The present invention relates to radio communication systems and, more particularly, to multi-beam base station antennas (BSAs) utilized in cellular and other communication systems.
Cellular communications systems are well known in the art. In a cellular communications system, a geographic area is divided into a plurality of regions that are referred to as “cells”, which are served by respective base stations. A base station may include one or more antennas that are configured to provide two-way radio frequency (“RF”) communications with mobile subscribers that are within the cell served by the base station. In many cases, each cell is divided into “sectors.” Typically, the base station antennas are mounted on a tower or other raised structure, and the radiation patterns (also referred to herein as “antenna beams”) generated by the base station antennas are directed outwardly from the tower.
A common base station configuration is a three-sector configuration in which the cell is divided into three 120° sectors in the azimuth plane to thereby provide 360° coverage. A base station antenna is provided for each sector. In a three sector configuration, the antenna beams generated by each base station antenna typically have a Half Power Beamwidth (“HPBW”) in the azimuth (horizontal) plane of about 65° so that the antenna beams provide good coverage throughout a 120° sector. Typically, each base station antenna will include one or more vertically-extending columns of radiating elements that are typically referred to as “linear arrays.” Each radiating element may have a HPBW of approximately 65°. By providing a column of radiating elements extending along the elevation (vertical) plane, the elevation HPBW of the antenna beam may be narrowed to be significantly less than 65°, with the amount of narrowing typically increasing with the length of the column in the vertical direction. The radiating elements in a linear array are often spaced apart from adjacent radiating elements by a fixed distance that varies based on the operating frequency band of the radiating elements and performance requirements for the array. The number of radiating elements included in the linear array may then be selected so that the linear array will have a length that provides a desired elevation beamwidth.
The desired elevation beamwidth for a linear array of radiating elements will depend upon the size and geography of the cell in which the base station antenna is deployed. In order to meet cellular operator requirements, base station antenna manufacturers typically sell multiple versions of many base station antenna models that have different array lengths and hence different elevation beamwidths. For example, in some cases, it may be desirable to have a small elevation beamwidth (e.g., 10-15 degrees) in order to increase the antenna gain and/or to reduce spillover of the antenna beam into adjacent cells (as such spillover appears as interference in the adjacent cells). This requires relatively long linear arrays. In other cases, larger elevation beamwidths are acceptable, allowing the use of shorter linear arrays that have fewer radiating elements.
In order to accommodate the increasing volume of cellular communications, new frequency bands are being made available for cellular service. Cellular operators now typically deploy multi-band base station antennas that include arrays of radiating elements that operate in different frequency bands to support service in these new frequency bands. For example, most base station antennas now include both “low-band” linear arrays of radiating elements that provide service in some or all of the 617-960 MHz frequency band and “mid-band” linear arrays of radiating elements that provide service in some or all of the 1427-2690 MHz frequency band. There is also interest in deploying base station antennas that include one or more arrays of “high-band” radiating elements that operate in higher frequency bands, such as some or all of the 3.3-4.2 GHz and/or the 5.1-5.8 GHz frequency bands. The high-band arrays are often implemented as multi-column arrays of radiating elements that can be configured to perform active beamforming where the shape of the antenna beam generated by the array can be controlled to form higher directivity antenna beams that support higher throughput. When beamforming arrays are used, a beamforming radio is often mounted directly on the back of the base station antenna in order to reduce RF losses.
For example, as illustrated by
Because the requirements for the beamforming antennas are more likely subject to change, and because beamforming antennas may experience higher failure rates, cellular operators may sometimes prefer that the beamforming antennas be implemented as separate antennas. But, there are often disadvantages associated with deploying additional base station antennas. First, a separate charge typically applies for each base station antenna mounted on an antenna tower, and hence increasing the number of antennas typically results in increased installation costs. Second, cellular operators often lease space on antenna towers, and there is typically a separate leasing charge for each item of equipment mounted on the antenna tower. Third, local ordinances and/or zoning regulations may limit the number of base station antennas that can be mounted on an antenna tower, and hence additional antenna towers may need to be erected if the number of base station antennas required exceeds the number permitted by the local zoning ordinances.
When shorter base station antennas are used, it may be possible to mount two base station antennas in a vertically stacked fashion so that the two base station antennas may appear as a single antenna. For example, as disclosed in U.S. Patent Publication No. 2019/0123426, which is hereby incorporated herein by reference, first and second base station antennas may be mounted together in a vertically stacked arrangement so that the composite base station antenna unit has the appearance of a single base station antenna. The first base station antenna may comprise, for example, a conventional dual-band base station antenna that includes low-band and mid-band arrays of radiating elements, and may have a height (i.e., the length of the antenna in the vertical direction that is perpendicular to the plane defined by the horizon when the antenna is mounted for use) in a range from about 1.0 meters to about 2.0 meters. The second base station antenna may comprise, for example, a beamforming antenna that operates in, for example, a portion of the 3.3-4.2 GHz or 5.1-5.8 GHz frequency bands. The height of the second base station antenna may be less than about 1.0 meters, for example.
A radio unit for a base station antenna may include a filter unit having a plurality of filters and a plurality of calibration couplers therein, with the plurality of calibration couplers having respective inputs electrically coupled to corresponding outputs of the plurality of filters. A radio is also provided, which has a plurality of outputs electrically coupled to a corresponding plurality of input terminals of the plurality of filters. This radio includes a calibration circuit responsive to calibration feedback signals generated at a plurality of outputs of the plurality of calibration couplers.
A radio unit for a base station antenna according to another embodiment of the invention includes a reflector having an array of radiating elements on a front facing surface thereof, and a filter unit having a plurality of filters and a plurality of calibration couplers therein, which extend adjacent a rear facing surface of the reflector. A radio is provided, which has a plurality of outputs electrically coupled to a corresponding plurality of input terminals of the plurality of filters.
A base station antenna according to another embodiment of the invention includes a first antenna having first and second spaced-apart columns of first radiating elements therein, which are configured to operate within a first frequency band. An active antenna system (AAS) is provided, which is configured to operate within a second frequency band. The AAS includes a second antenna extending at least partially into a space between the first and second columns of first radiating elements. This second antenna includes a reflector having a two-dimensional array of second radiating elements thereon, which are arranged into a plurality of rows and a plurality of columns of the second radiating elements.
A base station antenna according to another embodiment of the invention includes a first antenna having first radiating elements therein and a first radome covering the first radiating elements. An active antenna system (AAS) is also provided, which includes a second antenna that extends at least partially into a rear-facing opening in the first antenna. The second antenna includes a reflector having a plurality of feed boards on a front facing surface thereof and a two-dimensional array of second radiating elements on the plurality of feed boards.
According to another embodiment of the invention, a base station antenna is provided, which includes a column of radiating elements supported by at least one feed board. This at least one feed board includes: a first 1-to-N phase shifter thereon having N outputs electrically coupled to a corresponding N pairs of the radiating elements at a first end of the column, and a second 1-to-N phase shifter thereon having N outputs electrically coupled to a corresponding N pairs of the radiating elements at a second end of the column, where N is a positive integer greater than one.
According to a further embodiment of the invention, a radio unit for a base station antenna includes a filter unit containing: (i) a housing having a plurality of filters and a plurality of calibration couplers therein, (ii) a plurality of radio frequency (RF) signal ports electrically coupled to corresponding outputs of the plurality of filters, and (iii) at least one radio feedback port electrically coupled to corresponding outputs of the plurality of calibration couplers. A reflector is also provided, which has at least one printed circuit feed board thereon. This feed board includes RF feed terminals responsive to signals generated at the plurality of RF signal ports. A plurality of radiating elements are provided on the at least one printed circuit feed board.
According to another embodiment, a base station antenna is provided with a first antenna (having first radiating elements therein that are configured to operate within a first frequency band), and an active antenna system (AAS). This AAS is configured to operate within a second frequency band higher than the first frequency band. The AAS includes a filter unit, and this filter unit includes: (i) a housing having a plurality of filters and a plurality of calibration couplers therein, (ii) a plurality of radio frequency (RF) signal ports electrically coupled to corresponding outputs of the plurality of filters, and (ii) at least one radio feedback port electrically coupled to corresponding outputs of the plurality of calibration couplers. A reflector is provided, which has at least one printed circuit feed board thereon. This feed board includes RF feed terminals responsive to signals generated at the plurality of RF signal ports. A plurality of second radiating elements are provided on the at least one printed circuit feed board.
A base station antenna according to another embodiment of the invention includes a reflector having a plurality of columns of radiating elements on a front-facing surface thereof, and an at least single channel phase shifter, which extends at least a majority of the length of the plurality of columns of radiating elements and on a rear-facing surface of the reflector.
The present invention now will be described more fully with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like reference numerals refer to like elements throughout.
It will be understood that, although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present invention. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprising”, “including”, “having” and variants thereof, when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. In contrast, the term “consisting of” when used in this specification, specifies the stated features, steps, operations, elements, and/or components, and precludes additional features, steps, operations, elements and/or components.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Referring now to
In addition, and as described more fully hereinbelow with respect to
In an active antenna system (AAS) according to a third embodiment, one set of blind mate interconnects are provided between the active radio circuit 52 and the filter network 54, and one set of blind mate interconnects are provided between the phase shifter network 58 and the feed board signal routing network 60. This third configuration enables the radio function to extend to and include the phase shifter network 58. And, in an active antenna system (AAS) according to a fourth embodiment, one set of blind mate interconnects are provided between the active radio circuit 52 and the filter network 54, and one set of board-to-board (B-B) interconnects are provided between the calibration logic 56 and the phase shifter network 58. This fourth configuration enables the radio function to extend to and include the calibration logic 56.
Referring now to
As shown by
The output of each power amplifier is coupled to a first port of a three port circulator 118. The second port of each circulator 118 is coupled to a respective one of the radio outputs 113. The third port of each circulator 118 is coupled to an input of a respective transmit/receive switch 119. The first output of each transmit/receive switch 119 is coupled to a respective one of the low noise amplifiers (LNA), while the second output is coupled to a terminating load such as a resistor. When the radio 110 is operating in a transmit mode, RF signals output by one of the power amplifiers are passed to its associated circulator 118, and output the circulator at the second port where they are passed to radio port 113. When the radio 110 is operating in a receive mode, received RF signals are passed from the antenna elements 132 to radio port 113, where they are passed to circulator 118. These received RF signals are output at the third port of the circulator 118 to the RF switch 119, and the RF switch 119 is set to pass these signals to the low noise amplifier. When the radio 110 is operating in a transmit mode, the RF switch 119 may be set to connect the input port thereof to the terminating load so that any residual amount of the RF energy of the RF transmit signal is passed to the load in order to protect the low noise amplifier from possible damage.
Advantageously, each of the 4T4R filter/coupler units 120 is illustrated as including a highly integrated quad-arrangement of band-pass filters 122 having antenna-side terminals/outputs 125, which are directly coupled to respective calibration couplers 124. As explained more fully hereinbelow, the output terminals of the calibration couplers 124 can be electrically coupled together and to a respective feedback port 117 associated with each filter/coupler unit 120. Based on this configuration, calibration feedback signals generated by the calibration couplers 124 may be provided through a single port 117 to a strip line 115 associated with the calibration circuit 116, in order to support transmitter (Tx) calibration. The calibration circuit 116 may also be configured to inject a respective RF signal through each of calibration couplers 124 in order to support receiver (Rx) calibration. In further embodiments, a combiner/switch matrix (not shown) may also be utilized to transfer the calibration feedback signals.
As is further shown in
As shown by
Additionally, each filter/coupler unit 120 includes a calibration coupler 124 integrated therein that diverts (i.e., “taps” off) a small amount of the transmitted RF energy to the printed circuit board 140. Calibration circuitry in the form of combiners on the printed circuit board 140 combine the RF energy output from the calibration couplers 124 included in each filter/coupler unit 120 in order to generate a composite calibration signal that is passed to feedback port 117, from which it is provided to calibration circuit 116. Additionally, the calibration circuitry may be further configured so that each calibration coupler 124 injects RF energy into received RF signals to thereby support receiver (Rx) calibration.
Referring now to
This cascaded phase shifter network is illustrated as including a 1-to-2 phase shifter 206a having an input terminal responsive to −45° feed signals provided to a first input port 204a of the feed board 200a and a pair of output terminals that are electrically coupled to respective input terminals of a corresponding pair of 1-to-3 phase shifters 208a. As shown, the six output terminals of this first pair of 1-to-3 phase shifters 208a are electrically coupled to corresponding pairs of slant radiators 202a that collectively support −45° radiation patterns across the eight columns. Similarly, the phase shifter network is also illustrated as including a 1-to-2 phase shifter 206b having an input terminal responsive to +45° feed signals provided to a second input port 204b of the feed board 200a and a pair of output terminals that are electrically coupled to respective input terminals of a corresponding pair of 1-to-3 phase shifters 208b. And, the six output terminals of this second pair of 1-to-3 phase shifters 208b are electrically coupled to corresponding pairs of slant radiators 202b that collectively support +45° radiation patterns across the eight columns.
According to another embodiment, a pair of half-length feed boards 200b may be utilized in combination with the twelve pairs of dipole radiators 202a, 202b and two pairs of 1-to-3 phase shifters 208a, 208b, to collectively support a 32T32R antenna implementation when eight side-by-side pairs of feed boards 200b are used to define eight columns of the antenna 130. In this implementation, each of the pair of feed boards 200b is responsive to a corresponding pair of feed signals received at the input ports 204a, 204b.
Referring now to
Moreover, as shown by
Although not shown in
Advantageously, the degree of integration between the radiating elements 132 within an “active” AAS described herein (e.g., 64T64R, 32T32R, 16T16R, 8T8R) and the radiating elements within the larger “passive” base station antenna 440 may be increased by configuring the AAS and base station antenna 440 so that, upon attachment, the feed boards and radiating elements associated with these devices are closely aligned to each other. For example, as illustrated by
In particular,
In this manner, the illustrated integration of the “lower frequency” radiators 446a, 446b as extending over the “higher frequency” radiating elements 132 somewhat mimics the configuration of a single reflector having relatively small and large radiating elements highly integrated thereon (and with a relatively compact radiator footprint), and facilitates the manufacture of a multi-antenna base station 500 having a relatively narrow width that is comparable to an otherwise equivalent base station having non-detactable arrays of relatively high band radiating elements therein.
Nonetheless, as illustrated by
The same arrangement of feed boards illustrated by
Referring now to
According to another embodiment, the full-length and half-length feed boards 200a, 200b and on-board phase shifters 206a, 206b, 208a, 208b of
For example, referring to
According to another embodiment of the invention illustrated by
As shown by
In the drawings and specification, there have been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.
This application claims priority to U.S. Provisional Application Ser. No. 62/993,925, filed Mar. 24, 2020, the disclosure of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
7907096 | Timofeev et al. | Mar 2011 | B2 |
20040169612 | Song et al. | Sep 2004 | A1 |
20040259597 | Gothard et al. | Dec 2004 | A1 |
20050264463 | Gottl et al. | Dec 2005 | A1 |
20060273865 | Timofeev et al. | Dec 2006 | A1 |
20070229385 | Deng et al. | Oct 2007 | A1 |
20090135076 | Foo | May 2009 | A1 |
20090224994 | Le et al. | Sep 2009 | A1 |
20120087284 | Linehan et al. | Apr 2012 | A1 |
20120280874 | Kim et al. | Nov 2012 | A1 |
20130234883 | Ma | Sep 2013 | A1 |
20140313095 | Pu | Oct 2014 | A1 |
20150084823 | Wang et al. | Mar 2015 | A1 |
20150097739 | Samuel | Apr 2015 | A1 |
20170040679 | Fröhler et al. | Feb 2017 | A1 |
20180323513 | Varnoosfaderani et al. | Nov 2018 | A1 |
20190123426 | Bryce | Apr 2019 | A1 |
20190173162 | Farzaneh | Jun 2019 | A1 |
20190181557 | Isik et al. | Jun 2019 | A1 |
20190267701 | Kim et al. | Aug 2019 | A1 |
20190312338 | Guntupalli et al. | Oct 2019 | A1 |
20190312394 | Paynter et al. | Oct 2019 | A1 |
20200076079 | Shan et al. | Mar 2020 | A1 |
20200288495 | Gao et al. | Sep 2020 | A1 |
20210305717 | Hou et al. | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
100492763 | May 2009 | CN |
201528038 | Jul 2010 | CN |
101950846 | Jan 2011 | CN |
201893434 | Jul 2011 | CN |
102800956 | Nov 2012 | CN |
103490175 | Jan 2014 | CN |
103715521 | Apr 2014 | CN |
104319486 | Jan 2015 | CN |
206225553 | Jun 2017 | CN |
109219905 | Jan 2019 | CN |
110323564 | Oct 2019 | CN |
114094347 | Feb 2022 | CN |
1204161 | May 2002 | EP |
2784876 | Oct 2014 | EP |
2827449 | Jan 2015 | EP |
3544204 | Sep 2019 | EP |
3751665 | Dec 2020 | EP |
9700586 | Jan 1997 | WO |
2009061966 | May 2009 | WO |
2019100325 | May 2019 | WO |
2019154362 | Aug 2019 | WO |
2019236203 | Dec 2019 | WO |
2020010039 | Jan 2020 | WO |
2020072880 | Apr 2020 | WO |
Entry |
---|
Shepard et al. “Argos: Practical Many-Antenna Base Stations” Proceedings of the 18th Annual International Conference on Mobile Computing and Networking (12 pages) (Aug. 26, 2012). |
“Communication with European Search Report”, EP Application No. 21164674.0, dated Aug. 16, 2021, 12 pp. |
He, Yejun , et al., “Novel Dual-Band, Dual-Polarized, Miniaturized and Low-Profile Base Station Antenna”, IEEE Transactions on Antennas and Propagation, vol. 63, No. 12, Dec. 2015, pp. 5399-5408. |
Ben A. Munk, Frequency Selective Surfaces: Theory and Design, ISBN: 978-0-471-37047-5; DOI:10.1002/0471723770; Apr. 2000, Copyright © 2000 John Wiley & Sons, Inc. |
Number | Date | Country | |
---|---|---|---|
20210305683 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
62993925 | Mar 2020 | US |