BASE UNIT, MOTOR, AND AIR BLOWING DEVICE

Information

  • Patent Application
  • 20180252221
  • Publication Number
    20180252221
  • Date Filed
    February 06, 2018
    6 years ago
  • Date Published
    September 06, 2018
    6 years ago
Abstract
A base unit connectable to an external power source includes two or more cables electrically connected to the external power source and extending in a predetermined first direction, and a base plate including a cable installation portion in which the cables are installed. The two or more cables are disposed to be arrayed in a second direction perpendicular to the first direction, the cable installation portion is provided with at least one first wall portion that extends in the first direction, the first wall portion is disposed in at least part of a space between the cables that are adjacent to each other, and the cables and the first wall portion are fixed via molding resin.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority to Japanese Patent Application No. 2017-038242 filed on Mar. 1, 2017. The entire contents of this application are hereby incorporated herein by reference.


BACKGROUND OF THE INVENTION
1. Field of the Invention

The present disclosure relates to a base unit, a motor, and an air blowing device.


2. Description of the Related Art

An electronic machine including a base unit is known. The electronic machine is configured as a personal computer and includes the base unit that includes a casing and two or more cables. A bottom wall of the casing is provided with two or more columnar projections protruding upward. The two or more projections are disposed to be arrayed in a predetermined direction. Each cable is disposed along the bottom wall of the casing and is interposed between adjacent projections.


SUMMARY OF THE INVENTION

However, in the case of the base unit denoted above, since each cable is simply interposed between adjacent projections, each cable may be moved in a direction that is parallel to the bottom wall of the casing and is perpendicular to the predetermined direction and there may be positional deviation. Therefore, the cables are not sufficiently fixed to the casing and there is a problem of a decrease in reliability of the base unit.


A base unit according to an exemplary embodiment of the disclosure is a base unit connectable to an external power source, the base unit including two or more cables electrically connected to the external power source and extending in a predetermined first direction, and a base plate including a cable installation portion in which the cables are installed. The two or more cables are disposed to be arrayed in a second direction perpendicular to the first direction, the cable installation portion is provided with at least one first wall portion that extends in the first direction, the first wall portion is disposed in at least part of a space between the cables that are adjacent to each other, and the cables and the first wall portion are fixed via molding resin.


The above and other elements, features, steps, characteristics and advantages of the present disclosure will become more apparent from the following detailed description of the preferred embodiments with reference to the attached drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view illustrating an air blowing device in which a motor including a base unit according to an embodiment of the disclosure is installed.



FIG. 2 is a plan view illustrating the air blowing device in which the motor including the base unit according to the embodiment of the disclosure is installed.



FIG. 3 is a perspective view illustrating the inside of the air blowing device in which the motor including the base unit according to the embodiment of the disclosure is installed.



FIG. 4 is a side sectional view illustrating the air blowing device in which the motor including the base unit according to the embodiment of the disclosure is installed.



FIG. 5 is a perspective view illustrating the motor including the base unit according to the embodiment of the disclosure.



FIG. 6 is a perspective view of the motor including the base unit according to the embodiment of the disclosure, with a rotor housing and a magnet being detached.



FIG. 7 is a perspective view illustrating the base unit according to the embodiment of the disclosure.



FIG. 8 is a perspective view illustrating the base unit according to the embodiment of the disclosure before a molded portion is disposed.



FIG. 9 is a perspective view illustrating a base plate of the base unit according to the embodiment of the disclosure.



FIG. 10 is a sectional view of a hook portion of the base unit according to the embodiment of the disclosure, which is cut along a circumferential direction.



FIG. 11 is a sectional view of a conducting member holding portion of the base unit according to the embodiment of the disclosure as seen in a radial direction.



FIG. 12 is an enlarged perspective view illustrating a cable installation portion of the base unit according to the embodiment of the disclosure.



FIG. 13 is a sectional view of the cable installation portion of the base unit according to the embodiment of the disclosure, which is cut along the circumferential direction.



FIG. 14 is a sectional view of a hook portion of a base unit according to a first modification example of the embodiment of the disclosure, which is cut along the radial direction.



FIG. 15 is a sectional view of a conducting member holding portion of the base unit according to the first modification example of the embodiment of the disclosure as seen in the radial direction.



FIG. 16 is a perspective view illustrating a cable installation portion of the base unit according to the first modification example of the embodiment of the disclosure.



FIG. 17 is a sectional view of the base unit according to the first modification example of the embodiment of the disclosure, which is cut along the circumferential direction and cut with a plane passing through an insertion portion.



FIG. 18 is a sectional view of a hook portion of a base unit according to a second modification example of the embodiment of the disclosure, which is cut along the radial direction.



FIG. 19 is a perspective view illustrating a cable installation portion of the base unit according to the second modification example of the embodiment of the disclosure.



FIG. 20 is a sectional view of the base unit according to the second modification example of the embodiment of the disclosure, which is cut along the circumferential direction and cut with a plane passing through an insertion portion.



FIG. 21 is a sectional view of a hook portion of a base unit according to a third modification example of the embodiment of the disclosure, which is cut along the radial direction.



FIG. 22 is a perspective view illustrating a cable installation portion of the base unit according to the third modification example of the embodiment of the disclosure.



FIG. 23 is a sectional view of the base unit according to the third modification example of the embodiment of the disclosure, which is cut along the circumferential direction and cut with a plane passing through an insertion portion.



FIG. 24 is a perspective view illustrating a cable installation portion of a base unit according to a fourth modification example of the embodiment of the disclosure.



FIG. 25 is a sectional view of the base unit according to the fourth modification example of the embodiment of the disclosure, which is cut along the circumferential direction and cut with a plane passing through an insertion portion.



FIG. 26 is a perspective view illustrating a cable installation portion of a base unit according to a fifth modification example of the embodiment of the disclosure.



FIG. 27 is a sectional view of the base unit according to the fifth modification example of the embodiment of the disclosure, which is cut along the circumferential direction and cut with a plane passing through an insertion portion.



FIG. 28 is a perspective view illustrating a cable installation portion of a base unit according to a sixth modification example of the embodiment of the disclosure.



FIG. 29 is a sectional view of the base unit according to the sixth modification example of the embodiment of the disclosure, which is cut along the circumferential direction and cut with a plane passing through an insertion portion.



FIG. 30 is a perspective view illustrating a cable installation portion of a base unit according to a seventh modification example of the embodiment of the disclosure.



FIG. 31 is a sectional view of the base unit according to the seventh modification example of the embodiment of the disclosure, which is cut along the circumferential direction and cut with a plane passing through an insertion portion.



FIG. 32 is a sectional view of a hook portion of a base unit according to an eighth modification example of the embodiment of the disclosure, which is cut along the circumferential direction.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Hereinafter, exemplary embodiments of the disclosure will be described in detail with reference to drawings. Note that, in the specification, with regard to a base unit 1, a motor 200, and an air blowing device 100, a direction parallel to a central axis C of the base unit 1 will be referred to as an “axial direction”, a direction orthogonal to the central axis C of the base unit 1 will be referred to as a “radial direction”, and a direction along an arc around the central axis C of the base unit 1 will be referred to as a “circumferential direction”.


Similarly, with regard to an impeller 102, directions that coincide with the axial direction, the radial direction, and the circumferential direction of the air blowing device 100 in a state where the impeller 102 is incorporated in the air blowing device 100 will be simply referred to as an “axial direction”, a “radial direction”, and a “circumferential direction”. In addition, in the specification, the shape of each portion and a positional relationship will be described on an assumption that the axial direction of the air blowing device 100 is the vertical direction and an intake port 103 of a fan casing 101 is above the impeller 102. In addition, the shape of each portion and the positional relationship will be described on an assumption that the axial directions of the base unit 1 and the motor 200 are the vertical direction and a base plate 2 is below a stator 3. In addition, the shape of each portion and the positional relationship will be described on an assumption that a surface of the base plate 2 on which the stator 3 is attached (a surface facing the impeller 102) is an upper surface and a surface opposite to the upper surface is a lower surface. The vertical direction is simply a term used for the purpose of description and is not intended to limit the actual positional relationship or directions. In addition, expressions “upstream side” and “downstream side” respectively mean an upstream side and a downstream side in a direction of flowing air that is sucked via the intake port 103 as the impeller 102 is rotated.



FIG. 1 is a perspective view illustrating an air blowing device in which a motor including a base unit according to the present embodiment is installed. FIG. 2 is a plan view illustrating the air blowing device 100. FIG. 3 is a perspective view illustrating the inside of the air blowing device 100. For example, the air blowing device 100 is installed in communication equipment (not shown) and cools an electronic component (not shown) or the like in the communication equipment. Note that, the air blowing device 100 may be installed in various types of OA equipment, medical equipment, transportation equipment, a household electrical appliance, or the like.


The air blowing device 100 includes the fan casing 101 which has a tubular shape in a horizontal section and the fan casing 101 accommodates the impeller 102 and the motor 200 (refer to FIG. 4). An upper end portion and a lower end portion of the fan casing 101 are provided with flange portions 101c each of which has an approximately square shape as seen in a plan view. Four corners of each of the upper and lower flange portions 101c are provided with attachment holes 101a. Screws (not shown) are inserted into the upper and lower attachment holes 101a and the screws inserted into the attachment holes 101a are screwed into screw holes (not shown) provided in an inner surface of a casing or the like of communication equipment. In this manner, the air blowing device 100 is attached to an internal portion of the communication equipment.


An upper portion of the fan casing 101 is provided with the intake port 103 which is open in the vertical direction (the axial direction). In addition, in the vicinity of the four corners of each of the flange portions 101c in the intake port 103, a bell mouth 130 is provided. The bell mouth 130 extends downward while being curved inward from the upper end. In addition, a lower surface of the fan casing 101 is open in the vertical direction and the base plate 2 of the base unit 1, which will be described later, is disposed on the lower surface of the fan casing 101. The base plate 2 is provided with air flowing ports 104 that penetrate the base plate 2 in the axial direction.


The impeller 102 is a so-called axial flow impeller that is formed by using a resin molded product and includes an impeller base portion 102a and two or more blades 102b. The impeller base portion 102a has a tubular shape that extends in the axial direction. The two or more blades 102b are disposed on an outer circumferential surface of the impeller base portion 102a such that the blades 102b are arranged in the circumferential direction.


The impeller 102 accommodates the motor 200 and when the impeller 102 is driven by the motor 200, the impeller 102 rotates in a rotation direction RT around the central axis C that vertically extends.


An air path 109 (refer to FIGS. 1 and 4) is formed in a space between an inner circumferential surface of the fan casing 101 and the impeller base portion 102a. An upper end (an upstream end) of the air path 109 communicates with the intake port 103 and a lower end (a downstream end) of the air path 109 communicates with the air flowing ports 104.



FIG. 4 is a side sectional view illustrating the air blowing device 100. FIG. 5 is a perspective view illustrating the motor 200. FIG. 6 is a perspective view of the motor 200 with a rotor housing 40 and a magnet 42 being detached. FIG. 7 is a perspective view illustrating the base unit 1. FIG. 8 is a perspective view illustrating the base unit 1 before a molded portion 7 is disposed. FIG. 9 is a perspective view illustrating the base plate 2 of the base unit 1. Note that, in FIG. 6, a two-dot chain line 421 represents a position at which the magnet 42 is disposed.


The motor 200 is a so-called outer rotor motor and includes the base unit 1 and a rotor 4. The base unit 1 includes the base plate 2 and two or more cables 9. Note that, in the present embodiment, the base unit 1 further includes the stator 3 (refer to FIGS. 4 and 8) and a bearing housing 5 (refer to FIG. 4).


The base plate 2 is formed of, for example, metal such as aluminum and as illustrated in FIG. 9, the base plate 2 extends in the radial direction while being centered around the central axis C which extends vertically. In the present embodiment, the base plate 2 has a circular shape as seen in the axial direction (in a plan view). Note that, the base plate 2 may have a polygonal shape or an oval shape as seen in the axial direction. In addition, the base plate 2 may be formed of resin material. An outer circumferential end of the base plate 2 is positioned outward of the impeller base portion 102a in the radial direction.


The central portion of an upper surface of the base plate 2 is provided with a circular base plate protruding portion 2a that protrudes upward. The central portion of the base plate protruding portion 2a is provided with a central through-hole 29 having an approximately circular shape that penetrates the central portion in the axial direction. The cylindrical bearing housing is inserted into the central through-hole 29 such that the bearing housing 5 is attached and the bearing housing 5 is disposed to extend upward from the upper surface of the base plate 2. That is, the bearing housing 5 extends in the axial direction while being positioned on the central axis C which extends vertically. A lower surface of the bearing housing 5 and the central through-hole 29 are blocked by a circular cap 51 (refer to FIG. 4).


Upper and lower portions of an inner circumferential surface of the bearing housing 5 are provided with bearing portions 50(refer to FIG. 4). The upper and lower bearing portions 50 are ball bearings. Note that, the bearing portions 50 may include another type of bearing such as a slide bearing.


The stator 3 is provided on an upper surface of the base plate protruding portion 2a of the base plate 2 and is provided outward of the bearing housing 5 in the radial direction. As illustrated in FIG. 4, the stator 3 includes a stator core 30 and insulators 34. The stator core 30 is made of stacked steel plates, which are electromagnetic steel plates stacked in the axial direction (the vertical direction), and the stator core 30 includes an annular core back 31 and two or more teeth 32. The core back 31 is fixed while being in contact with an outer circumferential surface of the bearing housing 5.


The two or more teeth 32 extend outward in the radial direction from an outer circumferential surface of the core back 31 to the magnet 42 (refer to FIG. 4) of the rotor 4 and are radially disposed. Accordingly, the two or more teeth 32 are disposed to be arrayed in the circumferential direction. In the present embodiment, the number of teeth 32 provided is six. Note that, the number of teeth 32 is not limited to six and as long as the number of teeth 32 is a number greater than one.


Each of the insulators 34 is configured of insulating material such as resin and covers at least the outer circumferential surface of the core back 31 and the two or more teeth 32.


A coil 33 obtained by winding a lead wire is provided in the vicinity of each of the teeth 32 with the insulator 34 being interposed therebetween. That is, the insulators 34 are disposed between the coils 33 and the teeth 32. Therefore, the teeth 32 and the coils 33 are insulated from each other. A lead wire (not shown) is drawn out from each coil 33.


A circuit board 60 (refer to FIGS. 4 and 8) is provided on the upper surface of the base plate protruding portion 2a and is provided below the stator 3. The circuit board 60 has a circular shape with the central portion being open and is formed of, for example, resin such as epoxy resin. A wiring pattern (not shown) is formed on the circuit board 60. A lower surface of the circuit board 60 is provided with a terminal portion 6 that is connected to the wiring pattern. The cables 9 are electrically connected to the terminal portion 6. The cables 9 constitute a conducting member. In the present embodiment, the number of cables 9 provided is three and the terminal portion 6 is provided for each of the cables 9.


The cables 9 are drawn outward of the base plate 2 in the radial direction and are connected to an external power source 90 (refer to FIG. 1). Note that, instead of the cables 9, a belt-shaped flexible printed circuit board may constitute the conducting member. The lead wire of each coil 33 is electrically connected to the wiring pattern of the circuit board 60. Accordingly, the lead wire of each coil 33 is electrically connected to the cables 9 via the terminal portion 6 and the cables are electrically connected to the stator 3. That is, the terminal portion 6 is provided between the stator 3 and the base plate 2 and is electrically connected to the lead wires drawn out from the coils 33. Note that, the circuit board 60 may be omitted such that the terminal portion 6 and the lead wires are directly connected to each other.


In addition, an electronic component (not shown) such as a capacitor may be mounted on the circuit board 60. In this case, the electronic component may include an AC/DC converter, an inverter, a control circuit, a position detection circuit, and the like. The control circuit controls rotation of the rotor 4 and includes an IC (not shown). The IC is not particularly limited and for example, an intelligent power module (IPM) can be used.


The central portion of the upper surface of the base plate 2, the entire circuit board 60, and the entire stator 3 are covered by the molded portion 7 (refer to FIG. 7) formed of molding resin MR (resin). In the present embodiment, the molded portion 7 has a circular shape as seen in the axial direction. Note that, the molded portion 7 may have a polygonal shape or an oval shape as seen in the axial direction. In FIG. 8, a mold (not shown) is disposed to surround an outer side, in the radial direction, of the stator 3 and hook portions 20, which will be described later, and the molding resin MR in a molten state is caused to flow into the mold. Thereafter, the molding resin MR in a molten state is cooled and solidified on the upper surface of the base plate 2 and the molded portion 7 is formed.


The circuit board 60, the stator 3, and the base plate 2 are connected to each other via the molded portion 7. Therefore, the stator 3 and the circuit board 60 are firmly fixed to the base plate 2. As the material of the molding resin MR, for example, hot-melt resin such as polyamide thermoplastic resin or the like can be used. Note that, the material of the molding resin MR may be another type of resin.


As illustrated in FIG. 7, an outer circumferential portion of the molded portion 7 is provided with an annular molded groove portion 7a that is recessed downward. As illustrated in FIG. 4, a lower end portion of the impeller base portion 102a is accommodated in the molded groove portion 7a.


In addition, the molded portion 7 is provided with two or more lightening portions 7b (refer to FIG. 7) inward of the molded groove portion 7a in the radial direction and outward of the stator 3 in the radial direction. The two or more lightening portions 7b are recessed downward and are disposed to be arrayed in the circumferential direction. Since the lightening portions 7b are provided, air bubbles inside the molded portion 7 or a void (a hollow) is prevented from being generated when the molding resin MR in a molten state is cooled and solidified.


Note that, in the present embodiment, the molded portion 7 covers the entire stator 3. However, any configuration can be adopted as long as at least a part of the stator 3 is covered and the base plate 2 and the stator 3 are connected to each other via the molded portion 7. In addition, in the present embodiment, the molded portion 7 covers the entire circuit board 60. However, any configuration can be adopted as long as at least the terminal portion 6 is covered.


As illustrated in FIG. 9, two or more hook portions 20 are provided on the upper surface of the base plate 2 and are provided outward of the base plate protruding portion 2a in the radial direction. The two or more hook portions 20 are disposed to be arrayed in the circumferential direction around the central axis C. An outer circumferential end of the molded portion 7 and the hook portions 20 are disposed outward of the stator 3 in the radial direction. The hook portions 20 are embedded in the molded portion 7 and are positioned at an outer circumferential end portion of the molded portion 7. That is, the hook portions 20 are disposed outward of the bearing housing 5 in the radial direction. Note that, the hook portions 20 may be disposed at positions that overlap with the stator 3 in the axial direction.



FIG. 10 is a sectional view of the hook portion 20 taken along the circumferential direction. Each hook portion 20 extends in the circumferential direction, has an approximately arc shape that protrudes upward as seen in the radial direction, and is formed by cutting and raising the base plate 2 upward. That is, each hook portion 20 is in a state of being cut and raised from the base plate 2. Each hook portion 20 is provided with a hook portion through-hole 20b that penetrates the hook portion 20 in the radial direction. A part of the molded portion 7 is disposed in each hook portion through-hole 20b. Therefore, the hook portions 20 protrude upward and are caught on the molded portion 7 at least in the axial direction.


In addition, each hook portion 20 is provided with an embedded portion 20a embedded in the molded portion 7. In the present embodiment, since the entire hook portion 20 is embedded in the molded portion 7, the entire hook portion 20 is the embedded portion 20a. The embedded portion 20a is interposed between portions of the molding resin MR in the vertical direction inside the molded portion 7. Note that, only an upper portion of the hook portion 20 may be embedded in the molded portion 7. In this case, the upper portion of the hook portion 20 is the embedded portion 20a.


In the present embodiment, the two or more hook portions 20 are provided. However, the number of hook portions 20 may be one. For example, one hook portion 20 may have an annular shape that surrounds an outer side of the bearing housing 5 in the radial direction as seen in the axial direction. In addition, the hook portion 20 may be formed by performing welding or the like on the base plate 2 instead of cutting and raising the base plate 2. In addition, the hook portion 20 may extend in the radial direction and the hook portion through-hole 20b may penetrate the hook portion 20 in the circumferential direction.


As illustrated in FIG. 7, the base plate 2 is provided with two or more air flowing ports 104 that are provided outward of the molded portion 7 in the radial direction. Each of the air flowing ports 104 is a long hole that penetrates the base plate 2 in the axial direction and extends in the circumferential direction. The two or more air flowing ports 104 are arranged in the circumferential direction and the radial direction and are disposed radially while being centered around the central axis C. The area of the air flowing port 104 on the outer side in the radial direction is larger than the area of the air flowing port 104 on the inner side in the radial direction.


The base plate 2 is provided with finger guards 105 each of which is provided in a region between the air flowing ports 104 that are adjacent to each other in the radial direction. At this time, it is desirable that the width (the length in a transverse direction) of each air flowing port 104 is 12 mm or less. Accordingly, a protection level of IP2X according to an international electrotechnical commission (IEC) standard (IEC 60529) can be satisfied. Therefore, with the finger guards 105, a finger of a user is easily prevented from entering the fan casing 101.


The base plate 2 is provided with a groove portion 22 that extends inward in the radial direction from the outer circumferential end of the base plate 2. The groove portion 22 is recessed upward at a lower surface of the base plate 2 and is disposed between the air flowing ports 104 that are adjacent to each other in the circumferential direction. A flat portion 24 is provided in the vicinity of the groove portion 22 of the base plate 2. The groove portion 22 is provided with a bottom wall portion 22a and side wall portions 22b that connect the flat portion 24 and the bottom wall portion 22a.


A resin cover portion 8 is provided in the groove portion 22. The cover portion 8 covers at least a portion of the cables 9. Therefore, the cables 9 covered by the cover portion 8 are accommodated in the groove portion 22 and are disposed on the lower surface of the base plate 2. The material of the cover portion 8 is not limited and for example, hot-melt resin such as polyamide thermoplastic resin or the like can be used. Note that, the material of the cover portion 8 and the material of the molding resin MR of the molded portion 7 may be the same as each other and may be different from each other. The cover portion 8 is formed by causing resin in a molten state to flow from an outer end of the groove portion 22 in the radial direction to an inner end along the groove portion 22 in the radial direction after disposing the cables 9 inside the groove portion 22.


Note that, the groove portion 22 may be provided to be recessed downward on the upper surface of the base plate 2 and the cover portion 8 may be provided in the groove portion 22. That is, the cover portion 8 may be provided on the upper surface of the base plate 2.


The bottom wall portion 22a of the groove portion 22 is provided with two or more insertion portions 23 that are arranged in the radial direction. In the present embodiment, the insertion portions 23 are through-holes that penetrate the bottom wall portion 22a in the axial direction. Note that, the insertion portions 23 may be notches cut in the radial direction. That is, the base plate 2 is provided with the insertion portions 23 that are through-holes penetrating the base plate 2 in a direction from the upper surface to the lower surface or notches. A part of the cover portion 8 extends over an area from the upper surface of the base plate 2 to the lower surface of the base plate 2 while passing through the insertion portions 23. Therefore, the cover portion 8 is firmly fixed to the base plate 2. Note that, as described later, the groove portion 22 constitutes a cable installation portion 13 of the base unit 1.


As illustrated in FIGS. 8 and 9, between the base plate protruding portion 2a and the groove portion 22 of the base plate 2, a base plate through-hole 2c and a conducting member holding portion 21 are provided. The base plate through-hole 2c penetrates the base plate 2 in the axial direction and the cables 9 drawn out from the terminal portion 6 are disposed in the base plate through-hole 2c. As illustrated in FIG. 4, the conducting member holding portion 21 faces the lower end portion of the impeller base portion 102a of the impeller 102 in the axial direction. That is, the conducting member holding portion 21 faces the impeller 102 in the axial direction at the upper surface of the base plate 2. The conducting member holding portion 21 is cut and raised upward from the base plate 2 and is erected upward at an inner side, in the radial direction, of the base plate through-hole 2c. That is, the conducting member holding portion 21 is in a state of being cut and raised from the base plate 2.



FIG. 11 is a sectional view of the conducting member holding portion 21 as seen in the radial direction. The conducting member holding portion 21 is provided with an approximately rectangular holding portion through-hole 21a that penetrates the conducting member holding portion 21 in the radial direction. Since the terminal portion 6 is disposed at a higher position than the groove portion 22, the cables 9 between the inner end of the groove portion 22 in the radial direction and the terminal portion 6 are inclined upward as the cables 9 extend toward the inner side in the radial direction. Therefore, a portion of the cables 9 is accommodated in the holding portion through-hole 21a and the cables 9 abut onto the conducting member holding portion 21 at the upper end of the holding portion through-hole 21a. Accordingly, the conducting member holding portion 21 holds the cables 9 downward. That is, the conducting member holding portion 21 holds the cables 9 toward the base plate 2.


In the present embodiment, the entire conducting member holding portion 21 and the cables 9 are covered by the molded portion 7 and the conducting member holding portion 21 and the cables 9 are connected to each other via the molded portion 7. Note that, the conducting member holding portion 21 may not be covered by the molded portion 7 and it is preferable that at least a part of the conducting member holding portion 21 and at least a portion of the cables 9 are covered by the molded portion 7 and the conducting member holding portion 21 and the cables 9 are connected to each other via the molded portion 7.


Note that, two or more conducting member holding portions 21 may be provided. In addition, the conducting member holding portion 21 may not be disposed between the groove portion 22 and the base plate protruding portion 2a. In addition, any configuration can be adopted as long as the conducting member holding portion 21 is provided on at least one of the upper and lower surfaces of the base plate 2. In a case where the conducting member holding portion 21 is provided on the lower surface of the base plate 2, the conducting member holding portion 21 holds the cables 9 upward.



FIG. 12 is an enlarged perspective view illustrating the cable installation portion 13 of the base unit 1. FIG. 13 is a sectional view of the cable installation portion 13 which is cut along the circumferential direction. The base unit 1 includes the two or more cables 9 that are connected to the external power source 90 (refer to FIG. 1) and extend in a predetermined first direction DR1 and the base plate 2 that includes the cable installation portion 13 in which the cables 9 are installed. In the present embodiment, the first direction DR1 corresponds to the radial direction. In addition, in the present embodiment, the cable installation portion 13 is provided with the groove portion 22.


The two or more cables 9 are disposed in the cable installation portion 13 such that the cables 9 are arranged in a second direction DR2 perpendicular to the first direction DR1. The expression “perpendicular” means a case of being approximately perpendicular in addition to a case of being strictly perpendicular. Note that, the number of cables 9 is not limited to three as long as the number of cables 9 is a number greater than one. In addition, in the present embodiment, the second direction DR2 corresponds to the circumferential direction.


The cable installation portion 13 is provided with two or more first wall portions 11 and two or more second wall portions 12. Each first wall portion 11 extends in the first direction DR1 and is disposed in at least part of a space between the cables 9 that are adjacent to each other in the second direction DR2. Each second wall portion 12 extends in the second direction DR2 and entirely covers the two or more cables 9 in a transverse direction. At this time, each second wall portion 12 partially covers the two or more cables 9 in a longitudinal direction. In the present embodiment, three first wall portions 11 are provided. Note that, any configuration can be adopted as long as at least one first wall portion 11 is provided.


In the present embodiment, the first wall portions 11 are made of the same member as the base plate 2. For example, the first wall portions 11 are formed of metal such as aluminum as with the base plate 2. Note that, the first wall portions 11 may be made of a member different from that of the base plate 2. The two or more first wall portions 11 are disposed at intervals in the first direction DR1. In addition, the cables 9 and the first wall portions 11 are fixed to each other via molding resin such as polyamide thermoplastic resin. For example, the cables 9 and the first wall portions 11 are fixed to each other via the molding resin by causing molding resin in a molten state to flow in the radial direction (the first direction DR1) from the outer end of the groove portion 22 in the radial direction to the inner end thereof in the radial direction after disposing the cables 9 inside the groove portion 22.


A disposition region R1 in which the first wall portion 11 is disposed is provided in one space between the cables 9. A non-disposition region R2 in which the first wall portion 11 is not disposed is provided in the other space between the cables 9. The disposition region R1 and the non-disposition region R2 overlap each other in the second direction DR2. In addition, two first wall portions 11 that are adjacent to one cable 9 and are provided on the opposite sides with respect to the cable 9 are disposed at positions different in the first direction DR1. That is, the two first wall portions 11 that are provided on the opposite sides with respect to the cable 9 do not overlap each other in the second direction DR2. Therefore, the two or more first wall portions 11 are disposed in a zigzag shape as seen in the axial direction.


Each first wall portion 11 is provided with a recess portion 11a that is recessed toward the cable 9 side in a third direction DR3 that is perpendicular to the first direction DR1 and the second direction DR2. Each recess portion 11a is filled with part of molding resin. In the present embodiment, the third direction DR3 corresponds to the axial direction. Note that, each recess portion 11a may be recessed toward a side opposite to the cable 9 side in the third direction DR3 and each recess portion 11a may be filled with part of molding resin.


The two or more second wall portions 12 are disposed as an array in the first direction DR1. In the present embodiment, the number of second wall portions 12 provided is four. The opposite end portions of the first wall portion 11 in the first direction DR1 are connected to the second wall portions 12. Note that, any configuration can be adopted as long as one end portion of the first wall portion 11 in the first direction DR1 is connected to the second wall portion 12.


The rotor 4 includes the cylindrical rotor housing 40 (refer to FIGS. 4 and 5), which is provided with a lid portion 40a on the upper surface thereof, and the single annular magnet 42 (refer to FIGS. 4 and 6). The magnet 42 is disposed on an inner circumferential surface of the rotor housing 40. An inner surface of the magnet 42 in the radial direction faces an outer end surface of each of the teeth 32 in the radial direction. That is, the magnet 42 is disposed outward of the stator 3 in the radial direction and faces the stator 3 in the radial direction. The inner surface of the magnet 42 in the radial direction is magnetized by the N pole and the S pole in the circumferential direction, alternately.


Note that, instead of the single annular magnet 42, two or more magnets may be used. In this case, any configuration can be adopted as long as N-pole surfaces and S-pole surfaces of the two or more magnets are alternately arranged at regular intervals in the circumferential direction. In addition, a magnet and a rotor housing may be integrally molded by using resin mixed with magnetic powders.


As illustrated in FIG. 4, the central portion of the lid portion 40a of the rotor housing 40 is provided with a rotor hole portion 40b that penetrates the lid portion 40a in the axial direction. A bush 43 is inserted into the rotor hole portion 40b and is fixed to the lid portion 40a. The central portion of the bush 43 is provided with a boss hole 43a that penetrates the bush 43 in the axial direction. An upper portion of a columnar shaft 41 that extends in the axial direction is fixed to the boss hole 43a. Accordingly, the rotor housing 40 holds the shaft 41 that extends in the axial direction while being positioned on the central axis C.


The shaft 41 is supported by the upper and lower bearing portions 50 in the bearing housing 5 and rotates in the rotation direction RT (refer to FIGS. 1 and 2) around the central axis C together with the rotor housing 40. That is, the rotor 4 includes the shaft 41 that extends along the central axis C and the shaft 41 is disposed in the bearing housing 5 via the bearing portions 50. The impeller base portion 102a of the impeller 102 is attached to an outer circumferential surface of the rotor housing 40. Accordingly, the impeller 102 is connected to the motor 200 and the impeller 102 rotates around the central axis C as the rotor 4 rotates.


As described above, the base unit 1 includes the tubular bearing housing 5 that extends in the axial direction while being positioned on the central axis C that extends vertically, the base plate 2 that is connected to the bearing housing 5 and extends in the radial direction, and the stator 3 that is provided on the upper surface of the base plate 2 and is provided outward of the bearing housing 5 in the radial direction. At least a part of the base plate 2 and at least a part of the stator 3 are covered by the molded portion 7 formed of the molding resin MR (resin). The stator 3 and the base plate 2 are connected to each other via the molded portion 7. The base plate 2 is provided with the hook portions 20 that protrude upward and are caught on the molded portion 7 at least in the axial direction. The hook portions 20 are disposed outward of the bearing housing 5 in the radial direction. Therefore, the hook portions 20 can easily resist a force applied to the molded portion 7 in the axial direction and thus it is possible to prevent the molded portion 7 from peeling off the base plate 2.


In addition, the base unit 1 includes the tubular bearing housing 5 that extends in the axial direction while being positioned on the central axis C that extends vertically, the base plate 2 that is connected to the bearing housing 5 and extends in the radial direction, the stator 3 that is provided on the upper surface of the base plate 2 and is provided outward of the bearing housing 5 in the radial direction, and the cables 9 (the conducting member) that are electrically connected to the stator 3 and are drawn outward of the base plate 2 in the radial direction. The conducting member holding portion 21 that holds at least a portion of the cables 9 toward the base plate 2 is provided on at least one of the upper and lower surfaces of the base plate 2. The conducting member holding portion 21 is in a state of being cut and raised from the base plate 2. Therefore, it is possible to prevent the cables 9 from rising and being separated (lifted) from the base plate 2, from a predetermined position at which the cables 9 are held.


Note that, in the present embodiment, the molded portion 7 of the base unit 1 may be omitted. Alternatively, the molded portion 7 may not cover the conducting member holding portion 21. Even in this case, with the conducting member holding portion 21, it is possible to prevent the cables 9 from being lifted from the base plate 2.


In addition, the base unit 1 includes the tubular bearing housing 5 that extends in the axial direction while being positioned on the central axis C that extends vertically, the base plate 2 that is connected to the bearing housing 5 and extends in the radial direction, the stator 3 that is provided on the upper surface of the base plate 2 and is provided outward of the bearing housing 5 in the radial direction, and the cables 9 (the conducting member) that are electrically connected to the stator 3 and are drawn outward of the base plate 2 in the radial direction. The upper surface or the lower surface of the base plate 2 is provided with the resin cover portion 8 that covers at least a portion of the cables 9. The base plate 2 is provided with the insertion portions 23 that are notches or through-holes penetrating the base plate 2 in a direction from the upper surface to the lower surface. A part of the cover portion 8 extends over an area from the upper surface of the base plate 2 to the lower surface of the base plate 2 while passing through the insertion portions 23. Accordingly, it is possible to prevent the cover portion 8 from peeling off the base plate 2. In addition, it is possible to prevent the cables 9 from being lifted on the base plate 2.


In addition, the base unit 1 connected to the external power source 90 includes the two or more cables 9 that are electrically connected to the external power source 90 and extend in the predetermined first direction DR1 and the base plate 2 that includes the cable installation portion 13 in which the cables 9 are installed. The two or more cables 9 are disposed to be arrayed in the second direction DR2 perpendicular to the first direction DR1. The cable installation portion 13 is provided with at least one first wall portion 11 that extends in the first direction DR1. Each first wall portion 11 is disposed in at least part of a space between the cables 9 that are adjacent to each other. The cables 9 and the first wall portions 11 are fixed to each other via the molding resin. Therefore, it is possible to firmly fix the cables 9 to the cable installation portion 13.


In the air blowing device 100 configured as described above, when power is supplied to the coils 33 via the cables 9 from the external power source 90, a magnetic flux is generated around the stator core 30. In addition, a torque in the circumferential direction is generated due to a magnetic flux between the stator core 30 and the magnet 42. As a result, the rotor 4 rotates relative to the stator 3 in the rotation direction RT (refer to FIGS. 1 and 2) around the central axis C.


When the rotor 4 rotates, the impeller 102 rotates in the rotation direction RT and air from a position above the impeller 102 is sucked. The air sucked from the position above the impeller 102 flows into the air path 109, passes through a space between the adjacent blades 102b, and is accelerated downward by the rotating impeller 102. The air accelerated downward is discharged to a position below the impeller 102.


That is, the air blowing device 100 includes the motor 200 and the impeller 102 that is provided on the rotor 4 and rotates around the central axis C by being driven by the motor 200. In addition, air from a position above the impeller 102 is sucked when the impeller 102 rotates and the air is discharged downward. Therefore, as illustrated by an arrow S (refer to FIGS. 1 and 4), an air stream that flows from the upper side to the lower side is generated.


At this time, air sucked via the intake port 103 is rectified by the bell mouth 130 and is guided smoothly to a space between the adjacent blades 102b. Therefore, it is possible to improve the air suctioning efficiency of the air blowing device 100.


The air stream proceeding to a position below the impeller 102 is discharged to the outside of the fan casing 101 via the air flowing port 104. The air stream discharged to the outside of the fan casing 101 is discharged to the outside of the communication equipment after colliding with the electronic component or the like in the communication equipment. In this manner, the air blowing device 100 can cool the electronic component or the like in the communication equipment.


Note that, the motor 200 may be inverted such that the impeller 102 rotates in a direction opposite to the rotation direction RT. In this case, air is sucked via the air flowing port 104 and the air is discharged via the intake port 103.



FIG. 14 is a sectional view of the hook portion 20 of the base unit 1 according to a first modification example of the present embodiment, which is cut along the radial direction. Each hook portion 20 has a plate shape cut and raised upward from the base plate 2 and is the same member as the base plate 2. Each hook portion 20 may be inclined with respect to the base plate 2. Accordingly, it is possible to easily realize the hook portions 20.


Note that, only upper portions of the hook portions 20 may be embedded in the molded portion 7. In this case, only upper portions of the hook portions 20 are the embedded portions 20a. Since the hook portions 20 are embedded in the molded portion 7, it is possible to prevent the molded portion 7 from falling off in the axial direction. In addition, since the molded portion 7 covers a surface of each hook portion 20 in the circumferential direction or the radial direction with the hook portions 20 embedded in the molded portion 7, it is possible to suppress movement of the molded portion 7 in the circumferential direction or the radial direction.



FIG. 15 is a sectional view of the conducting member holding portion 21 of the base unit 1 according to the first modification example of the present embodiment as seen in the radial direction. The conducting member holding portion 21 may be provided with a protruding portion 21b that protrudes upward from the base plate 2 and a curved portion 21c that is curved from an upper end (tip end) of the protruding portion 21b in the circumferential direction. At this time, at least a portion of the cables 9 is accommodated between the curved portion 21c and the base plate 2 and abuts onto a lower end of the curved portion 21c. Therefore, it is possible to easily realize the conducting member holding portion 21 and to easily restrict movement of the cables 9 in the vertical direction (the axial direction). In addition, since a portion that is open in the circumferential direction is provided between the base plate 2 and the curved portion 21c, it is possible to easily insert the cables 9 into the conducting member holding portion 21 via the portion open in the circumferential direction.


Note that, the protruding portion 21b may protrude downward and at least a portion of the cables 9 may be accommodated between the curved portion 21c and the base plate 2. In addition, a direction in which the curved portion 21c is curved is not limited to the circumferential direction as long as the direction is a direction perpendicular to the axial direction.



FIG. 16 is a perspective view illustrating the cable installation portion 13 of the base unit 1 according to the first modification example of the present embodiment. FIG. 17 is a sectional view of the base unit 1 according to the first modification example which is cut along the circumferential direction and cut with a plane passing through the insertion portion 23. Note that, in FIGS. 16 and 17, FIGS. 19 and 20, and FIGS. 22 to 31 which will be described later, the first wall portions 11 are omitted. In the present modification example, the groove portion 22 of the base plate 2 is omitted. The base plate 2 may be provided with the flat portion 24 disposed in a region in which the cables 9 are disposed and the cover portion 8 and the insertion portion 23 may be disposed in the flat portion 24. The cover portion 8 is positioned on an upper surface and a lower surface of the flat portion 24 through the insertion portion 23. That is, at least a part of the cover portion 8 is fixed to the upper surface and the lower surface of the flat portion 24. Therefore, it is possible to prevent the cover portion 8 from peeling off the base plate 2 while reducing the number of processes to manufacture the base unit 1. Since the insertion portion 23 includes the cover portion 8, it is possible to suppress movement of the cover portion 8 in the axial direction and the radial direction.


At this time, the insertion portion 23 may be disposed at a position such that the insertion portion 23 overlaps with at least a portion of the cables 9 in the cover portion 8 in the axial direction as seen in the axial direction. Accordingly, it is possible to dispose the cables 9 in the cover portion 8 and the insertion portion 23 such that the cables 9 and the insertion portion 23 are close to each other and thus it is possible to reduce the amount of resin used for the cover portion 8.



FIG. 18 is a sectional view of the hook portion 20 of the base unit 1 according to a second modification example of the present embodiment, which is cut along the radial direction. The hook portion 20 may be provided with a hook portion protruding portion 20p that protrudes upward from the base plate 2 and an extending portion 20n that extends in the radial direction from an upper end of the hook portion protruding portion 20p. That is, the hook portion 20 may have an L-like shape as seen in the circumferential direction. Accordingly, it is possible to easily realize the hook portion 20 and it is possible to further prevent the molded portion 7 from peeling off the base plate 2. Note that, any configuration can be adopted as long as the extending portion 20n extends in a direction perpendicular to the axial direction from the upper end of the hook portion protruding portion 20p. Since the hook portion 20 is embedded in the molded portion 7, it is possible to prevent the molded portion 7 from falling off in the axial direction. In addition, since the molded portion 7 covers a surface of the hook portion 20 in the circumferential direction or the radial direction with the hook portion 20 embedded in the molded portion 7, it is possible to suppress movement of the molded portion 7 in the circumferential direction or the radial direction.



FIG. 19 is a perspective view illustrating the cable installation portion 13 of the base unit 1 according to the second modification example of the present embodiment. FIG. 20 is a sectional view of the base unit 1 according to the second modification example which is cut along the circumferential direction and cut with a plane passing through the insertion portion 23. In the present modification example, the groove portion 22 of the base plate 2 is omitted. Two or more insertion portions 23 may be provided and, as seen in the axial direction, the two or more insertion portions 23 that are adjacent to each other in the circumferential direction may be disposed at positions such that the cables 9 in the cover portion 8 are interposed therebetween in the circumferential direction. The cover portion 8 is positioned on the upper surface and the lower surface of the flat portion 24 through the insertion portions 23. That is, at least a part of the cover portion 8 is fixed to the upper surface and the lower surface of the flat portion 24. Therefore, it is possible to further prevent the cover portion 8 from peeling off the base plate 2. Since the insertion portions 23 include the cover portion 8, it is possible to suppress movement of the cover portion 8 in the axial direction and the radial direction.



FIG. 21 is a sectional view of the hook portion 20 of the base unit 1 according to a third modification example of the present embodiment, which is cut along the radial direction. The hook portion 20 may be provided with the hook portion protruding portion 20p that protrudes upward from the base plate 2 and two extending portions 20n that extend in the radial direction from the upper end of the hook portion protruding portion 20p and the two extending portions 20n may extend in opposite directions. That is, the hook portion 20 may have a T-like shape as seen in the circumferential direction. Accordingly, it is possible to easily realize the hook portion 20 and it is possible to further prevent the molded portion 7 from peeling off the base plate 2. Note that, any configuration can be adopted as long as the two extending portions 20n extend in a direction perpendicular to the axial direction. Since the hook portion 20 is embedded in the molded portion 7, it is possible to prevent the molded portion 7 from falling off in the axial direction. In addition, since the molded portion 7 covers a surface of the hook portion 20 in the circumferential direction or the radial direction with the hook portion 20 embedded in the molded portion 7, it is possible to suppress movement of the molded portion 7 in the circumferential direction or the radial direction.



FIG. 22 is a perspective view illustrating the cable installation portion 13 of the base unit 1 according to the third modification example of the present embodiment. FIG. 23 is a sectional view of the base unit 1 according to the third modification example which is cut along the circumferential direction and cut with a plane passing through the insertion portion 23. In the present modification example, the groove portion 22 of the base plate 2 is omitted. The insertion portion 23 may be made of a radial notch 2k that is obtained by cutting the base plate 2 in the radial direction from the outer circumferential end. At this time, at least a portion of the cables 9 in the cover portion 8 may be disposed in the radial notch 2k. The cover portion 8 is positioned on the upper surface and the lower surface of the flat portion 24 through the insertion portion 23. That is, at least a part of the cover portion 8 is fixed to the upper surface and the lower surface of the flat portion 24. Therefore, it is possible to suppress the amount of protrusion of the cover portion 8 from the base plate 2 (the flat portion 24) and it is possible to reduce interference between the cover portion 8 and a component or the like in other equipment which occurs when the base plate 2 is attached to the other equipment such as communication equipment.



FIG. 24 is a perspective view illustrating the cable installation portion 13 of the base unit 1 according to a fourth modification example of the present embodiment. FIG. 25 is a sectional view of the base unit 1 according to the fourth modification example which is cut along the circumferential direction and cut with a plane passing through the insertion portion 23. The insertion portion 23 which is a through-hole may be disposed only in the bottom wall portion 22a of the groove portion 22. The cover portion 8 is positioned on the upper surface and the lower surface of the bottom wall portion 22a through the insertion portion 23. That is, at least a part of the cover portion 8 is fixed to the upper surface and the lower surface of the bottom wall portion 22a. Therefore, it is possible to easily fix the cover portion 8 to the groove portion 22. Since the insertion portion 23 includes the cover portion 8, it is possible to suppress movement of the cover portion 8 in the axial direction and the radial direction. At this time, the insertion portion 23 may be disposed only in a part of the bottom wall portion 22a in the circumferential direction (the transverse direction).



FIG. 26 is a perspective view illustrating the cable installation portion 13 of the base unit 1 according to a fifth modification example of the present embodiment. FIG. 27 is a sectional view of the base unit 1 according to the fifth modification example which is cut along the circumferential direction and cut with a plane passing through the insertion portion 23. The insertion portion 23 may be disposed only in the side wall portion 22b of the groove portion 22 and a part of the cover portion 8 may be positioned on the upper surface of the flat portion 24 while extending through the insertion portion 23 from the inside of the groove portion 22. At least a part of the cover portion 8 is positioned on the upper surface of the flat portion 24 and the lower surface of the bottom wall portion 22a via the insertion portion 23. Therefore, it is possible to easily fix the cover portion 8 to the groove portion 22. Since the insertion portion 23 includes the cover portion 8, it is possible to suppress movement of the cover portion 8 in the axial direction and the radial direction. Note that, in a case where the upper surface of the base plate 2 is recessed downward and the groove portion 22 is provided, a part of the cover portion 8 may be positioned on the lower surface of the flat portion 24 while extending through the insertion portion 23 from the inside of the groove portion 22.



FIG. 28 is a perspective view illustrating the cable installation portion 13 of the base unit 1 according to a sixth modification example of the present embodiment. FIG. 29 is a sectional view of the base unit 1 according to the sixth modification example which is cut along the circumferential direction and cut with a plane passing through the insertion portion 23. The insertion portion 23 may be disposed only in the side wall portion 22b and a part of the cover portion 8 may extend over the upper and lower surfaces of the bottom wall portion 22a while extending through the insertion portion 23 from the inside of the groove portion 22. Therefore, it is possible to easily fix the cover portion 8 to the groove portion 22. Since the insertion portion 23 includes the cover portion 8, it is possible to suppress movement of the cover portion 8 in the axial direction and the radial direction.



FIG. 30 is a perspective view illustrating the cable installation portion 13 of the base unit 1 according to a seventh modification example of the present embodiment. FIG. 31 is a sectional view of the base unit 1 according to the seventh modification example which is cut along the circumferential direction and cut with a plane passing through the insertion portion 23. The insertion portion 23 may be a through-hole that extends across the bottom wall portion 22a and the side wall portions 22b of the groove portion 22 in the circumferential direction. Therefore, it is possible to easily fix the cover portion 8 to the groove portion 22. Since the insertion portion includes the cover portion 8, it is possible to suppress movement of the cover portion 8 in the axial direction and the radial direction.


According to the present embodiment, the base unit 1 connected to the external power source 90 includes the two or more cables 9 that are electrically connected to the external power source 90 and extend in the predetermined first direction DR1 and the base plate 2 that includes the cable installation portion 13 in which the cables 9 are installed. The two or more cables 9 are disposed to be arrayed in the second direction DR2 perpendicular to the first direction DR1. The cable installation portion 13 is provided with at least one first wall portion 11 that extends in the first direction DR1. Each first wall portion 11 is disposed in at least part of a space between the cables 9 that are adjacent to each other. The cables 9 and the first wall portions 11 are fixed to each other via the molding resin. Therefore, it is possible to firmly fix the cables 9 to the cable installation portion 13. Accordingly, it is possible to improve the reliability of the base unit 1. In addition, it is possible to prevent the two or more cables 9 from intersecting each other and it is possible to suppress an increase in thickness of the base unit 1.


Three or more cables 9 are provided and the disposition region R1 in which the first wall portion 11 is disposed is provided in one space between the cables 9 and the non-disposition region R2 in which the first wall portion 11 is not disposed is provided in the other space between the cables 9. The disposition region R1 and the non-disposition region R2 overlap each other in the second direction DR2. Therefore, it is possible to cause the molding resin in a molten state to smoothly flow in the first direction DR1 and it is possible to more easily fix the cables 9 and the first wall portion 11 to each other by using the molding resin.


The two or more first wall portions 11 are provided and the two or more first wall portions 11 are disposed at intervals in the first direction DR1. Therefore, since the two or more first wall portions 11 are provided, it is possible to further prevent the cables 9 from intersecting each other. In addition, when the molding resin in a molten state is caused to flow, the molding resin is likely to flow in the first direction DR1 through the intervals and it is possible to more easily fix the cables 9 and the first wall portions 11 to each other by using the molding resin.


The two or more first wall portions 11 are provided and two first wall portions 11 that are adjacent to one cable 9 and are provided on the opposite sides with respect to the cable 9 are disposed at positions different in the first direction DR1. Therefore, it is possible to cause the molding resin in a molten state to more smoothly flow in the first direction DR1.


The cable installation portion 13 further includes the second wall portions 12 each of which extends in the second direction DR2 and entirely covers the two or more cables 9. One end portion of each first wall portion 11 in the first direction DR1 is connected to each second wall portion 12. Accordingly, it is possible to improve the hardness of the cable installation portion 13. In addition, with the second wall portions 12, it is possible to further prevent the two or more cables 9 from intersecting each other.


The two or more second wall portions 12 are provided and the two or more second wall portions 12 are disposed to be arrayed in the first direction DR1. The opposite end portions of each first wall portion 11 in the first direction DR1 are connected to each second wall portion 12. Accordingly, it is possible to further improve the hardness of the cable installation portion 13.


Each first wall portion 11 is provided with the recess portion 11a that is recessed in the third direction DR3 that is perpendicular to the first direction DR1 and the second direction DR2. Each recess portion 11a is filled with part of the molding resin. Therefore, since it is possible to cause each first wall portion 11 to be interposed between portions of the molding resin in the third direction DR3, it is possible to improve the strength of the first wall portions 11.


Each first wall portion 11 is provided with the recess portion 11a that is recessed toward the cable 9 side in the third direction DR3 that is perpendicular to the first direction DR1 and the second direction DR2. Each recess portion 11a is filled with part of molding resin. Therefore, it is possible to cause each first wall portion 11 to be interposed between portions of the molding resin in the third direction DR3 without increasing the thickness of the cable installation portion 13. Accordingly, it is possible to improve the strength of the first wall portions 11 without increasing the thickness of the cable installation portion 13.


The first wall portions 11 are made of the same member as the base plate 2. In the present embodiment, the first wall portions 11 and the base plate 2 are formed by subjecting one plate-shaped member to press working. Therefore, it is possible to improve the mass productivity of the base unit 1. Note that, the first wall portions 11 and the base plate 2 may be formed by another method.


The motor 200 includes the base unit 1, the stator 3, and the rotor that rotates around the central axis C extending vertically and that includes the magnet 42 disposed to face the stator 3 in the radial direction. The cables 9 are electrically connected to the stator 3. Therefore, it is possible to easily realize the motor 200 with which it is possible to firmly fix the cables 9 to the base plate 2.


The base plate 2 supports the stator 3 and the cable installation portion 13 is disposed outward of the rotor 4 and the stator 3 in the radial direction. In addition, the base plate 2 is provided with the air flowing ports 104 that penetrate the base plate 2 in the axial direction on the outside of the cable installation portion. Therefore, heat of the stator 3 can be discharged to the outside via the air flowing ports 104 such that the motor 200 is cooled.


At this time, it is desirable that the width of the air flowing port 104 is 12 mm or less. Therefore, it is not necessary to provide the finger guards 105 separately from the base plate 2 and it is possible to suppress an increase in number of components in the motor 200.


The air blowing device 100 includes the motor 200 and the impeller 102 that is provided on the rotor 4 and rotates around the central axis C by being driven by the motor 200. Air from a position above the impeller 102 is sucked when the impeller 102 rotates and the air is discharged downward. Therefore, it is possible to easily realize the air blowing device 100 with which it is possible to firmly fix the cables 9 to the cable installation portion 13 and to prevent the two or more cables 9 from intersecting each other. Note that, air from a position above the impeller 102 may be sucked when the impeller 102 rotates and the air may be discharged in the circumferential direction. In addition, air from a position below the impeller 102 may be sucked when the impeller 102 rotates and the air may be discharged upward or be discharged in the circumferential direction. That is, any configuration can be adopted as long as air from one of a position above the impeller 102 and a position below the impeller 102 is sucked when the impeller 102 rotates and the air is discharged to the other of the position above the impeller 102 and the position below the impeller 102 or the air is discharged in the circumferential direction.


The base unit 1 includes the tubular bearing housing 5 that extends in the axial direction while being positioned on the central axis C that extends vertically, the base plate 2 that is connected to the bearing housing 5 and extends in the radial direction, and the stator 3 that is provided on the upper surface of the base plate 2 and is provided outward of the bearing housing 5 in the radial direction. At least a part of the base plate 2 and at least a part of the stator 3 are covered by the molded portion 7 formed of the molding resin MR (resin). The stator 3 and the base plate 2 are connected to each other via the molded portion 7. The base plate 2 is provided with the hook portions 20 that protrude upward and are caught on the molded portion 7 at least in the axial direction. The hook portions 20 are disposed outward of the bearing housing 5 in the radial direction.


Therefore, the hook portions 20 can easily resist a force applied to the molded portion 7 in the axial direction and thus it is possible to prevent the molded portion 7 from peeling off the base plate 2. Accordingly, it is possible to firmly fix the stator 3 to the base plate 2 and it is possible to improve the reliability of the base unit 1. In addition, since the stator 3, the base plate 2, and the molded portion 7 are connected to each other, it is possible to increase the hardness of the motor 200 even in the case of the plate-shaped base plate 2 and it is possible to reduce vibration or noise caused by the motor 200.


Note that, after the molded portion 7 is formed on the upper surface of the base plate 2, as illustrated in FIG. 32, a screw 70 may be inserted from the lower surface of the base plate 2 via a screw through-hole 2g provided in the base plate 2 such that the screw 70 is screwed into the molded portion 7. In this case, since the screw 70 constitutes the hook portion 20, it is not necessary to form the hook portion 20, which is made of the same component as the base plate 2, on the base plate 2. In addition, with the screw 70, it is possible to firmly fix the base plate 2 and the molded portion 7 and it is possible to improve the reliability of the base unit 1.


Each hook portion 20 is provided with the embedded portion 20a embedded in the molded portion 7 and each embedded portion 20a is interposed between portions of the molding resin MR in the vertical direction inside the molded portion 7. Therefore, it is possible to further prevent the molded portion 7 from peeling off the base plate 2.


Each embedded portion 20a may extend in a direction intersecting the circumferential direction. Therefore, the hook portions 20 can easily resist a force applied to the molded portion 7 in the circumferential direction. Accordingly, it is possible to prevent the molded portion 7 from peeling off the base plate 2.


The two or more hook portions 20 are provided and the two or more hook portions 20 are disposed to be arrayed in the circumferential direction around the central axis C. Therefore, the hook portions 20 can easily resist a force applied to the molded portion 7 in the circumferential direction and it is possible to prevent the molded portion 7 from peeling off the base plate 2.


The hook portions 20 are in a state of being cut and raised from the base plate 2. Therefore, it is possible to easily realize the hook portions 20 and it is possible to suppress an increase in number of components in the base unit 1. In addition, since the hook portions 20 are formed as the same component as the base plate 2, it is possible to firmly fix the base plate 2 and the molded portion 7 in comparison with a case where the hook portions 20 are assembled with the base plate 2 as separate components. That is, it is not necessary to consider the assembling strength between a separate component and the base plate.


The hook portions 20 may be inclined with respect to the base plate 2. Therefore, each hook portion 20 is interposed between portions of the molding resin MR in the vertical direction inside the molded portion 7. Accordingly, it is possible to further prevent the molded portion 7 from peeling off the base plate 2 with a simple configuration. Since the hook portion 20 is embedded in the molded portion 7, it is possible to prevent the molded portion 7 from falling off in the axial direction. In addition, since the molded portion 7 covers a surface of the hook portion 20 in the circumferential direction or the radial direction with the hook portion 20 embedded in the molded portion 7, it is possible to suppress movement of the molded portion 7 in the circumferential direction or the radial direction.


The hook portion 20 may be provided with the hook portion protruding portion 20p that protrudes upward from the base plate and the extending portion 20n that extends in a direction perpendicular to the axial direction from the upper end of the hook portion protruding portion 20p. Accordingly, it is possible to easily realize the hook portion 20 that is firmly caught on the molded portion 7 with a simple configuration and it is possible to further prevent the molded portion 7 from peeling off the base plate 2. Since the hook portion 20 is embedded in the molded portion 7, it is possible to prevent the molded portion 7 from falling off in the axial direction. In addition, since the molded portion 7 covers a surface of the hook portion 20 in the circumferential direction or the radial direction with the hook portion 20 embedded in the molded portion 7, it is possible to suppress movement of the molded portion 7 in the circumferential direction or the radial direction.


The hook portion 20 may be provided with two extending portions 20n and the two extending portions 20n may extend in opposite directions. Accordingly, it is possible to easily realize the hook portion 20 that is firmly caught on the molded portion 7 with a simple configuration and it is possible to further prevent the molded portion 7 from peeling off the base plate 2. Since the hook portion 20 is embedded in the molded portion 7, it is possible to prevent the molded portion 7 from falling off in the axial direction. In addition, since the molded portion 7 covers a surface of the hook portion 20 in the circumferential direction or the radial direction with the hook portion 20 embedded in the molded portion 7, it is possible to suppress movement of the molded portion 7 in the circumferential direction or the radial direction.


Each hook portion 20 is provided with the hook portion through-hole 20b that penetrates the hook portion 20 in the radial direction or the circumferential direction and a part of the molded portion 7 is disposed in each hook portion through-hole 20b. Therefore, it is possible to easily cause the molding resin MR to flow into the hook portion through-holes 20b of the hook portions 20 and to easily solidify the molding resin MR and it is possible to further prevent the molded portion 7 from peeling off the base plate 2.


The stator 3 is provided with two or more coils 33 and the terminal portion 6 that is electrically connected to the lead wires drawn out from the coils 33 is provided between the stator 3 and the base plate 2. The stator 3 and the terminal portion 6 are covered by the molded portion 7. Therefore, it is possible to firmly fix the terminal portion 6 to the base plate 2 via the molded portion 7. In addition, it is possible to achieve the waterproof property of the terminal portion 6.


The outer circumferential end of the molded portion 7 and the hook portions 20 are disposed outward of the stator 3 in the radial direction. The hook portions 20 are positioned at the outer circumferential end portion of the molded portion 7. Accordingly, since the base plate 2, which is disposed outward of the stator 3 in the radial direction, is covered by the molded portion 7, it is possible to reinforce the base plate 2 and to improve the hardness of the base plate 2. In addition, since the hook portions 20 are caught on the outer circumferential portion of the molded portion 7, it is possible to easily suppress the peeling of the molded portion 7 off the base plate 2 which is caused by a stress attributable to distortion or the like of the base plate 2.


The motor 200 includes the base unit 1 and the rotor 4 that includes the magnet 42 and rotates around the central axis C, the magnet 42 being disposed outward of the stator 3 in the radial direction and the magnet 42 facing the stator 3. The rotor 4 includes the shaft 41 that extends along the central axis C and the shaft 41 is disposed in the bearing housing 5 via the bearing portions 50. Therefore, the stator 3 is firmly fixed to the base plate 2 via the molded portion 7 and thus it is possible to easily realize the motor 200 with which it is possible to reduce vibration and to achieve noise-reduction.


The air blowing device 100 includes the motor 200 and the impeller 102 that is provided on the rotor 4 and rotates around the central axis C by being driven by the motor 200. Air from a position above the impeller 102 is sucked when the impeller 102 rotates and the air is discharged downward. Therefore, the stator 3 is firmly fixed to the base plate 2 via the molded portion 7 and thus it is possible to easily realize the air blowing device 100 with which it is possible to reduce vibration and to achieve noise-reduction.


The impeller 102 is provided with the impeller base portion 102a that rotates around the central axis C and the two or more blades 102b that are provided on the impeller base portion 102a such that the blades 102b are arranged in the circumferential direction. The outer circumferential end of the base plate 2 is positioned outward of the impeller base portion 102a in the radial direction. The base plate 2 is provided with the air flowing ports 104 that are disposed outward of the impeller base portion 102a in the radial direction and penetrate the base plate 2 in the axial direction. Therefore, it is possible to easily cause an air stream to flow from one of an axially upper side and an axially lower side to the other of the axially upper side and the axially lower side by effectively using the base plate 2 while firmly fixing the base plate 2 to the stator 3.


It is desirable that the width of each air flowing port 104 is 12 mm or less. Therefore, it is not necessary to provide the finger guards 105 separately from the base plate 2 and it is possible to suppress an increase in number of components in the air blowing device 100 with which it is possible to firmly fix the base plate 2 to the stator 3.


The base unit 1 includes the tubular bearing housing 5 that extends in the axial direction while being positioned on the central axis C that extends vertically, the base plate 2 that is connected to the bearing housing 5 and extends in the radial direction, the stator 3 that is provided on the upper surface of the base plate 2 and is provided outward of the bearing housing 5 in the radial direction, and the cables 9 (the conducting member) that are electrically connected to the stator 3 and are drawn outward of the base plate 2 in the radial direction. The conducting member holding portion 21 that holds at least a portion of the cables 9 toward the base plate 2 is provided on at least one of the upper and lower surfaces of the base plate 2. The conducting member holding portion 21 is in a state of being cut and raised from the base plate 2.


Therefore, it is possible to prevent the cables 9 from rising and being separated (lifted) from the base plate 2, from a predetermined position at which the cables 9 are held. Accordingly, it is possible to improve the reliability of the base unit 1. In addition, since the conducting member holding portion 21 is cut and raised from the base plate 2, it is possible to suppress an increase in number of components in the base unit 1. In addition, since the conducting member holding portion 21 is formed as the same component as the base plate 2, it is possible to further prevent the cables 9 from rising and being separated in comparison with a case where the conducting member holding portion 21 is assembled with the base plate 2 as a separate component. That is, it is not necessary to consider the assembling strength between the conducting member holding portion, which is a separate component, and the base plate.


The conducting member holding portion 21 may be provided with the protruding portion 21b that protrudes upward or downward from the base plate 2 and the curved portion 21c that is curved from the tip end of the protruding portion 21b in a direction perpendicular to the axial direction and at least a portion of the cables 9 may be accommodated between the curved portion 21c and the base plate 2. Therefore, it is possible to easily restrict movement of the cables 9 in the vertical direction (the axial direction). In addition, since a portion that is open in the circumferential direction is provided between the base plate 2 and the curved portion 21c, it is possible to easily insert the cables 9 into the conducting member holding portion 21 via the portion open in the circumferential direction.


The conducting member holding portion 21 is provided with the holding portion through-hole 21a that penetrates the conducting member holding portion 21 in the radial direction and a portion of the cables 9 is accommodated in the holding portion through-hole 21a. Therefore, it is possible to easily restrict movement of the cables 9 in the vertical direction (the axial direction) and a horizontal direction (the circumferential direction).


At least a part of the conducting member holding portion 21 and at least a portion of the cables 9 are covered by the molded portion 7 formed of the molding resin MR (resin). The conducting member holding portion 21 and the cables 9 are connected to each other via the molded portion 7. Therefore, the conducting member holding portion 21 and the cables 9 are fixed via the molded portion 7 and it is possible to further restrict movement of the cables 9.


The motor 200 includes the base unit 1 and the rotor that includes the magnet 42 and rotates around the central axis C, the magnet 42 being disposed outward of the stator 3 in the radial direction and the magnet 42 facing the stator 3. The rotor 4 includes the shaft 41 that extends along the central axis C and the shaft 41 is disposed in the bearing housing 5 via the bearing portions 50. Therefore, it is possible to prevent the cables 9 from being lifted from the base plate 2 and it is possible to easily realize the motor 200 of which the reliability can be improved.


The conducting member holding portion 21 may be disposed at a position on the upper surface of the base plate 2 such that the conducting member holding portion 21 overlaps with a lower end portion of the rotor 4 in the axial direction. Therefore, it is possible to prevent the cables 9 and the rotor 4 from coming into contact with each other.


The air blowing device 100 includes the motor 200 and the impeller 102 that is provided on the rotor 4 and rotates around the central axis C by being driven by the motor 200. Air from a position above the impeller 102 is sucked when the impeller 102 rotates and the air is discharged downward. Therefore, it is possible to easily realize the air blowing device 100 with which it is possible to prevent the cables 9 from being lifted from the base plate 2.


The impeller 102 is provided with the impeller base portion 102a that rotates around the central axis C and the two or more blades 102b that are provided on the impeller base portion 102a such that the blades 102b are arranged in the circumferential direction. The conducting member holding portion 21 faces the impeller 102 in the axial direction at the upper surface of the base plate 2. Therefore, it is possible to prevent the cables 9 and the impeller 102 from coming into contact with each other.


The impeller 102 is provided with the impeller base portion 102a that rotates around the central axis C and the two or more blades 102b that are provided on the impeller base portion 102a such that the blades 102b are arranged in the circumferential direction. The outer circumferential end of the base plate 2 is positioned outward of the impeller base portion 102a in the radial direction. The base plate 2 is provided with the air flowing ports 104 that are disposed outward of the impeller base portion 102a in the radial direction and penetrate the base plate 2 in the axial direction. Therefore, it is possible to easily cause an air stream to flow from one of an axially upper side and an axially lower side to the other of the axially upper side and the axially lower side by effectively using the base plate 2.


It is desirable that the width of each air flowing port 104 is 12 mm or less. Therefore, it is not necessary to provide the finger guards 105 separately from the base plate 2 and it is possible to suppress an increase in number of components in the air blowing device 100 with which it is possible to prevent the cables 9 from being lifted.


The base unit 1 includes the tubular bearing housing 5 that extends in the axial direction while being positioned on the central axis C that extends vertically, the base plate 2 that is connected to the bearing housing 5 and extends in the radial direction, the stator 3 that is provided on the upper surface of the base plate 2 and is provided outward of the bearing housing 5 in the radial direction, and the cables 9 (the conducting member) that are electrically connected to the stator 3 and are drawn outward of the base plate 2 in the radial direction. The upper surface or the lower surface of the base plate 2 is provided with the resin cover portion 8 that covers at least a portion of the cables 9. The base plate 2 is provided with the insertion portions that are through-holes penetrating the base plate 2 in a direction from the upper surface to the lower surface or notches. In addition, a part of the cover portion 8 extends over an area from the upper surface of the base plate 2 to the lower surface of the base plate 2 while passing through the insertion portions 23.


Therefore, it is possible to prevent the cover portion 8 from peeling off the base plate 2. In addition, it is possible to prevent the cables 9 from rising on the base plate 2. Accordingly, it is possible to improve the reliability of the base unit 1. In addition, since the cables 9 are covered by the cover portion 8, it is possible to achieve the water-proof property and the dust-proof property of the cables 9. In addition, since the insertion portion 23 includes the cover portion 8, it is possible to suppress movement of the cover portion 8 in the axial direction and the radial direction.


The base plate 2 may be provided with the flat portion 24 disposed in a region in which the cables 9 are disposed and the cover portion 8 and the insertion portions 23 may be disposed in the flat portion 24. Therefore, it is possible to prevent the cover portion 8 from peeling off the base plate 2 while reducing the number of processes to manufacture the base plate 2. In addition, since the insertion portion 23 includes the cover portion 8, it is possible to suppress movement of the cover portion 8 in the axial direction and the radial direction.


At this time, the insertion portion 23 may be disposed at a position such that the insertion portion 23 overlaps with at least a portion of the cables 9 in the cover portion 8 in the axial direction as seen in the axial direction. Accordingly, it is possible to dispose the cables 9 in the cover portion 8 and the insertion portion 23 such that the cables 9 and the insertion portion 23 are close to each other and thus it is possible to reduce the amount of resin used for the cover portion 8.


Two or more insertion portions 23 may be provided and, as seen in the axial direction, the two or more insertion portions 23 that are adjacent to each other in the circumferential direction may be disposed at positions such that the cables 9 in the cover portion 8 are interposed therebetween in the circumferential direction. Therefore, it is possible to further prevent the cover portion 8 from peeling off the base plate 2. In addition, since the insertion portion 23 includes the cover portion 8, it is possible to suppress movement of the cover portion 8 in the axial direction and the radial direction.


The insertion portion 23 may be the radial notch 2k that is obtained by cutting the base plate 2 in the radial direction and at least a portion of the cables 9 in the cover portion 8 may be disposed in the radial notch 2k. Therefore, it is possible to suppress the amount of protrusion of the cover portion 8 from the base plate 2 (the flat portion 24) and it is possible to reduce interference between the cover portion 8 and a component or the like in other equipment which occurs when the base plate 2 is attached to the other equipment such as communication equipment.


The base plate 2 is provided with the groove portion 22 that is recessed in the axial direction and extends in the radial direction and the groove portion 22 is provided with the bottom wall portion 22a and the side wall portions 22b that connect the flat portion 24 of the base plate 2 and the bottom wall portion 22a to each other. The cables 9 in the cover portion 8 are accommodated in the groove portion 22. Therefore, it is possible to protect the cables 9 that are drawn out of the stator 3 on the base plate 2.


At this time, the insertion portion 23 may be disposed only in the bottom wall portion 22a. Therefore, it is possible to easily fix the cover portion 8 to the groove portion 22 while protecting the cables 9 with the groove portion 22.


The insertion portion 23 may be disposed only in the side wall portion 22b and a part of the cover portion 8 may be positioned on the upper surface or the lower surface of the flat portion 24 while extending through the insertion portion 23 from the inside of the groove portion 22. Therefore, it is possible to easily fix the cover portion 8 to the groove portion 22 while protecting the cables 9 with the groove portion 22. In addition, since the insertion portion 23 includes the cover portion 8, it is possible to suppress movement of the cover portion 8 in the axial direction and the radial direction.


The insertion portion 23 may be disposed only in the side wall portion 22b and a part of the cover portion 8 may extend over the upper and lower surfaces of the bottom wall portion 22a while extending through the insertion portion 23 from the inside of the groove portion 22. Therefore, it is possible to easily fix the cover portion 8 to the groove portion 22 while protecting the cables 9 with the groove portion 22. In addition, since the insertion portion 23 includes the cover portion 8, it is possible to suppress movement of the cover portion 8 in the axial direction and the radial direction.


The insertion portion 23 may be a through-hole that extends across the bottom wall portion 22a and the side wall portions 22b in the circumferential direction. Therefore, it is possible to easily fix the cover portion 8 to the groove portion 22 while protecting the cables 9 with the groove portion 22.


It is desirable that a circumferential edge portion of the insertion portion 23 is interposed between portions of the cover portion 8 in the vertical direction. Therefore, the cover portion 8 is further firmly fixed to the base plate 2 and thus it is possible to further prevent the cover portion 8 from peeling off the base plate 2. In addition, since the insertion portion 23 includes the cover portion 8, it is possible to suppress movement of the cover portion 8 in the axial direction and the radial direction.


The motor 200 includes the base unit 1 in which a part of the cover portion 8 extends over an area from the upper surface of the base plate 2 to the lower surface of the base plate 2 while passing through the insertion portions 23. Therefore, it is possible to prevent the cover portion 8 from peeling off the base plate 2 and it is possible to easily realize the motor 200 of which the reliability can be improved.


The air blowing device 100 includes the base unit 1 in which a part of the cover portion 8 extends over an area from the upper surface of the base plate 2 to the lower surface of the base plate 2 while passing through the insertion portions 23. Therefore, it is possible to prevent the cover portion 8 from peeling off the base plate 2 and it is possible to easily realize the air blowing device 100 of which the reliability can be improved.


The present disclosure can be used for a base unit including a base plate and two or more cables, a motor including the base unit, and an air blowing device including the motor.


Features of the above-described preferred embodiments and the modifications thereof may be combined appropriately as long as no conflict arises.


While preferred embodiments of the present disclosure have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the present disclosure. The scope of the present disclosure, therefore, is to be determined solely by the following claims.

Claims
  • 1. A base unit connectable to an external power source, the base unit comprising: two or more cables electrically connected to the external power source and extending in a predetermined first direction; anda base plate including a cable installation portion in which the cables are installed, whereinthe two or more cables are disposed to be arrayed in a second direction perpendicular to the first direction,the cable installation portion is provided with at least one first wall portion that extends in the first direction,the first wall portion is disposed in at least part of a space between the cables that are adjacent to each other, andthe cables and the first wall portion are fixed via molding resin.
  • 2. The base unit according to claim 1, wherein three or more cables electrically connected to the external power source and extending in a predetermined first direction are provided,a disposition region where the first wall portion is disposed is provided in one of spaces between the three or more cables,a non-disposition region where the first wall portion is not disposed is provided in the other of the spaces between the three or more cables, andthe disposition region and the non-disposition region overlap each other in the second direction.
  • 3. The base unit according to claim 1, wherein two or more first wall portions that extend in the first direction are provided and the two or more first wall portions are disposed at intervals in the first direction.
  • 4. The base unit according to claim 2, wherein two or more first wall portions that extend in the first direction are provided, and the two first wall portions that are adjacent to one of the cables and are provided on opposite sides of the one of the cables are disposed at positions different in the first direction.
  • 5. The base unit according to claim 1, wherein the cable installation portion further includes a second wall portion which extends in the second direction and entirely covers the cables, andone end portion of the first wall portion in the first direction is connected to the second wall portion.
  • 6. The base unit according to claim 5, wherein two or more second wall portions which extend in the second direction and entirely covers the cables are provided,the two or more second wall portions are disposed to be arrayed in the first direction, andopposite end portions of the first wall portion in the first direction are connected to the second wall portions.
  • 7. The base unit according to claim 1, wherein the first wall portion is provided with a recess portion that is recessed in a third direction that is perpendicular to the first direction and the second direction, andthe recess portion is filled with part of the molding resin.
  • 8. The base unit according to claim 5, wherein the first wall portion is provided with a recess portion that is recessed toward the cable side in a third direction that is perpendicular to the first direction and the second direction, andthe recess portion is filled with part of the molding resin.
  • 9. The base unit according to claim 1, wherein the first wall portion is made of the same member as the base plate.
  • 10. A motor comprising: the base unit according to claim 1;a stator; anda rotor that rotates around a central axis extending vertically and that includes a magnet disposed to face the stator in a radial direction, whereinthe cables are electrically connected to the stator.
  • 11. The motor according to claim 10, wherein the base plate supports the stator,the cable installation portion is disposed outward of the rotor and the stator in the radial direction, andthe base plate is provided with an air flowing port that penetrates the base plate in an axial direction on the outside of the cable installation portion.
  • 12. The motor according to claim 11, wherein the width of the air flowing port is 12 mm or less.
  • 13. An air blowing device comprising: the motor according to claim 10; andan impeller that is provided on the rotor and rotates around the central axis by being driven by the motor, whereinair is sucked from above the impeller or from below the impeller when the impeller rotates, and the air is discharged below the impeller or above the impeller, or the air is discharged in a circumferential direction.
Priority Claims (1)
Number Date Country Kind
2017-038242 Mar 2017 JP national