The present invention relates to a base station, a radio communication system, a radio communication method and a radio communication program.
In a subscriber system radio communication system, for example, a plurality of subscriber stations each accommodating a plurality of voice lines (terminals) and a base station connected to a network realize voice communication for a plurality of simultaneously generated calls by performing radio communication (radio connection).
For example, NPL 1 discloses an overview of a radio interface protocol architecture. Further, NPL 2 discloses a method of specifying and evaluating quality parameters which a service provider takes into consideration.
In a digital radio system, a technology for changing a modulation order, such as quadrature phase shift keying (QPSK), 16 quadrature amplitude modulation (QAM), or 64 QAM, in accordance with signal to noise ratio (SNR) is known.
An equity or a necessary band is estimated and a band is allocated to each terminal. When the digital radio system performs voice communication, call quality is stabilized by lowering a modulation order while ensuring a required communication amount (or a bit rate) in a connection line with each terminal.
Furthermore, when one base station accommodates a plurality of terminals via a plurality of subscriber stations by using multiple input multiple output (MIMO), each terminal is generally equal and therefore radio wave intensity in a radio section becomes uniform.
In a radio system, radio wave intensity in a radio section affects communication quality. In general, necessity of a communication capacity in each voice line (terminal) is different. Therefore, in the related art, a communication environment was conserved even for a terminal which did not perform communication, and communication was performed under an environment of low communication quality in a terminal in which communication often arose abundantly.
An objective of the present invention is to provide a base station, a radio communication system, a radio communication method, and a radio communication program capable of efficiently improving communication quality of all terminals even when a plurality of subscriber stations are involved.
According to an aspect of the present invention, a base station wirelessly connected to each of a plurality of subscriber stations accommodating one or more terminals includes a detection unit configured to detect at least one of a change in the number of terminals in communication accommodated by each of the subscriber stations and a change in a radio wave environment with each of the subscriber stations; and a setting unit configured to set a modulation scheme of a minimum modulation order in which a total communication amount of all the terminals that perform communication is accommodatable for each of the subscriber stations in each of the subscriber stations based on the change detected by the detection unit and to set weighting of radio wave intensity in each of the subscriber stations so that communication quality in the modulation scheme of the minimum modulation order is maximized.
According to another aspect of the present invention, a radio communication system includes a plurality of subscriber stations each accommodating one or more terminals and a base station wirelessly connected to each of the subscriber stations. The radio communication system includes a detection unit configured to detect at least one of a change in the number of terminals in communication accommodated by each of the subscriber stations and a change in a radio wave environment with each of the subscriber stations; and a setting unit configured to set a modulation scheme of a minimum modulation order in which a total communication amount of all the terminals that perform communication is accommodatable for each of the subscriber stations in each of the subscriber stations based on the change detected by the detection unit and to set weighting of radio wave intensity in each of the subscriber stations so that communication quality in the modulation scheme of the minimum modulation order is maximized.
According to still another aspect of the present invention, a radio communication method is performed between a base station and each of a plurality of subscriber stations each accommodating one or more terminals. The method includes: a detection step of detecting at least one of a change in the number of terminals in communication accommodated by each of the subscriber stations and a change in a radio wave environment with each of the subscriber stations; and a setting step of setting a modulation scheme of a minimum modulation order in which a total communication amount of all the terminals that perform communication is accommodatable for each of the subscriber stations in each of the subscriber stations based on the change detected by the detection unit, and setting weighting of radio wave intensity in each of the subscriber stations so that communication quality in the modulation scheme of the minimum modulation order is maximized.
According to the present invention, communication quality of all terminals can be efficiently improved even when a plurality of subscriber stations are involved.
Hereinafter, an embodiment of a radio communication system will be described below with reference to the drawings.
The radio communication system 1 accommodates a plurality of terminals (51 and 52) through, for example, voice lines, but the present invention is not limited thereto and data communication lines may be accommodated.
The base station 3 is a radio communication device in which an interface unit 30 provided therein is connected to the network 2 and has functions of a transmitter and a receiver. The interface unit 30 performs control such that a signal inside the base station 3 interfaces with a signal outside of the base station 3. The base stations 3 perform radio communication with the subscriber stations 4-1 and 4-2 using MIMO.
The subscriber station 4-1 is a radio communication device in which an interface unit 40 provided therein is connected to, for example, a plurality of terminals (telephone terminals) 51 and has functions of a transmitter and a receiver. The interface unit 40 performs control such that a signal inside the subscriber station 4-1 interfaces with a signal outside the subscriber station 4-1. Then, the subscriber station 4-1 relays two-way communication between the base station 3 and the plurality of terminals 51.
The subscriber station 4-2 is a radio communication device in which an interface unit 40 provided therein is connected to, for example, a plurality of terminals (telephone terminals) 52 and has functions of a transmitter and a receiver. An interface unit 40 performs control such that a signal inside the subscriber station 4-2 interfaces with a signal outside the subscriber station 4-2. The subscriber station 4-2 relays communication between the base station 3 and the plurality of terminals 52.
Here, a state in which some of the plurality of terminals 51 accommodated by the subscriber station 4-1 are on calls simultaneously, and one terminal 51 terminates the call and the other terminals 51 are not on calls is illustrated as an example. In addition, a state in which some of the plurality of terminals 52 accommodated by the subscriber station 4-2 are on calls simultaneously and the other terminals 52 are not on calls is illustrated.
First, a function of the processing unit 36 will be described. As illustrated in
The voice compression unit 360 perform processing for compressing the voice signal, for example, using any codec of G.729 (=8 kbps), G.726 (=32 kbps), and G.711 (=64 kbps). That is, the voice compression unit 360 compresses the voice signal by using any of a plurality of codecs having different compression rates (bit rates).
The modulation unit 361 performs processing for modulating (adaptively modulating) a transmission signal, for example, using any one of 64QAM in which one symbols has 64 values, 16QAM in which one symbol has 16 values or QPSK in which one symbol has 4 values. That is, the modulation unit 361 modulates a transmission signal using any one of a plurality of modulation schemes that have different amounts of information per symbol and tolerance to noise and waveform distortion.
It is assumed that, for example, the radio throughput illustrated in
These modulation schemes have a characteristic that when the order of the modulation scheme is lowered, the communication quality is improved although the number of lines which can be accommodated while satisfying the required quality is reduced. When the radio throughput is excessively large with respect to the required throughput of the line in high SNR/high-order modulation (64QAM or the like), it is preferable to lower the modulation order to low-order modulation (QPSK or the like) and stabilize communication quality at a high level. The modulation schemes are distinguished in accordance with, for example, a modulation index.
The radio wave intensity adjustment unit 362 (see
Here, as illustrated in
In order for the processing unit 36 to perform the above-described processing, the detection unit 31 illustrated in
For example, when at least one of the terminals 51 and 52 accommodated by the subscriber station 4-1 and 4-2 initiates or terminates a call and a radio wave environment (communication environment) between the base station 3 and the subscriber stations 4-1 and 4-2 changes considerably, the detection unit 31 detects necessity that the setting unit 32 changes setting to be described below.
The setting unit 32 sets a modulation scheme of a minimum modulation order in which a total communication amount of all the terminals that perform communication is accommodatable for each subscriber station in each of the subscriber stations 4-1 and 4-2 based on the change detected by the detection unit 31. The setting unit 32 sets weighting of radio wave intensity in each of the subscriber stations 4-1 and 4-2 so that communication quality in the modulation scheme of the minimum modulation order is maximized.
For example, when the setting unit 32 performs setting on the processing unit 36, the setting unit 32 first temporarily sets a codec with a lowest compression rate (a bit rate) in all the terminals, temporarily sets a modulation scheme and radio wave intensity in the subscriber stations 4-1 and 4-2, and outputs setting information to the calculation unit 33.
The calculation unit 33 calculates the number of accommodated lines and a PER margin in a case in which the codec for each terminal, and the modulation scheme and the radio wave intensity for the subscriber stations 4-1 and 4-2 are set, and outputs the calculation result to the determination unit 34.
The determination unit 34 determines whether the number of accommodated lines and the PER margin are sufficiently necessary, and outputs a determination result to the setting unit 32.
Subsequently, the setting unit 32 stores setting information indicating the codec, the modulation scheme, and the radio wave intensity in the setting storage unit 35 in accordance with the determination result of the determination unit 34. For example, when the PER margin is sufficient, the setting unit 32 performs setting so that a compression rate (a bit rate) of the codec for some or all of the terminals is increased and outputs the setting information to the calculation unit 33 again. For example, when the PER margin is not sufficient, the setting unit 32 reads the setting information with highest quality at which the PER margin is sufficient (a required condition is satisfied) from the setting information stored in the setting storage unit 35, and performs setting on the processing unit 36.
The setting unit 32 has a function of performing setting so that a bit rate of communication performed by all the terminals is equally close for each subscriber station. The setting unit 32 is assumed to have a function of setting weighting of the radio wave intensity in each of the subscriber stations 4-1 and 4-2 so that the margin for the required communication quality is equally close between the subscriber stations.
That is, the setting unit 32 realizes the setting in each of the subscriber stations 4-1 and 4-2 and the terminals 51 and 52 by performing the setting in the processing unit 36.
As illustrated in
Subsequently, the base station 3 determines whether the PER margin of each of the subscriber stations 4-1 and 4-2 is good (each subscriber station) is good (S102). Here, it is assumed that the PER margin is good in a case in which each of the subscriber stations 4-1 and 4-2 can accommodate a required number of lines in the modulation scheme, and the PER margin is equally close between the subscriber stations at the set radio wave intensity and thus is sufficient.
When the PER margin of each of the subscriber stations 4-1, 4-2 is good (Yes in S102), the base station 3 causes the processing to proceed to S104. When the PER margin is not good (No in S102) the processing proceeds to S200.
Subsequently, the base station 3 determines whether the bit rate of each terminal is the highest (S104). When the bit rate is the highest (Yes in S104), the processing proceeds to S300. When the bit rate is not the highest (No in S104), the processing proceeds to S106.
In the processing of S106, the base station 3 performs processing for raising the bit rates of all terminals by one level and returns the processing to S102. For example, when the codecs of all the terminals are G.729, the base station 3 performs processing for changing the codecs to G.726.
In the processing of S200, the base station 3 raises the bit rate by one level for one terminal of which the bit rate has not been changed among all the terminals.
Subsequently, the base station 3 determines whether the PER margin of each of the subscriber stations 4-1 and 4-2 is good (S202). Then, when the PER margin of each of the subscriber stations 4-1 and 4-2 is good (Yes in S202), the base station 3 returns the processing to S202. When the PER margin is not good (No in S202), the processing proceeds to S204.
In the processing of S204, the base station 3 returns the bit rate only for one terminal and advances to the processing of S300. For example, when the codec of the terminal of which the bit rate is raised is G.726 in the process of S200, the base station 3 performs processing for returning the codec of only the terminal to G.729.
In the processing of step S300, the base station 3 sets the bit rate in all the terminals. That is, the base station 3 collectively changes the bit rates of all the terminals in the processing of S100 to S106, changes the bit rates of the terminals one by one in the processing of S200 to S204, and finally sets the bit rates for all the terminals (all the terminals 51 and 52) in the processing of S300.
In the example of the operation illustrated in
Next, an example of all the operations of the radio communication system 1 will be described.
As illustrated in
At this time, the base station 3 sets “medium” as weighting of the radio wave intensity and performs radio communication with the subscriber station 4-1 in accordance with the modulation scheme of 16QAM. As illustrated in
The base station 3 sets “medium” as weighting of radio wave intensity and performs radio communication with the subscriber station 4-2 in accordance with the modulation scheme of 64QAM. As illustrated in
Thereafter, when one of the terminals 51 accommodated by the subscriber station 4-1 terminates the call, the number of the terminals 51 accommodated by the subscriber station 4-1 during the call is one.
In
At this time, the base station 3 performs processing so that “small” is set as weighting of the radio wave intensity and radio communication is performed with the subscriber station 4-1 in accordance with the modulation scheme of QPSK. As illustrated in
The base station 3 performs processing so that “large” is set as weighting of radio wave intensity and radio communication is performed with the subscriber station 4-2 in accordance with the modulation scheme of 64QAM. As illustrated in
In this way, in the radio communication system 1, the base station 3 sets the weighting of the radio wave intensity in each of the subscriber stations 4-1 and 4-2. Therefore, the communication quality of all the terminals can be efficiently improved even when the plurality of subscriber stations are used.
The radio communication system 1 can set and accommodate all the terminals in the codec of the bit rate equally close for each subscriber station and can change the weighting of the radio wave intensity between the base station 3 and the subscriber stations 4-1 and 4-2 so that the PER margin is almost the same between the subscriber stations.
Some or all of the functions of the base station 3 may be configured with hardware such as a programmable logic device (PLD) or a field programmable gate array (FPGA) or may be configured as a program that is executed by a processor such as a CPU. Other devices such as the subscriber station 4-1 and 4-2 may have the functions of the base station 3.
The base station 3 according to the present invention can be implemented using a computer and a program, and the program can be recorded on a recording medium or provided via a network.
The input unit 600 is, for example, a keyboard, a mouse, and the like. The output unit 610 is, for example, a display device such as a display. The communication unit 620 is, for example, a radio network interface.
The CPU 630 controls each unit of the base station 3 and performs predetermined processing or the like. The memory 640 and the HDD 650 are storage units that store data or the like.
The recording medium 670 can store a program or the like that executes the functions of the base station 3. An architecture of the base station 3 is not limited to the example illustrated in
Although embodiments of the present invention have been described above with reference to the drawings, it is apparent that the above-described embodiments are merely exemplary illustrations of the present invention and the present invention is not limited to the above-described embodiments. Accordingly, additions, omissions, substitutions, and other modifications of the components may be made within a scope that does not depart from the technical spirit and scope of the present invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2020/033494 | 9/3/2020 | WO |