 3 is stationary relative to the patch or surface plate 1. The connection part 3 has two outlets for fluid which makes it possible to establish two different second fluid paths, through the first outlet fluid can be delivered to a first inlet in a movable part 90 and from this movable part 90 the fluid is guided to a first cannula 22a where the first of the second fluid paths end. Through the second outlet fluid can be delivered to a second inlet in the movable part 90 and from this movable part 90 the fluid is guided to a second cannula 22b where the second of the second fluid paths end. The first outlet respectively the second outlet from the connection part 3 and the first inlet respectively the second inlet of the movable part 90 though have to be positioned right in front of each other in order for fluid to be transferred from one unit to the other. In
The embodiment of
In a first state which is the state the device is delivered in, the movable part 90 is in a central position where neither of the cannulas 22a and 22b nor the sensor part 72 is protruding from the surface of the base part facing the patient when the base part is mounted on the patient's skin. This state is shown in
In a second state the device has been activated, the user has pushed the movable part 90 as far to the left as possible and the first cannula 22a and the sensor part 72 are in fully forward positions while the second cannula 22b is in a fully retracted position. As the cannula 22a is made of a flexible and self-penetrable material the cannula will due to the change in direction caused by the first guiding means 92 penetrate the patient's skin in an angle around 45°. Also the sensor part 72 is made of a flexible and self-penetrable material which due to the third guiding means 91 is also directed to a subcutaneous position in a desired angle. When the sensor part is in its end position, contacts of the sensor part can get in conducting contact with electrical parts of the delivery device which contact is established when the delivery part is mounted on the base part. The activation of this state is illustrated in
In a third state the user pushes the movable part as far to the right as possible which movement result in that the first cannula 22a is brought to its fully retracted position where it has no contact with the former insertion site while the sensor part 72 stays in the subcutaneous position as the sensor part is not connected to the movable part 90 in such a way that it will get pulled back to its start position. The second cannula 22b is brought to its fully forward position by the movable part 90 and as the second cannula 22b is also made of a flexible and self-penetrating material, the second cannula 22b will cut a subcutaneous path in the patients skin and the second guiding means 93 determines the direction of this path which in the actual embodiment is around 45°.
When the second cannula needs to be removed from the insertion site, it will be necessary to remove the whole patch including the subcutaneously positioned sensor part. The patch or base part can be replaced with a new base part at another position on the patient's skin, but the delivery part can be re-used for several base parts.
Left half of
Right half of
According to this embodiment a base part 1 comprises a receiving portion 14 comprising the not shown inlet opening for the first fluid path. The first fluid path is established in the receiving portion 14; a connector needle 19 from the reservoir 6 allows fluid to enter the receiving portion 14 when the connector needle 19 is forced through a protective septum which closes a (not shown) side opening in the receiving portion 14 and a cannula connector needle 24 establishes a second fluid path between the base part 1 and a subcutaneously positioned cannula 22b or 22a. A sensor part 70 is to be positioned in an opening 12C and according to this delivery part 8 the reservoir 6 is positioned before and separately from the electrical part and the housing.
When a user is to start using the embodiment of
According to this embodiment of a base part, a second fluid path can be established by pushing a moving part 90 to a first or a second position from a central closed position which central closed position of the movable part 90 allows for insertion of either one of two cannula parts 7. The moving part 90 is an unreleasable part of the base part 1 i.e. it cannot be removed from the base part but only be moved between different positions. The movable part 90 has an inlet 95 for fluid; the inlet 95 is unreleasably connected to a flexible tube connecting the movable part 90 to an inlet opening 13 for the second fluid path. The inlet opening 13 is the end of a penetrating cannula protected by a bubble shaped membrane 17. The membrane 17 is penetrated by the cannula when a delivery part is pressed against the base part, when the delivery part is pressed against the base part a first fluid path is established between the reservoir of the delivery part and the base part and fluid can flow directly to the movable part 90, fluid can only flow from the movable part 90 to a cannula part 7 if the movable part 90 is pushed to contact with a cannula part 7 as illustrated with the arrow on
Common for all the embodiments are that the base part has one inlet for fluid and one or more outlets for fluid i.e. the medication enters at one position via the inlet of the second fluid path and the second fluid path is then provided with one or more outlets to one or more cannula parts. Normally, there is no “reservoir” after the fluid has left the especially protected reservoir 6 of the delivery part which is used to store the fluid medication before and during use, after the fluid has left this designated reservoir 6 the fluid travels in a plug-flow assuring that all fluid has a well-defined short residence time inside the base part.
Number | Date | Country | Kind |
---|---|---|---|
09167445 | Aug 2009 | EP | regional |
This application claims the benefit under 35 U.S.C. §371 of International Application No. PCT/EP2010/061497, filed Aug. 6, 2010, which claims the benefit of European Patent Application No. 09167445.7, filed Aug. 7, 2009, and U.S. Provisional Application Ser. No. 61/232,115, filed Aug. 7, 2009, which are incorporated by reference herein in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/061497 | 8/6/2010 | WO | 00 | 4/5/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/015659 | 2/10/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1592462 | MacGregor | Jul 1926 | A |
2047010 | Dickinson | Jul 1936 | A |
2295849 | Kayden | Sep 1942 | A |
2690529 | Lindblad | Sep 1954 | A |
2972779 | Cowley | Feb 1961 | A |
3059802 | Mitchell | Oct 1962 | A |
3074541 | Roehr | Jan 1963 | A |
3149186 | Coanda | Sep 1964 | A |
3221739 | Rosenthal | Dec 1965 | A |
3221740 | Rosenthal | Dec 1965 | A |
3306291 | Burke | Feb 1967 | A |
3485352 | Pilger | Dec 1969 | A |
3509879 | Bathish et al. | May 1970 | A |
3519158 | Anderson | Jul 1970 | A |
3547119 | Hall et al. | Dec 1970 | A |
3575337 | Bernhardt | Apr 1971 | A |
3610240 | Harautuneian | Oct 1971 | A |
3615039 | Ward | Oct 1971 | A |
3670727 | Reiterman | Jun 1972 | A |
3783895 | Weichselbaum | Jan 1974 | A |
3788374 | Saijo | Jan 1974 | A |
3810469 | Hurschman | May 1974 | A |
3835862 | Villari | Sep 1974 | A |
3840011 | Wright | Oct 1974 | A |
3893448 | Brantigan | Jul 1975 | A |
3937219 | Karakashian | Feb 1976 | A |
3986507 | Watt | Oct 1976 | A |
3986508 | Barrington | Oct 1976 | A |
3995518 | Spiroff | Dec 1976 | A |
4022205 | Tenczar | May 1977 | A |
4188950 | Wardlaw | Feb 1980 | A |
4201406 | Dennehey et al. | May 1980 | A |
4227528 | Wardlaw | Oct 1980 | A |
4259276 | Rawlings | Mar 1981 | A |
4267836 | Whitney et al. | May 1981 | A |
4296786 | Brignola | Oct 1981 | A |
4315505 | Crandall et al. | Feb 1982 | A |
4333455 | Bodicky | Jun 1982 | A |
4334551 | Pfister | Jun 1982 | A |
D267199 | Koenig | Dec 1982 | S |
4378015 | Wardlaw | Mar 1983 | A |
4402407 | Maly | Sep 1983 | A |
4415393 | Grimes | Nov 1983 | A |
4417886 | Frankhouser et al. | Nov 1983 | A |
4464178 | Dalton | Aug 1984 | A |
4473369 | Lueders et al. | Sep 1984 | A |
4484910 | Sarnoff et al. | Nov 1984 | A |
4500312 | McFarlane | Feb 1985 | A |
4508367 | Oreopoulos et al. | Apr 1985 | A |
4525157 | Vaillancourt | Jun 1985 | A |
4530695 | Phillips et al. | Jul 1985 | A |
4531937 | Yates | Jul 1985 | A |
4543088 | Bootman et al. | Sep 1985 | A |
4563177 | Kamen | Jan 1986 | A |
4610469 | Wolff-Mooij | Sep 1986 | A |
4617019 | Fecht | Oct 1986 | A |
4713059 | Bickelhaupt et al. | Dec 1987 | A |
4734092 | Millerd | Mar 1988 | A |
4755173 | Konopka et al. | Jul 1988 | A |
4817603 | Turner et al. | Apr 1989 | A |
RE32922 | Levin et al. | May 1989 | E |
4838871 | Luther | Jun 1989 | A |
4840613 | Balbierz | Jun 1989 | A |
4850974 | Bickelhaupt et al. | Jul 1989 | A |
4850996 | Cree | Jul 1989 | A |
4863016 | Fong et al. | Sep 1989 | A |
4878897 | Katzin | Nov 1989 | A |
4890608 | Steer | Jan 1990 | A |
4894054 | Miskinyar | Jan 1990 | A |
4895570 | Larkin | Jan 1990 | A |
4917669 | Bonaldo | Apr 1990 | A |
4935010 | Cox et al. | Jun 1990 | A |
4950163 | Zimble | Aug 1990 | A |
4950252 | Luther et al. | Aug 1990 | A |
4956989 | Nakajima | Sep 1990 | A |
4970954 | Weir et al. | Nov 1990 | A |
4978338 | Melsky et al. | Dec 1990 | A |
4982842 | Hollister | Jan 1991 | A |
4986817 | Code | Jan 1991 | A |
4994042 | Vadher | Feb 1991 | A |
4994045 | Ranford | Feb 1991 | A |
5011475 | Olsen | Apr 1991 | A |
5020665 | Bruno | Jun 1991 | A |
5024662 | Menes et al. | Jun 1991 | A |
5067496 | Eisele | Nov 1991 | A |
5092853 | Couvertier, II | Mar 1992 | A |
5098389 | Cappucci | Mar 1992 | A |
5112313 | Sallee | May 1992 | A |
5116319 | Van den Haak | May 1992 | A |
5116325 | Paterson | May 1992 | A |
5121751 | Panalletta | Jun 1992 | A |
5129884 | Dysarz | Jul 1992 | A |
5135502 | Koenig, Jr. et al. | Aug 1992 | A |
5137516 | Rand et al. | Aug 1992 | A |
5137524 | Lynn et al. | Aug 1992 | A |
5141496 | Dalto et al. | Aug 1992 | A |
5147375 | Sullivan et al. | Sep 1992 | A |
5160315 | Heinecke et al. | Nov 1992 | A |
5163915 | Holleron | Nov 1992 | A |
5172808 | Bruno | Dec 1992 | A |
5176643 | Kramer et al. | Jan 1993 | A |
5176650 | Haining | Jan 1993 | A |
5176662 | Bartholomew et al. | Jan 1993 | A |
5186712 | Kelso et al. | Feb 1993 | A |
5188611 | Orgain | Feb 1993 | A |
RE34223 | Bonaldo | Apr 1993 | E |
5205820 | Kriesel | Apr 1993 | A |
5222947 | D'Amico | Jun 1993 | A |
5232454 | Hollister | Aug 1993 | A |
5248301 | Koenig et al. | Sep 1993 | A |
5256149 | Banik et al. | Oct 1993 | A |
5256152 | Marks | Oct 1993 | A |
5257980 | Van Antwerp et al. | Nov 1993 | A |
5267963 | Bachynsky | Dec 1993 | A |
5269799 | Daniel | Dec 1993 | A |
5271744 | Kramer et al. | Dec 1993 | A |
5279579 | D'Amico | Jan 1994 | A |
5279591 | Simon | Jan 1994 | A |
5282793 | Larson | Feb 1994 | A |
5300030 | Crossman et al. | Apr 1994 | A |
5312359 | Wallace | May 1994 | A |
5312369 | Arcusin et al. | May 1994 | A |
5316246 | Scott et al. | May 1994 | A |
5324302 | Crouse | Jun 1994 | A |
5342319 | Watson et al. | Aug 1994 | A |
5342324 | Tucker | Aug 1994 | A |
5344007 | Nakamura et al. | Sep 1994 | A |
5350392 | Purcell et al. | Sep 1994 | A |
5354280 | Haber et al. | Oct 1994 | A |
5354337 | Hoy | Oct 1994 | A |
5366469 | Steg et al. | Nov 1994 | A |
5372592 | Gambale | Dec 1994 | A |
5372787 | Ritter | Dec 1994 | A |
5376082 | Phelps | Dec 1994 | A |
5379895 | Foslien | Jan 1995 | A |
5384174 | Ward et al. | Jan 1995 | A |
5387197 | Smith et al. | Feb 1995 | A |
5390669 | Stuart et al. | Feb 1995 | A |
5391151 | Wilmot | Feb 1995 | A |
5403288 | Stanners | Apr 1995 | A |
5405332 | Opalek | Apr 1995 | A |
5425715 | Dalling et al. | Jun 1995 | A |
5429607 | McPhee | Jul 1995 | A |
5429613 | D'Amico | Jul 1995 | A |
5439473 | Jorgensen | Aug 1995 | A |
D362718 | Deily et al. | Sep 1995 | S |
5449349 | Sallee et al. | Sep 1995 | A |
5451210 | Kramer et al. | Sep 1995 | A |
5478316 | Bitdinger et al. | Dec 1995 | A |
5490841 | Landis | Feb 1996 | A |
5501675 | Erskine | Mar 1996 | A |
5505709 | Funderburk et al. | Apr 1996 | A |
5507730 | Haber et al. | Apr 1996 | A |
5514117 | Lynn | May 1996 | A |
5520629 | Heinecke et al. | May 1996 | A |
5520654 | Wahlberg | May 1996 | A |
5522803 | Teisson-Simony | Jun 1996 | A |
5527287 | Miskinyar et al. | Jun 1996 | A |
5533974 | Gaba | Jul 1996 | A |
5540709 | Ramel | Jul 1996 | A |
5545143 | Fischell | Aug 1996 | A |
5545152 | Funderburk et al. | Aug 1996 | A |
5549577 | Siegel et al. | Aug 1996 | A |
5554130 | McDonald et al. | Sep 1996 | A |
5558650 | McPhee | Sep 1996 | A |
5562629 | Haughton et al. | Oct 1996 | A |
5562636 | Utterberg | Oct 1996 | A |
5573510 | Isaacson | Nov 1996 | A |
5575777 | Cover et al. | Nov 1996 | A |
5584813 | Livingston et al. | Dec 1996 | A |
5586553 | Halili | Dec 1996 | A |
5591188 | Waisman | Jan 1997 | A |
5599309 | Marshall et al. | Feb 1997 | A |
5599315 | McPhee | Feb 1997 | A |
5599318 | Sweeney et al. | Feb 1997 | A |
5628765 | Morita | May 1997 | A |
5643214 | Marshall | Jul 1997 | A |
5643216 | White | Jul 1997 | A |
5643220 | Cosme | Jul 1997 | A |
5658256 | Shields | Aug 1997 | A |
5662617 | Odell et al. | Sep 1997 | A |
5665071 | Wyrick | Sep 1997 | A |
5665075 | Gyure et al. | Sep 1997 | A |
5676156 | Yoon | Oct 1997 | A |
5681323 | Arick | Oct 1997 | A |
5695476 | Harris | Dec 1997 | A |
5697907 | Gaba | Dec 1997 | A |
5700250 | Erskine | Dec 1997 | A |
5702371 | Bierman | Dec 1997 | A |
5704920 | Gyure | Jan 1998 | A |
5709662 | Olive et al. | Jan 1998 | A |
5714225 | Hansen et al. | Feb 1998 | A |
5738641 | Watson et al. | Apr 1998 | A |
5741288 | Rife | Apr 1998 | A |
5752923 | Terwilliger | May 1998 | A |
5807316 | Teeple | Sep 1998 | A |
5807348 | Zinger et al. | Sep 1998 | A |
5810835 | Ryan et al. | Sep 1998 | A |
5817058 | Shaw | Oct 1998 | A |
5820598 | Gazza et al. | Oct 1998 | A |
5827236 | Takahashi | Oct 1998 | A |
5833666 | Davis et al. | Nov 1998 | A |
5843001 | Goldenberg | Dec 1998 | A |
5848990 | Cirelli et al. | Dec 1998 | A |
5851197 | Marano et al. | Dec 1998 | A |
5858001 | Tsals et al. | Jan 1999 | A |
5865806 | Howell | Feb 1999 | A |
5899886 | Cosme | May 1999 | A |
5911705 | Howell | Jun 1999 | A |
5913846 | Szabo | Jun 1999 | A |
5916199 | Miles | Jun 1999 | A |
5919167 | Mulhauser et al. | Jul 1999 | A |
5919170 | Woessner | Jul 1999 | A |
5925032 | Clements | Jul 1999 | A |
5935109 | Donnan | Aug 1999 | A |
5947931 | Bierman | Sep 1999 | A |
5947935 | Rinehart et al. | Sep 1999 | A |
5951523 | Osterlind et al. | Sep 1999 | A |
5954643 | VanAntwerp et al. | Sep 1999 | A |
5957892 | Thorne | Sep 1999 | A |
5957897 | Jeffrey | Sep 1999 | A |
5968011 | Larsen et al. | Oct 1999 | A |
5971966 | Lav | Oct 1999 | A |
5975120 | Novosel | Nov 1999 | A |
5980488 | Thorne | Nov 1999 | A |
5980506 | Mathiasen | Nov 1999 | A |
5984224 | Yang | Nov 1999 | A |
5984897 | Peterson et al. | Nov 1999 | A |
D417733 | Howell et al. | Dec 1999 | S |
6017328 | Fischell et al. | Jan 2000 | A |
6017598 | Kreischer et al. | Jan 2000 | A |
D421119 | Musgrave et al. | Feb 2000 | S |
6024727 | Thorne et al. | Feb 2000 | A |
6039629 | Mitchell | Mar 2000 | A |
6042570 | Bell et al. | Mar 2000 | A |
6045533 | Kriesel et al. | Apr 2000 | A |
6045534 | Jacobsen | Apr 2000 | A |
6050976 | Thorne et al. | Apr 2000 | A |
6053893 | Bucher | Apr 2000 | A |
6053930 | Ruppert | Apr 2000 | A |
6056718 | Funderburk et al. | May 2000 | A |
6056726 | Isaacson | May 2000 | A |
6074369 | Sage et al. | Jun 2000 | A |
6074371 | Fischell | Jun 2000 | A |
6077244 | Botich et al. | Jun 2000 | A |
6079432 | Paradis | Jun 2000 | A |
6086008 | Gray et al. | Jul 2000 | A |
6086575 | Mejslov | Jul 2000 | A |
6090068 | Chanut | Jul 2000 | A |
6093172 | Funderburk et al. | Jul 2000 | A |
6093179 | O'Hara et al. | Jul 2000 | A |
6099503 | Stardella | Aug 2000 | A |
6105218 | Reekie | Aug 2000 | A |
6106498 | Friedli et al. | Aug 2000 | A |
6120482 | Szabo | Sep 2000 | A |
6123690 | Mejslov | Sep 2000 | A |
6132755 | Eicher et al. | Oct 2000 | A |
6139534 | Niedospial, Jr. | Oct 2000 | A |
6159181 | Crossman et al. | Dec 2000 | A |
6183464 | Sharp et al. | Feb 2001 | B1 |
6191338 | Haller | Feb 2001 | B1 |
6193694 | Bell et al. | Feb 2001 | B1 |
6210420 | Mauze et al. | Apr 2001 | B1 |
6219574 | Cormier et al. | Apr 2001 | B1 |
6221058 | Kao et al. | Apr 2001 | B1 |
6248093 | Moberg | Jun 2001 | B1 |
6261272 | Gross et al. | Jul 2001 | B1 |
6283744 | Edmondson et al. | Sep 2001 | B1 |
6293925 | Safabash et al. | Sep 2001 | B1 |
6302866 | Marggi | Oct 2001 | B1 |
6319232 | Kashmer | Nov 2001 | B1 |
6322535 | Hitchins et al. | Nov 2001 | B1 |
6322808 | Trautman et al. | Nov 2001 | B1 |
6334856 | Allen et al. | Jan 2002 | B1 |
6355021 | Nielsen et al. | Mar 2002 | B1 |
6364113 | Faasse et al. | Apr 2002 | B1 |
6378218 | Sigwart et al. | Apr 2002 | B2 |
6379335 | Rigon et al. | Apr 2002 | B1 |
6387076 | Van Lunduyt | May 2002 | B1 |
6387078 | Gillespie, III | May 2002 | B1 |
6405876 | Seshimoto et al. | Jun 2002 | B1 |
6440096 | Lastovich et al. | Aug 2002 | B1 |
6447482 | Rønborg et al. | Sep 2002 | B1 |
6450992 | Cassidy, Jr. | Sep 2002 | B1 |
6485461 | Mason et al. | Nov 2002 | B1 |
6488663 | Steg | Dec 2002 | B1 |
6503222 | Lo | Jan 2003 | B2 |
6517517 | Farrugia et al. | Feb 2003 | B1 |
6520938 | Funderburk et al. | Feb 2003 | B1 |
D472316 | Douglas et al. | Mar 2003 | S |
D472630 | Douglas et al. | Apr 2003 | S |
6572586 | Wojcik | Jun 2003 | B1 |
6579267 | Lynch et al. | Jun 2003 | B2 |
6582397 | Alesi et al. | Jun 2003 | B2 |
6595962 | Perthu | Jul 2003 | B1 |
6607509 | Bobroff et al. | Aug 2003 | B2 |
6607511 | Halseth et al. | Aug 2003 | B2 |
6613064 | Rutynowski et al. | Sep 2003 | B2 |
6620133 | Steck | Sep 2003 | B1 |
6620136 | Pressly, Sr. et al. | Sep 2003 | B1 |
6620140 | Metzger | Sep 2003 | B1 |
6629949 | Douglas | Oct 2003 | B1 |
6645181 | Lavi et al. | Nov 2003 | B1 |
6645182 | Szabo | Nov 2003 | B1 |
6659982 | Douglas et al. | Dec 2003 | B2 |
6685674 | Douglas et al. | Feb 2004 | B2 |
6699218 | Flaherty et al. | Mar 2004 | B2 |
6702779 | Connelly et al. | Mar 2004 | B2 |
6726649 | Swenson et al. | Apr 2004 | B2 |
6736797 | Larsen et al. | May 2004 | B1 |
6743203 | Pickhard | Jun 2004 | B1 |
6749587 | Flaherty | Jun 2004 | B2 |
6749589 | Douglas et al. | Jun 2004 | B1 |
6755805 | Reid | Jun 2004 | B1 |
6776775 | Mohammad | Aug 2004 | B1 |
6790199 | Gianakos | Sep 2004 | B1 |
6805686 | Fathallah et al. | Oct 2004 | B1 |
6808506 | Lastovich et al. | Oct 2004 | B2 |
6811545 | Vaillancourt | Nov 2004 | B2 |
6814720 | Olsen et al. | Nov 2004 | B2 |
6824530 | Wagner et al. | Nov 2004 | B2 |
6824531 | Zecha, Jr. et al. | Nov 2004 | B1 |
6830562 | Mogensen et al. | Dec 2004 | B2 |
6837877 | Zurcher | Jan 2005 | B2 |
6837878 | Smutney et al. | Jan 2005 | B2 |
6840922 | Nielsen et al. | Jan 2005 | B2 |
6880701 | Bergeron et al. | Apr 2005 | B2 |
6923791 | Douglas | Aug 2005 | B2 |
6926694 | Marano-Ford et al. | Aug 2005 | B2 |
6939324 | Gonnelli et al. | Sep 2005 | B2 |
6939331 | Ohshima | Sep 2005 | B2 |
6949084 | Marggi et al. | Sep 2005 | B2 |
6959812 | Reif et al. | Nov 2005 | B2 |
6960193 | Rosenberg | Nov 2005 | B2 |
6979316 | Rubin et al. | Dec 2005 | B1 |
6991619 | Marano-Ford et al. | Jan 2006 | B2 |
6991620 | Marano-Ford et al. | Jan 2006 | B2 |
6994213 | Giard et al. | Feb 2006 | B2 |
6997907 | Safabash et al. | Feb 2006 | B2 |
7014625 | Bengtsson | Mar 2006 | B2 |
7018344 | Bressler et al. | Mar 2006 | B2 |
7022108 | Marano-Ford et al. | Apr 2006 | B2 |
7047070 | Wilkenson et al. | May 2006 | B2 |
7052483 | Wojcik | May 2006 | B2 |
7055713 | Rea et al. | Jun 2006 | B2 |
7056302 | Douglas | Jun 2006 | B2 |
7070580 | Nielsen | Jul 2006 | B2 |
7074208 | Pajunk et al. | Jul 2006 | B2 |
D526409 | Nielsen et al. | Aug 2006 | S |
7083592 | Lastovich et al. | Aug 2006 | B2 |
7083597 | Lynch et al. | Aug 2006 | B2 |
7097631 | Trautman et al. | Aug 2006 | B2 |
7109878 | Mann et al. | Sep 2006 | B2 |
7115108 | Wilkenson et al. | Oct 2006 | B2 |
7115112 | Mogensen et al. | Oct 2006 | B2 |
7137968 | Burrell et al. | Nov 2006 | B1 |
7141023 | Diermann et al. | Nov 2006 | B2 |
7147623 | Mathiasen | Dec 2006 | B2 |
7186236 | Gibson et al. | Mar 2007 | B2 |
7211068 | Douglas | May 2007 | B2 |
7214207 | Lynch et al. | May 2007 | B2 |
7214215 | Heinzerling et al. | May 2007 | B2 |
7250037 | Shermer et al. | Jul 2007 | B2 |
7258680 | Mogensen et al. | Aug 2007 | B2 |
D554253 | Kornerup | Oct 2007 | S |
7303543 | Maule et al. | Dec 2007 | B1 |
7309326 | Fangrow, Jr. | Dec 2007 | B2 |
7322473 | Fux | Jan 2008 | B2 |
7331939 | Fangrow, Jr. | Feb 2008 | B2 |
7407491 | Fangrow, Jr. | Aug 2008 | B2 |
7407493 | Cane′ | Aug 2008 | B2 |
7431876 | Mejlhede et al. | Oct 2008 | B2 |
7441655 | Hoftman | Oct 2008 | B1 |
7569262 | Szabo et al. | Aug 2009 | B2 |
7648494 | Kornerup et al. | Jan 2010 | B2 |
7713258 | Adams et al. | May 2010 | B2 |
7766867 | Lynch et al. | Aug 2010 | B2 |
7846132 | Gravesen et al. | Dec 2010 | B2 |
7850652 | Liniger et al. | Dec 2010 | B2 |
8012126 | Tipsmark et al. | Sep 2011 | B2 |
8087333 | Oishi | Jan 2012 | B2 |
8123724 | Gillespie, III | Feb 2012 | B2 |
8303549 | Mejlhede et al. | Nov 2012 | B2 |
8323250 | Chong et al. | Dec 2012 | B2 |
20010004970 | Hollister et al. | Jun 2001 | A1 |
20010016714 | Bell et al. | Aug 2001 | A1 |
20010021827 | Ferguson et al. | Sep 2001 | A1 |
20010039387 | Rutynowski et al. | Nov 2001 | A1 |
20010039401 | Ferguson et al. | Nov 2001 | A1 |
20010041875 | Higuchi et al. | Nov 2001 | A1 |
20010049496 | Kirchhofer | Dec 2001 | A1 |
20010053889 | Marggi | Dec 2001 | A1 |
20010056284 | Purcell et al. | Dec 2001 | A1 |
20020022798 | Connelly | Feb 2002 | A1 |
20020022855 | Bobroff et al. | Feb 2002 | A1 |
20020026152 | Bierman | Feb 2002 | A1 |
20020055711 | Lavi et al. | May 2002 | A1 |
20020068904 | Bierman et al. | Jun 2002 | A1 |
20020072720 | Hague et al. | Jun 2002 | A1 |
20020074345 | Schneider et al. | Jun 2002 | A1 |
20020077599 | Wojcik | Jun 2002 | A1 |
20020082543 | Park et al. | Jun 2002 | A1 |
20020095138 | Lynch et al. | Jul 2002 | A1 |
20020107489 | Lee | Aug 2002 | A1 |
20020111581 | Sasso | Aug 2002 | A1 |
20020156424 | Suzuki et al. | Oct 2002 | A1 |
20020156427 | Suzuki et al. | Oct 2002 | A1 |
20020161322 | Utterberg et al. | Oct 2002 | A1 |
20020161332 | Ramey | Oct 2002 | A1 |
20020161386 | Halseth et al. | Oct 2002 | A1 |
20020165493 | Bierman | Nov 2002 | A1 |
20020169419 | Steg | Nov 2002 | A1 |
20020173748 | McConnell et al. | Nov 2002 | A1 |
20020173769 | Gray et al. | Nov 2002 | A1 |
20020183688 | Lastovich et al. | Dec 2002 | A1 |
20020189688 | Roorda | Dec 2002 | A1 |
20020193737 | Popovsky | Dec 2002 | A1 |
20020193744 | Alesi et al. | Dec 2002 | A1 |
20030014018 | Giambattista et al. | Jan 2003 | A1 |
20030060781 | Mogensen et al. | Mar 2003 | A1 |
20030069548 | Connelly et al. | Apr 2003 | A1 |
20030088238 | Poulsen et al. | May 2003 | A1 |
20030105430 | Lavi et al. | Jun 2003 | A1 |
20030109829 | Mogensen et al. | Jun 2003 | A1 |
20030125669 | Safabash et al. | Jul 2003 | A1 |
20030125678 | Swenson et al. | Jul 2003 | A1 |
20030130619 | Safabash et al. | Jul 2003 | A1 |
20030139704 | Lin | Jul 2003 | A1 |
20030158520 | Safabash et al. | Aug 2003 | A1 |
20030176843 | Wilkinson | Sep 2003 | A1 |
20030176852 | Lynch et al. | Sep 2003 | A1 |
20030181863 | Ackley et al. | Sep 2003 | A1 |
20030181868 | Swenson | Sep 2003 | A1 |
20030181873 | Swenson | Sep 2003 | A1 |
20030181874 | Bressler et al. | Sep 2003 | A1 |
20030187394 | Wilkinson et al. | Oct 2003 | A1 |
20030187395 | Gabel | Oct 2003 | A1 |
20030199823 | Bobroff et al. | Oct 2003 | A1 |
20030216686 | Lynch et al. | Nov 2003 | A1 |
20030220610 | Lastovich et al. | Nov 2003 | A1 |
20030225373 | Bobroff et al. | Dec 2003 | A1 |
20030225374 | Mathiasen | Dec 2003 | A1 |
20030229308 | Tsals et al. | Dec 2003 | A1 |
20030229316 | Hwang et al. | Dec 2003 | A1 |
20040002682 | Kovelman et al. | Jan 2004 | A1 |
20040006316 | Patton | Jan 2004 | A1 |
20040044306 | Lynch et al. | Mar 2004 | A1 |
20040049159 | Barrus et al. | Mar 2004 | A1 |
20040055711 | Martin et al. | Mar 2004 | A1 |
20040059316 | Smedegaard | Mar 2004 | A1 |
20040068231 | Blondeau | Apr 2004 | A1 |
20040069044 | Lavi et al. | Apr 2004 | A1 |
20040087913 | Rogers et al. | May 2004 | A1 |
20040092865 | Flaherty et al. | May 2004 | A1 |
20040092875 | Kochamba | May 2004 | A1 |
20040111068 | Swenson | Jun 2004 | A1 |
20040112781 | Hofverberg et al. | Jun 2004 | A1 |
20040116865 | Bengtsson | Jun 2004 | A1 |
20040133164 | Funderburk et al. | Jul 2004 | A1 |
20040138612 | Shermer et al. | Jul 2004 | A1 |
20040138620 | Douglas et al. | Jul 2004 | A1 |
20040143216 | Douglas et al. | Jul 2004 | A1 |
20040143218 | Das | Jul 2004 | A1 |
20040158202 | Jensen | Aug 2004 | A1 |
20040158207 | Hunn et al. | Aug 2004 | A1 |
20040162518 | Connelly et al. | Aug 2004 | A1 |
20040162521 | Bengtsson | Aug 2004 | A1 |
20040171989 | Horner et al. | Sep 2004 | A1 |
20040178098 | Swenson et al. | Sep 2004 | A1 |
20040186446 | Ohshima | Sep 2004 | A1 |
20040193143 | Sauer | Sep 2004 | A1 |
20040199123 | Nielsen | Oct 2004 | A1 |
20040204673 | Flaherty et al. | Oct 2004 | A1 |
20040204687 | Mogensen et al. | Oct 2004 | A1 |
20040204690 | Yashiro et al. | Oct 2004 | A1 |
20040215151 | Marshall et al. | Oct 2004 | A1 |
20040220528 | Garcia, Jr. | Nov 2004 | A1 |
20040236284 | Hoste et al. | Nov 2004 | A1 |
20040238392 | Peterson et al. | Dec 2004 | A1 |
20040243065 | McConnell et al. | Dec 2004 | A1 |
20040254433 | Bandis et al. | Dec 2004 | A1 |
20040260235 | Douglas | Dec 2004 | A1 |
20040260250 | Harris et al. | Dec 2004 | A1 |
20050035014 | Cane | Feb 2005 | A1 |
20050038378 | Lastovich et al. | Feb 2005 | A1 |
20050043687 | Mogensen et al. | Feb 2005 | A1 |
20050049571 | Lastovich et al. | Mar 2005 | A1 |
20050065466 | Vedrine | Mar 2005 | A1 |
20050065472 | Cindrich et al. | Mar 2005 | A1 |
20050075606 | Botich et al. | Apr 2005 | A1 |
20050080386 | Reid | Apr 2005 | A1 |
20050101910 | Bowman et al. | May 2005 | A1 |
20050101912 | Faust et al. | May 2005 | A1 |
20050101932 | Cote et al. | May 2005 | A1 |
20050101933 | Marrs et al. | May 2005 | A1 |
20050107743 | Fangrow, Jr. | May 2005 | A1 |
20050113761 | Faust et al. | May 2005 | A1 |
20050119611 | Marano-Ford et al. | Jun 2005 | A1 |
20050119619 | Haining | Jun 2005 | A1 |
20050119637 | Lundgren et al. | Jun 2005 | A1 |
20050124936 | Mogensen et al. | Jun 2005 | A1 |
20050131347 | Marano-Ford et al. | Jun 2005 | A1 |
20050159709 | Wilkinson | Jul 2005 | A1 |
20050159714 | Gibson | Jul 2005 | A1 |
20050165382 | Fulford | Jul 2005 | A1 |
20050192560 | Walls et al. | Sep 2005 | A1 |
20050203461 | Flaherty et al. | Sep 2005 | A1 |
20050215979 | Kornerup et al. | Sep 2005 | A1 |
20050240154 | Mogensen et al. | Oct 2005 | A1 |
20050251098 | Wyss et al. | Nov 2005 | A1 |
20050256456 | Marano-Ford et al. | Nov 2005 | A1 |
20050261629 | Marano-Ford et al. | Nov 2005 | A1 |
20050277892 | Chen | Dec 2005 | A1 |
20050283114 | Bresina et al. | Dec 2005 | A1 |
20060015063 | Butikofer et al. | Jan 2006 | A1 |
20060015076 | Heinzerling et al. | Jan 2006 | A1 |
20060030815 | Csincsura et al. | Feb 2006 | A1 |
20060036214 | Mogensen et al. | Feb 2006 | A1 |
20060041224 | Jensen | Feb 2006 | A1 |
20060069351 | Safabash et al. | Mar 2006 | A9 |
20060069382 | Pedersen | Mar 2006 | A1 |
20060069383 | Bogaerts et al. | Mar 2006 | A1 |
20060095003 | Marano-Ford et al. | May 2006 | A1 |
20060095014 | Ethelfeld | May 2006 | A1 |
20060106346 | Sullivan et al. | May 2006 | A1 |
20060129123 | Wojcik | Jun 2006 | A1 |
20060135908 | Liniger et al. | Jun 2006 | A1 |
20060135913 | Ethelfeld | Jun 2006 | A1 |
20060142698 | Ethelfeld | Jun 2006 | A1 |
20060161108 | Mogensen et al. | Jul 2006 | A1 |
20060173410 | Moberg et al. | Aug 2006 | A1 |
20060173413 | Fan | Aug 2006 | A1 |
20060184104 | Cheney, II et al. | Aug 2006 | A1 |
20060184140 | Okiyama | Aug 2006 | A1 |
20060200073 | Radmer et al. | Sep 2006 | A1 |
20060241551 | Lynch et al. | Oct 2006 | A1 |
20060247553 | Diermann et al. | Nov 2006 | A1 |
20060247574 | Maule et al. | Nov 2006 | A1 |
20060253085 | Geismar et al. | Nov 2006 | A1 |
20060253086 | Moberg et al. | Nov 2006 | A1 |
20060264835 | Nielsen et al. | Nov 2006 | A1 |
20060264890 | Moberg et al. | Nov 2006 | A1 |
20070005017 | Alchas et al. | Jan 2007 | A1 |
20070016129 | Liniger et al. | Jan 2007 | A1 |
20070016159 | Sparholt et al. | Jan 2007 | A1 |
20070021729 | Mogensen et al. | Jan 2007 | A1 |
20070049865 | Radmer et al. | Mar 2007 | A1 |
20070049870 | Gray et al. | Mar 2007 | A1 |
20070051784 | Money et al. | Mar 2007 | A1 |
20070066955 | Sparholt et al. | Mar 2007 | A1 |
20070066958 | Wright | Mar 2007 | A1 |
20070088271 | Richards et al. | Apr 2007 | A1 |
20070093754 | Mogensen | Apr 2007 | A1 |
20070104596 | Preuthun et al. | May 2007 | A1 |
20070112301 | Preuthun et al. | May 2007 | A1 |
20070112303 | Liniger | May 2007 | A1 |
20070129688 | Scheurer et al. | Jun 2007 | A1 |
20070129691 | Sage, Jr. et al. | Jun 2007 | A1 |
20070173767 | Lynch et al. | Jul 2007 | A1 |
20070179444 | Causey et al. | Aug 2007 | A1 |
20070185441 | Fangrow, Jr. | Aug 2007 | A1 |
20070191772 | Wojcik | Aug 2007 | A1 |
20070191773 | Wojcik | Aug 2007 | A1 |
20070203454 | Shermer et al. | Aug 2007 | A1 |
20070213673 | Douglas | Sep 2007 | A1 |
20070244448 | Lastovich et al. | Oct 2007 | A1 |
20070282269 | Carter et al. | Dec 2007 | A1 |
20070299409 | Whitbourne et al. | Dec 2007 | A1 |
20080004515 | Jennewine | Jan 2008 | A1 |
20080058692 | Propp et al. | Mar 2008 | A1 |
20080119707 | Stafford | May 2008 | A1 |
20080200897 | Hoss et al. | Aug 2008 | A1 |
20080269687 | Chong | Oct 2008 | A1 |
20080312601 | Cane′ | Dec 2008 | A1 |
20090062767 | Van Antwerp et al. | Mar 2009 | A1 |
20090118592 | Klitgaard | May 2009 | A1 |
20090326456 | Cross et al. | Dec 2009 | A1 |
20100004597 | Gyrn et al. | Jan 2010 | A1 |
20100022956 | Tipsmark et al. | Jan 2010 | A1 |
20100137829 | Nielsen et al. | Jun 2010 | A1 |
20100228226 | Nielsen | Sep 2010 | A1 |
20100262078 | Blomquist | Oct 2010 | A1 |
20110028982 | Lacy | Feb 2011 | A1 |
20110054399 | Chong et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
4 342 329 | Jun 1994 | DE |
196 31 921 | Mar 1997 | DE |
299 05 072 | Sep 1999 | DE |
101 17 285 | Nov 2002 | DE |
203 20 207 | Nov 2004 | DE |
0117632 | Sep 1984 | EP |
0239244 | Feb 1987 | EP |
0 272 530 | Jun 1988 | EP |
0451040 | Oct 1991 | EP |
0544837 | Jun 1993 | EP |
0615768 | Sep 1994 | EP |
0651662 | May 1995 | EP |
0652027 | May 1995 | EP |
0657184 | Jun 1995 | EP |
0688232 | Dec 1995 | EP |
0714631 | Jun 1996 | EP |
0744183 | Nov 1996 | EP |
0747006 | Dec 1996 | EP |
0775501 | May 1997 | EP |
0799626 | Oct 1997 | EP |
0937475 | Aug 1999 | EP |
0956879 | Nov 1999 | EP |
1086718 | Mar 2001 | EP |
1125593 | Aug 2001 | EP |
1329233 | Jul 2003 | EP |
1350537 | Oct 2003 | EP |
1360970 | Nov 2003 | EP |
1380315 | Jan 2004 | EP |
1407747 | Apr 2004 | EP |
1407793 | Apr 2004 | EP |
1421968 | May 2004 | EP |
1177802 | Sep 2004 | EP |
1475113 | Nov 2004 | EP |
1495775 | Jan 2005 | EP |
1502613 | Feb 2005 | EP |
1525873 | Apr 2005 | EP |
1527792 | May 2005 | EP |
1559442 | Aug 2005 | EP |
1616594 | Jan 2006 | EP |
1704889 | Sep 2006 | EP |
1719537 | Nov 2006 | EP |
1762259 | Mar 2007 | EP |
1764125 | Mar 2007 | EP |
1776980 | Apr 2007 | EP |
1970091 | Sep 2008 | EP |
2272559 | Jan 2011 | EP |
2725902 | Oct 1994 | FR |
2 752 164 | Feb 1998 | FR |
906574 | Sep 1962 | GB |
2 088 215 | Jun 1982 | GB |
2 230 702 | Oct 1990 | GB |
2 423 267 | Aug 2006 | GB |
2 450 872 | Jul 2007 | GB |
2 459 101 | Oct 2009 | GB |
10179734 | Aug 1991 | JP |
7051251 | Nov 1995 | JP |
8187286 | Jul 1996 | JP |
A-03-191965 | Jul 1998 | JP |
2002-028246 | Jan 2002 | JP |
2 238 111 | Dec 2003 | RU |
933 100 | Jun 1982 | SU |
WO 8101795 | Jul 1981 | WO |
WO 8203558 | Oct 1982 | WO |
WO 9204062 | Mar 1992 | WO |
WO 9305840 | Apr 1993 | WO |
WO 9311709 | Jun 1993 | WO |
WO 9420160 | Sep 1994 | WO |
WO 9519194 | Jul 1995 | WO |
WO 9632981 | Jul 1996 | WO |
WO 9620021 | Oct 1996 | WO |
WO 9826835 | Jun 1998 | WO |
WO 9833549 | Aug 1998 | WO |
WO 9858693 | Dec 1998 | WO |
WO 9907435 | Feb 1999 | WO |
WO 9922789 | May 1999 | WO |
WO 9933504 | Jul 1999 | WO |
WO 0002614 | Jan 2000 | WO |
WO 0003757 | Jan 2000 | WO |
WO 0044324 | Aug 2000 | WO |
WO 0112746 | Feb 2001 | WO |
WO 0130419 | May 2001 | WO |
WO 0168180 | Sep 2001 | WO |
WO 0172353 | Oct 2001 | WO |
WO 0176684 | Oct 2001 | WO |
WO 0193926 | Dec 2001 | WO |
WO 0202165 | Jan 2002 | WO |
WO 0207804 | Jan 2002 | WO |
WO 0240083 | May 2002 | WO |
WO 02053220 | Jul 2002 | WO |
WO 02068014 | Sep 2002 | WO |
WO 02081012 | Oct 2002 | WO |
WO 02081013 | Oct 2002 | WO |
WO 02083206 | Oct 2002 | WO |
WO 02083228 | Oct 2002 | WO |
WO 02094352 | Nov 2002 | WO |
WO 02100457 | Dec 2002 | WO |
WO 02102442 | Dec 2002 | WO |
WO 03015860 | Feb 2003 | WO |
WO 03026728 | Apr 2003 | WO |
WO 03068305 | Aug 2003 | WO |
WO 03075980 | Sep 2003 | WO |
WO 03095003 | Nov 2003 | WO |
WO 2004012796 | Feb 2004 | WO |
WO 2004024219 | Mar 2004 | WO |
WO 2004026375 | Apr 2004 | WO |
WO 2004029457 | Apr 2004 | WO |
WO 2004030726 | Apr 2004 | WO |
WO 2004037325 | May 2004 | WO |
WO 2004054644 | Jul 2004 | WO |
WO 2004056412 | Jul 2004 | WO |
WO 2004064593 | Aug 2004 | WO |
WO 2004071308 | Aug 2004 | WO |
WO 2004087240 | Oct 2004 | WO |
WO 2004098683 | Nov 2004 | WO |
WO 2004101016 | Nov 2004 | WO |
WO 2004101071 | Nov 2004 | WO |
WO 2004110527 | Dec 2004 | WO |
WO 2005002649 | Jan 2005 | WO |
WO 2005004973 | Jan 2005 | WO |
WO 2005018703 | Mar 2005 | WO |
WO 2005037184 | Apr 2005 | WO |
WO 2005037350 | Apr 2005 | WO |
WO 2005039673 | May 2005 | WO |
WO 2005046780 | May 2005 | WO |
WO 2005065748 | Jul 2005 | WO |
WO 2005068006 | Jul 2005 | WO |
WO 2005072795 | Aug 2005 | WO |
WO 2005092410 | Oct 2005 | WO |
WO 2005094920 | Oct 2005 | WO |
WO 2005112800 | Dec 2005 | WO |
WO 2005118055 | Dec 2005 | WO |
WO 2006003130 | Jan 2006 | WO |
WO 2006015507 | Feb 2006 | WO |
WO 2006015600 | Feb 2006 | WO |
WO 2006024650 | Mar 2006 | WO |
WO 2006032689 | Mar 2006 | WO |
WO 2006032692 | Mar 2006 | WO |
WO 2006061027 | Jun 2006 | WO |
WO 2006061354 | Jun 2006 | WO |
WO 2006062680 | Jun 2006 | WO |
WO 2006062912 | Jun 2006 | WO |
WO 2006075016 | Jul 2006 | WO |
WO 2006077262 | Jul 2006 | WO |
WO 2006077263 | Jul 2006 | WO |
WO 2006089958 | Aug 2006 | WO |
WO 2006097111 | Sep 2006 | WO |
WO 2006108775 | Oct 2006 | WO |
WO 2006120253 | Nov 2006 | WO |
WO 2006121921 | Nov 2006 | WO |
WO 2006122048 | Nov 2006 | WO |
WO 2007000162 | Jan 2007 | WO |
WO 2007002523 | Jan 2007 | WO |
WO 2007020090 | Feb 2007 | WO |
WO 2007065944 | Jun 2007 | WO |
WO 2007071255 | Jun 2007 | WO |
WO 2007071258 | Jun 2007 | WO |
WO 2007093051 | Aug 2007 | WO |
WO 2007093182 | Aug 2007 | WO |
WO 2007122207 | Nov 2007 | WO |
WO 2007140631 | Dec 2007 | WO |
WO 2007140783 | Dec 2007 | WO |
WO 2007140785 | Dec 2007 | WO |
WO 2007141210 | Dec 2007 | WO |
WO 2008014791 | Feb 2008 | WO |
WO 2008014792 | Feb 2008 | WO |
WO 2008033702 | Mar 2008 | WO |
WO 2008048631 | Apr 2008 | WO |
WO 2008052545 | May 2008 | WO |
WO 2008065646 | Jun 2008 | WO |
WO 2008092782 | Aug 2008 | WO |
WO 2008092958 | Aug 2008 | WO |
WO 2008092959 | Aug 2008 | WO |
WO 2008135098 | Nov 2008 | WO |
WO 2008147600 | Dec 2008 | WO |
WO 2008148714 | Dec 2008 | WO |
WO 2008155145 | Dec 2008 | WO |
WO 2008155377 | Dec 2008 | WO |
WO 2009004026 | Jan 2009 | WO |
WO 2009007287 | Jan 2009 | WO |
WO 2009010396 | Jan 2009 | WO |
WO 2009010399 | Jan 2009 | WO |
WO 2009016635 | Feb 2009 | WO |
WO 2009033032 | Mar 2009 | WO |
WO 2009039013 | Mar 2009 | WO |
WO 2009098291 | Aug 2009 | WO |
WO 2009098306 | Aug 2009 | WO |
WO 2009101130 | Aug 2009 | WO |
WO 2009101145 | Aug 2009 | WO |
WO 2009103759 | Aug 2009 | WO |
WO 2009106517 | Sep 2009 | WO |
WO 2009144272 | Dec 2009 | WO |
WO 2010003885 | Jan 2010 | WO |
WO 2010003886 | Jan 2010 | WO |
WO 2010030602 | Mar 2010 | WO |
WO 2010034830 | Apr 2010 | WO |
WO 2010072664 | Jul 2010 | WO |
WO 2010080715 | Jul 2010 | WO |
WO 2010112521 | Oct 2010 | WO |
WO 2011012465 | Feb 2011 | WO |
WO 2011015659 | Feb 2011 | WO |
WO 2011121023 | Oct 2011 | WO |
WO 2012041784 | Apr 2012 | WO |
WO 2012041923 | Apr 2012 | WO |
WO 2012045667 | Apr 2012 | WO |
WO 2012107440 | Aug 2012 | WO |
WO 2012123274 | Sep 2012 | WO |
Entry |
---|
International Search Report completed Dec. 17, 2010 for International Application No. PCT/EP2010/061497. |
Written Opinion completed Dec. 17, 2010 for International Application No. PCT/EP2010/061497. |
“Why inset®?” inset® infusion set product overview; http://web.archive.org/web/20040906102448/http://www.infusion-set.com/Default.asp?ID=108; two pages. |
Number | Date | Country | |
---|---|---|---|
20120184909 A1 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
61232115 | Aug 2009 | US |