The present disclosure relates in general to electronic devices with user interfaces, (e.g., mobile devices, game controllers, instrument panels, etc.), and more particularly, an integrated haptic system for use in a system for mechanical button replacement in a mobile device, for use in haptic feedback for capacitive sensors, and/or other suitable applications.
Many traditional mobile devices (e.g., mobile phones, personal digital assistants, video game controllers, etc.) include mechanical buttons to allow for interaction between a user of a mobile device and the mobile device itself. However, such mechanical buttons are susceptible to aging, wear, and tear that may reduce the useful life of a mobile device and/or may require significant repair if malfunction occurs. Also, the presence of mechanical buttons may render it difficult to manufacture mobile devices to be waterproof. Accordingly, mobile device manufacturers are increasingly looking to equip mobile devices with virtual buttons that act as a human-machine interface allowing for interaction between a user of a mobile device and the mobile device itself. Similarly, mobile device manufacturers are increasingly looking to equip mobile devices with other virtual interface areas (e.g., a virtual slider, interface areas of a body of the mobile device other than a touch screen, etc.). Ideally, for best user experience, such virtual interface areas should look and feel to a user as if a mechanical button or other mechanical interface were present instead of a virtual button or virtual interface area.
Presently, linear resonant actuators (LRAs) and other vibrational actuators (e.g., rotational actuators, vibrating motors, etc.) are increasingly being used in mobile devices to generate vibrational feedback in response to user interaction with human-machine interfaces of such devices. Typically, a sensor (traditionally a force or pressure sensor) detects user interaction with the device (e.g., a finger press on a virtual button of the device) and in response thereto, the linear resonant actuator may vibrate to provide feedback to the user. For example, a linear resonant actuator may vibrate in response to user interaction with the human-machine interface to mimic to the user the feel of a mechanical button click.
However, there is a need in the industry for sensors to detect user interaction with a human-machine interface, wherein such sensors provide acceptable levels of sensor sensitivity, power consumption, and size. For example, one challenge in the implementation of a virtual button is the accurate discrimination between actual user interaction with the virtual button and anomalous sensor inputs such as those caused by force sensor drift (e.g., due to aging and temperature) and/or device bending.
In accordance with the teachings of the present disclosure, the disadvantages and problems associated with use of a virtual button in a mobile device may be reduced or eliminated.
In accordance with embodiments of the present disclosure, a control method for a user interface system may include receiving an input signal, receiving a temperature signal indicative of a temperature, generating a baseline signal based on at least one among the input signal and the temperature signal, calculating an error signal based on a difference of the input signal and the baseline signal, and modifying the baseline signal based on the error signal.
In accordance with these and other embodiments of the present disclosure, a system may include a first input for receiving an input signal, a second input for receiving a temperature signal indicative of a temperature, an output for generating a baseline signal based on the input signal, and a baseline calculation engine configured to generate a baseline signal based on at least one among the input signal and the temperature signal, calculate an error signal based on a difference of the input signal and the baseline signal, and modify the baseline signal based on the error signal.
Technical advantages of the present disclosure may be readily apparent to one having ordinary skill in the art from the figures, description and claims included herein. The objects and advantages of the embodiments will be realized and achieved at least by the elements, features, and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are examples and explanatory and are not restrictive of the claims set forth in this disclosure.
A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
Enclosure 101 may comprise any suitable housing, casing, or other enclosure for housing the various components of mobile device 102. Enclosure 101 may be constructed from plastic, metal, and/or any other suitable materials. In addition, enclosure 101 may be adapted (e.g., sized and shaped) such that mobile device 102 is readily transported on a person of a user of mobile device 102. Accordingly, mobile device 102 may include but is not limited to a smart phone, a tablet computing device, a handheld computing device, a personal digital assistant, a notebook computer, a video game controller, or any other device that may be readily transported on a person of a user of mobile device 102.
Controller 103 may be housed within enclosure 101 and may include any system, device, or apparatus configured to interpret and/or execute program instructions and/or process data, and may include, without limitation a microprocessor, microcontroller, digital signal processor (DSP), application specific integrated circuit (ASIC), or any other digital or analog circuitry configured to interpret and/or execute program instructions and/or process data. In some embodiments, controller 103 interprets and/or executes program instructions and/or processes data stored in memory 104 and/or other computer-readable media accessible to controller 103.
Memory 104 may be housed within enclosure 101, may be communicatively coupled to controller 103, and may include any system, device, or apparatus configured to retain program instructions and/or data for a period of time (e.g., computer-readable media). Memory 104 may include random access memory (RAM), electrically erasable programmable read-only memory (EEPROM), a Personal Computer Memory Card International Association (PCMCIA) card, flash memory, magnetic storage, opto-magnetic storage, or any suitable selection and/or array of volatile or non-volatile memory that retains data after power to mobile device 102 is turned off.
Microphone 106 may be housed at least partially within enclosure 101, may be communicatively coupled to controller 103, and may comprise any system, device, or apparatus configured to convert sound incident at microphone 106 to an electrical signal that may be processed by controller 103, wherein such sound is converted to an electrical signal using a diaphragm or membrane having an electrical capacitance that varies as based on sonic vibrations received at the diaphragm or membrane. Microphone 106 may include an electrostatic microphone, a condenser microphone, an electret microphone, a microelectromechanical system (MEMS) microphone, or any other suitable capacitive microphone.
Radio transmitter/receiver 108 may be housed within enclosure 101, may be communicatively coupled to controller 103, and may include any system, device, or apparatus configured to, with the aid of an antenna, generate and transmit radio-frequency signals as well as receive radio-frequency signals and convert the information carried by such received signals into a form usable by controller 103. Radio transmitter/receiver 108 may be configured to transmit and/or receive various types of radio-frequency signals, including without limitation, cellular communications (e.g., 2G, 3G, 4G, LTE, etc.), short-range wireless communications (e.g., BLUETOOTH), commercial radio signals, television signals, satellite radio signals (e.g., GPS), Wireless Fidelity, etc.
A speaker 110 may be housed at least partially within enclosure 101 or may be external to enclosure 101, may be communicatively coupled to controller 103, and may comprise any system, device, or apparatus configured to produce sound in response to electrical audio signal input. In some embodiments, a speaker may comprise a dynamic loudspeaker, which employs a lightweight diaphragm mechanically coupled to a rigid frame via a flexible suspension that constrains a voice coil to move axially through a cylindrical magnetic gap. When an electrical signal is applied to the voice coil, a magnetic field is created by the electric current in the voice coil, making it a variable electromagnet. The coil and the driver's magnetic system interact, generating a mechanical force that causes the coil (and thus, the attached cone) to move back and forth, thereby reproducing sound under the control of the applied electrical signal coming from the amplifier.
Force sensor 105 may be housed within enclosure 101, and may include any suitable system, device, or apparatus for sensing a force, a pressure, or a touch (e.g., an interaction with a human finger) and generating an electrical or electronic signal in response to such force, pressure, or touch. In some embodiments, such electrical or electronic signal may be a function of a magnitude of the force, pressure, or touch applied to the force sensor. In these and other embodiments, such electronic or electrical signal may comprise a general purpose input/output (GPIO) signal associated with an input signal to which haptic feedback is given. Force sensor 105 may include, without limitation, a capacitive displacement sensor, an inductive force sensor (e.g., a resistive-inductive-capacitive sensor), a strain gauge, a piezoelectric force sensor, force sensing resistor, piezoelectric force sensor, thin film force sensor, or a quantum tunneling composite-based force sensor. For purposes of clarity and exposition in this disclosure, the term “force” as used herein may refer not only to force, but to physical quantities indicative of force or analogous to force, such as, but not limited to, pressure and touch.
Linear resonant actuator 107 may be housed within enclosure 101, and may include any suitable system, device, or apparatus for producing an oscillating mechanical force across a single axis. For example, in some embodiments, linear resonant actuator 107 may rely on an alternating current voltage to drive a voice coil pressed against a moving mass connected to a spring. When the voice coil is driven at the resonant frequency of the spring, linear resonant actuator 107 may vibrate with a perceptible force. Thus, linear resonant actuator 107 may be useful in haptic applications within a specific frequency range. While, for the purposes of clarity and exposition, this disclosure is described in relation to the use of linear resonant actuator 107, it is understood that any other type or types of vibrational actuators (e.g., eccentric rotating mass actuators) may be used in lieu of or in addition to linear resonant actuator 107. In addition, it is also understood that actuators arranged to produce an oscillating mechanical force across multiple axes may be used in lieu of or in addition to linear resonant actuator 107. As described elsewhere in this disclosure, a linear resonant actuator 107, based on a signal received from integrated haptic system 112, may render haptic feedback to a user of mobile device 102 for at least one of mechanical button replacement and capacitive sensor feedback.
Integrated haptic system 112 may be housed within enclosure 101, may be communicatively coupled to force sensor 105 and linear resonant actuator 107, and may include any system, device, or apparatus configured to receive a signal from force sensor 105 indicative of a force applied to mobile device 102 (e.g., a force applied by a human finger to a virtual button of mobile device 102) and generate an electronic signal for driving linear resonant actuator 107 in response to the force applied to mobile device 102. Detail of an example integrated haptic system in accordance with embodiments of the present disclosure is depicted in
Resonant phase sensing system 113 may be housed within enclosure 101, may be communicatively coupled to force sensor 105 and linear resonant actuator 107, and may include any system, device, or apparatus configured to detect a displacement of a mechanical member (e.g., mechanical member 305 depicted in
Although specific example components are depicted above in
DSP 202 may include any system, device, or apparatus configured to interpret and/or execute program instructions and/or process data. In some embodiments, DSP 202 may interpret and/or execute program instructions and/or process data stored in memory 204 and/or other computer-readable media accessible to DSP 202.
Memory 204 may be communicatively coupled to DSP 202, and may include any system, device, or apparatus configured to retain program instructions and/or data for a period of time (e.g., computer-readable media). Memory 204 may include random access memory (RAM), electrically erasable programmable read-only memory (EEPROM), a Personal Computer Memory Card International Association (PCMCIA) card, flash memory, magnetic storage, opto-magnetic storage, or any suitable selection and/or array of volatile or non-volatile memory that retains data after power to mobile device 102 is turned off.
Amplifier 206 may be electrically coupled to DSP 202 and may comprise any suitable electronic system, device, or apparatus configured to increase the power of an input signal VIN (e.g., a time-varying voltage or current) to generate an output signal VOUT. For example, amplifier 206 may use electric power from a power supply (not explicitly shown) to increase the amplitude of a signal. Amplifier 206 may include any suitable amplifier class, including without limitation, a Class-D amplifier.
In operation, memory 204 may store one or more haptic playback waveforms. In some embodiments, each of the one or more haptic playback waveforms may define a haptic response a(t) as a desired acceleration of a linear resonant actuator (e.g., linear resonant actuator 107) as a function of time. DSP 202 may be configured to receive a force signal VSENSE from resonant phase sensing system 113 indicative of force applied to force sensor 105. Either in response to receipt of force signal VSENSE indicating a sensed force or independently of such receipt, DSP 202 may retrieve a haptic playback waveform from memory 204 and process such haptic playback waveform to determine a processed haptic playback signal VIN. In embodiments in which amplifier 206 is a Class D amplifier, processed haptic playback signal VIN may comprise a pulse-width modulated signal. In response to receipt of force signal VSENSE indicating a sensed force, DSP 202 may cause processed haptic playback signal VIN to be output to amplifier 206, and amplifier 206 may amplify processed haptic playback signal VIN to generate a haptic output signal VOUT for driving linear resonant actuator 107.
In some embodiments, integrated haptic system 112A may be formed on a single integrated circuit, thus enabling lower latency than existing approaches to haptic feedback control. By providing integrated haptic system 112A as part of a single monolithic integrated circuit, latencies between various interfaces and system components of integrated haptic system 112A may be reduced or eliminated.
In operation, as a current I flows through inductive coil 302, such current may induce a magnetic field which in turn may induce an eddy current inside mechanical member 305. When a force is applied to and/or removed from mechanical member 305, which alters distance d between mechanical member 305 and inductive coil 302, the coupling coefficient k, variable electrical resistance 304, and/or variable electrical inductance 306 may also change in response to the change in distance. These changes in the various electrical parameters may, in turn, modify an effective impedance ZL of inductive coil 302.
As shown in
Processing IC 412 may be communicatively coupled to resistive-inductive-capacitive sensor 402 and may comprise any suitable system, device, or apparatus configured to implement a measurement circuit to measure phase information associated with resistive-inductive-capacitive sensor 402 and based on the phase information, determine a displacement of mechanical member 305 relative to resistive-inductive-capacitive sensor 402. Thus, processing IC 412 may be configured to determine an occurrence of a physical interaction (e.g., press or release of a virtual button) associated with a human-machine interface associated with mechanical member 305 based on the phase information.
As shown in
Phase shifter 410 may include any system, device, or apparatus configured to detect an oscillation signal generated by processing IC 412 (as explained in greater detail below) and phase shift such oscillation signal (e.g., by 45 degrees) such that at a normal operating frequency of system 400, an incident component of a sensor signal ϕ generated by preamplifier 440 is approximately equal to a quadrature component of sensor signal ϕ, so as to provide common mode noise rejection by a phase detector implemented by processing IC 412, as described in greater detail below.
Voltage-to-current converter 408 may receive the phase shifted oscillation signal from phase shifter 410, which may be a voltage signal, convert the voltage signal to a corresponding current signal, and drive the current signal on resistive-inductive-capacitive sensor 402 at a driving frequency with the phase-shifted oscillation signal in order to generate sensor signal ϕ which may be processed by processing IC 412, as described in greater detail below. In some embodiments, a driving frequency of the phase-shifted oscillation signal may be selected based on a resonant frequency of resistive-inductive-capacitive sensor 402 (e.g., may be approximately equal to the resonant frequency of resistive-inductive-capacitive sensor 402).
Preamplifier 440 may receive sensor signal ϕ and condition sensor signal ϕ for frequency mixing, with mixer 442, to an intermediate frequency Δf combined by combiner 444 with an oscillation frequency generated by VCO 416, as described in greater detail below, wherein intermediate frequency Δf is significantly less than the oscillation frequency. In some embodiments, preamplifier 440, mixer 442, and combiner 444 may not be present, in which case PGA 414 may receive sensor signal ϕ directly from resistive-inductive-capacitive sensor 402. However, when present, preamplifier 440, mixer 442, and combiner 444 may allow for mixing sensor signal ϕ down to a lower intermediate frequency Δf which may allow for lower-bandwidth and more efficient ADCs and/or which may allow for minimization of phase and/or gain mismatches in the incident and quadrature paths of the phase detector of processing IC 412.
In operation, PGA 414 may further amplify sensor signal ϕ to condition sensor signal ϕ for processing by the coherent incident/quadrature detector. VCO 416 may generate an oscillation signal to be used as a basis for the signal driven by voltage-to-current converter 408, as well as the oscillation signals used by mixers 420 and 422 to extract incident and quadrature components of amplified sensor signal ϕ. As shown in
In the incident channel, mixer 420 may extract the incident component of amplified sensor signal ϕ, low-pass filter 424 may filter out the oscillation signal mixed with the amplified sensor signal ϕ to generate a direct current (DC) incident component, and ADC 428 may convert such DC incident component into an equivalent incident component digital signal for processing by amplitude and phase calculation block 431. Similarly, in the quadrature channel, mixer 422 may extract the quadrature component of amplified sensor signal ϕ, low-pass filter 426 may filter out the phase-shifted oscillation signal mixed with the amplified sensor signal ϕ to generate a direct current (DC) quadrature component, and ADC 430 may convert such DC quadrature component into an equivalent quadrature component digital signal for processing by amplitude and phase calculation block 431. Amplitude and phase calculation block 431 may include any system, device, or apparatus configured to receive phase information comprising the incident component digital signal and the quadrature component digital signal and based thereon, extract amplitude and phase information.
DSP 432 may include any system, device, or apparatus configured to interpret and/or execute program instructions and/or process data. In particular, DSP 432 may receive the phase information and the amplitude information generated by amplitude and phase calculation block 431 and based thereon, determine a displacement of mechanical member 305 relative to resistive-inductive-capacitive sensor 402, which may be indicative of an occurrence of a physical interaction (e.g., press or release of a virtual button or other interaction with a virtual interface) associated with a human-machine interface associated with mechanical member 305 based on the phase information. DSP 432 may also generate an output signal indicative of the displacement. In some embodiments, such output signal may comprise a control signal for controlling mechanical vibration of linear resonant actuator 107 in response to the displacement.
The phase information generated by amplitude and phase calculation block 431 may be subtracted from a reference phase ϕref by combiner 450 in order to generate an error signal that may be received by low-pass filter 434. Low-pass filter 434 may low-pass filter the error signal, and such filtered error signal may be applied to VCO 416 to modify the frequency of the oscillation signal generated by VCO 416, in order to drive sensor signal ϕ towards reference phase ϕref. As a result, sensor signal ϕ may comprise a transient decaying signal in response to a “press” of a virtual button (or other interaction with a virtual interface) associated with system 400 as well as another transient decaying signal in response to a subsequent “release” of the virtual button (or other interaction with a virtual interface). Accordingly, low-pass filter 434 in connection with VCO 416 may implement a feedback control loop that may track changes in operating parameters of system 400 by modifying the driving frequency of VCO 416.
Baseline calculation engine 452 may comprise any system, device, or apparatus configured to, as described in greater detail below, calculate an appropriate baseline sensor input for processing a sensor signal ϕ as a user interaction with force sensor 105/mechanical member 305 in order to discriminate between user interactions and anomalous force sensor 105/mechanical member 305 sensor signal ϕ variations, such as those caused by drift of physical parameters (e.g., aging, temperature, etc.) of force sensor 105, mechanical member 305, resonant phase sensing system 113, etc. Although
Although the foregoing contemplates use of closed-loop feedback for sensing of displacement, the various embodiments represented by
Although the foregoing contemplates use of a coherent incident/quadrature detector as a phase detector for determining phase information associated with resistive-inductive-capacitive sensor 402, a resonant phase sensing system 112 may perform phase detection and/or otherwise determine phase information associated with resistive-inductive-capacitive sensor 402 in any suitable manner, including, without limitation, using only one of the incident path or quadrature path to determine phase information.
In some embodiments, an incident/quadrature detector as disclosed herein may include one or more frequency translation stages that translate the sensor signal into direct-current signal directly or into an intermediate frequency signal and then into a direct-current signal. Any of such frequency translation stages may be implemented either digitally after an analog-to-digital converter stage or in analog before an analog-to-digital converter stage.
In addition, although the foregoing contemplates measuring changes in resistance and inductance in resistive-inductive-capacitive sensor 402 caused by displacement of mechanical member 305, other embodiments may operate based on a principle that any change in impedance based on displacement of mechanical member 305 may be used to sense displacement. For example, in some embodiments, displacement of mechanical member 305 may cause a change in a capacitance of resistive-inductive-capacitive sensor 402, such as if mechanical member 305 included a metal plate implementing one of the capacitive plates of capacitor 406.
Although DSP 432 may be capable of processing phase information to make a binary determination of whether physical interaction associated with a human-machine interface associated with mechanical member 305 has occurred and/or ceased to occur, in some embodiments, DSP 432 may quantify a duration of a displacement of mechanical member 305 to more than one detection threshold, for example to detect different types of physical interactions (e.g., a short press of a virtual button versus a long press of the virtual button). In these and other embodiments, DSP 432 may quantify a magnitude of the displacement to more than one detection threshold, for example to detect different types of physical interactions (e.g., a light press of a virtual button versus a quick and hard press of the virtual button).
Although
Accordingly, using the systems and methods described above, a resistive-inductor-capacitive sensor is provided wherein part of the inductive component is exposed to the user in the form of a metal plate of a region of a chassis or enclosure (e.g., enclosure 101). As such, displacements in the metal plate or enclosure may correlate to changes in measured phase or amplitude. Intentional displacements due to human interaction may tend to have faster slew rates at system output than displacements or other system changes due to input not from intentional human interaction, such as aging or temperature drift in the metal plate or inductive sensor.
A simple high-pass filter on a signal of interest may be used to cancel undesired inputs not indicative of intentional human interaction. However, such an approach may not be sufficient to sense more complex human interactions for which sensing may be desirable. In addition, such a high-pass filter solution may be less useful when multi-level detection is desired.
Establishing a variable baseline value in a detection system may be useful for isolating an actual signal of interest. If the baseline is designed to track only slow-moving inputs below a range of interest (e.g., essentially a low-pass filtered version of the sensor input signal), subtracting the baseline from the sensor input signal may yield the actual signal of interest (e.g., essentially resulting in a high-pass filtered version of the input).
However, disadvantages of the approach shown in
Further disadvantages of the approach shown in
As temperature may lead to drift in sensor performance, it may be desirable to user a measurement of temperature in calculating a baseline signal.
Under normal operation, combiner 903 may calculate the difference between an instantaneous sensor signal ϕ and the output of integrator 908 (e.g., baseline signal BASELINE) as a phase error Δϕ. Gain control block 904 may determine whether phase error Δϕ is greater than a positive threshold value. If phase error Δϕ is greater than a positive threshold value, gain control block 904 may reduce a gain factor GAIN of gain element 906 in order to minimize an impact of an active button touch signal. The phase tracking loop implemented by baseline calculation engine 452 may then predict subsequent samples of baseline signal BASELINE based on the dynamics of previous phase data. On the other hand, if phase error Δϕ is lower than the positive threshold value, gain control block 904 may set gain factor GAIN to a normal, default value and the phase tracking loop of baseline calculation engine 452 may continue to track input phase data (e.g., sensor signal ϕ).
Furthermore, gain control block 904 may receive (e.g., from a temperature sensor) a signal indicative of a temperature associated with resonant phase sensing system 113. Based on the sensed temperature, gain control block 904 may calculate a rate of change of the sensed temperature and control gain factor GAIN as a function of such temperature rate of change (e.g., increasing gain factor GAIN with increasing temperature rates of change, decreasing gain factor GAIN with decreasing temperature rates of change).
Accordingly, baseline calculation engine 452 as depicted in
In some embodiments, baseline calculation engine 452 may be configured to modify baseline signal BASELINE periodically at an update frequency. In such embodiments, baseline calculation engine 452 may be configured to set the update frequency based on a magnitude of temperature and/or a rate of change of temperature. Accordingly, for certain ranges of temperature and/or for large changes in temperature, baseline calculation engine 452 may update baseline signal BASELINE more frequently as compared to other ranges of temperature and/or for smaller changes in temperature.
As used herein, when two or more elements are referred to as “coupled” to one another, such term indicates that such two or more elements are in electronic communication or mechanical communication, as applicable, whether connected indirectly or directly, with or without intervening elements.
This disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Moreover, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative. Accordingly, modifications, additions, or omissions may be made to the systems, apparatuses, and methods described herein without departing from the scope of the disclosure. For example, the components of the systems and apparatuses may be integrated or separated. Moreover, the operations of the systems and apparatuses disclosed herein may be performed by more, fewer, or other components and the methods described may include more, fewer, or other steps. Additionally, steps may be performed in any suitable order. As used in this document, “each” refers to each member of a set or each member of a subset of a set.
Although exemplary embodiments are illustrated in the figures and described below, the principles of the present disclosure may be implemented using any number of techniques, whether currently known or not. The present disclosure should in no way be limited to the exemplary implementations and techniques illustrated in the drawings and described above.
Unless otherwise specifically noted, articles depicted in the drawings are not necessarily drawn to scale.
All examples and conditional language recited herein are intended for pedagogical objects to aid the reader in understanding the disclosure and the concepts contributed by the inventor to furthering the art, and are construed as being without limitation to such specifically recited examples and conditions. Although embodiments of the present disclosure have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the disclosure.
Although specific advantages have been enumerated above, various embodiments may include some, none, or all of the enumerated advantages. Additionally, other technical advantages may become readily apparent to one of ordinary skill in the art after review of the foregoing figures and description.
To aid the Patent Office and any readers of any patent issued on this application in interpreting the claims appended hereto, applicants wish to note that they do not intend any of the appended claims or claim elements to invoke 35 U.S.C. § 112(f) unless the words “means for” or “step for” are explicitly used in the particular claim.
The present disclosure claims priority to U.S. Provisional Patent Application Ser. No. 63/040,733, filed Jun. 18, 2020, which is incorporated by reference herein in its entirety. The present disclosure also relates to U.S. patent application Ser. No. 16/267,079, filed Feb. 4, 2019, U.S. patent application Ser. No. 16/422,543, filed May 24, 2019, U.S. patent application Ser. No. 16/866,175, filed May 4, 2020, all of which are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4268822 | Olsen | May 1981 | A |
4888554 | Hyde et al. | Dec 1989 | A |
5286941 | Bel | Feb 1994 | A |
5361184 | El-Sharkawi | Nov 1994 | A |
5567920 | Watanabe et al. | Oct 1996 | A |
5661269 | Fukuzaki et al. | Aug 1997 | A |
5898136 | Katsurahira | Apr 1999 | A |
6231520 | Maezawa | May 2001 | B1 |
6380923 | Fukumoto et al. | Apr 2002 | B1 |
6473708 | Watkins | Oct 2002 | B1 |
7173410 | Pond | Feb 2007 | B1 |
8144126 | Wright | Mar 2012 | B2 |
8384378 | Feldkamp et al. | Feb 2013 | B2 |
8421446 | Straubinger et al. | Apr 2013 | B2 |
8674950 | Olson | Mar 2014 | B2 |
8970230 | Narayanasamy et al. | Mar 2015 | B2 |
9070856 | Rose et al. | Jun 2015 | B1 |
9164605 | Pirogov et al. | Oct 2015 | B1 |
9707502 | Bonifas et al. | Jul 2017 | B1 |
10168855 | Baughman et al. | Jan 2019 | B2 |
10372328 | Zhai | Aug 2019 | B2 |
10571307 | Acker | Feb 2020 | B2 |
10599247 | Winokur | Mar 2020 | B2 |
10624691 | Wiender et al. | Apr 2020 | B2 |
10642435 | Maru et al. | May 2020 | B2 |
10725549 | Marijanovic et al. | Jul 2020 | B2 |
10726715 | Hwang et al. | Jul 2020 | B2 |
10908200 | You et al. | Feb 2021 | B2 |
10921159 | Das et al. | Feb 2021 | B1 |
10935620 | Das et al. | Mar 2021 | B2 |
10942610 | Maru et al. | Mar 2021 | B2 |
10948313 | Kost et al. | Mar 2021 | B2 |
11079874 | Lapointe et al. | Aug 2021 | B2 |
11204670 | Maru et al. | Dec 2021 | B2 |
11294503 | Westerman | Apr 2022 | B2 |
20010045941 | Rosenberg et al. | Nov 2001 | A1 |
20030038624 | Hilliard et al. | Feb 2003 | A1 |
20050192727 | Shostak et al. | Sep 2005 | A1 |
20050258826 | Kano et al. | Nov 2005 | A1 |
20050283330 | Laraia et al. | Dec 2005 | A1 |
20060025897 | Shostak et al. | Feb 2006 | A1 |
20060293864 | Soss | Dec 2006 | A1 |
20070047634 | Kang et al. | Mar 2007 | A1 |
20070198926 | Joguet et al. | Aug 2007 | A1 |
20070268265 | XiaoPing | Nov 2007 | A1 |
20070296593 | Hall et al. | Dec 2007 | A1 |
20070296709 | GuangHai | Dec 2007 | A1 |
20080007534 | Peng et al. | Jan 2008 | A1 |
20080024456 | Peng et al. | Jan 2008 | A1 |
20080088594 | Liu et al. | Apr 2008 | A1 |
20080088595 | Liu et al. | Apr 2008 | A1 |
20080142352 | Wright | Jun 2008 | A1 |
20080143681 | XiaoPing | Jun 2008 | A1 |
20080150905 | Grivna et al. | Jun 2008 | A1 |
20080158185 | Westerman | Jul 2008 | A1 |
20080312857 | Sequine | Dec 2008 | A1 |
20090008161 | Jones et al. | Jan 2009 | A1 |
20090009195 | Seguine | Jan 2009 | A1 |
20090058430 | Zhu | Mar 2009 | A1 |
20090140728 | Rollins et al. | Jun 2009 | A1 |
20090278685 | Potyrailo et al. | Nov 2009 | A1 |
20090302868 | Feucht et al. | Dec 2009 | A1 |
20090308155 | Zhang | Dec 2009 | A1 |
20100019777 | Balslink | Jan 2010 | A1 |
20100045360 | Howard et al. | Feb 2010 | A1 |
20100153845 | Gregorio et al. | Jun 2010 | A1 |
20100211902 | Unsworth et al. | Aug 2010 | A1 |
20100231239 | Tateishi et al. | Sep 2010 | A1 |
20100238121 | Ely | Sep 2010 | A1 |
20100328249 | Ningrat et al. | Dec 2010 | A1 |
20110005090 | Lee et al. | Jan 2011 | A1 |
20110214481 | Kachanov et al. | Sep 2011 | A1 |
20110216311 | Kachanov et al. | Sep 2011 | A1 |
20110267302 | Fasshauer | Nov 2011 | A1 |
20110285667 | Poupyrev et al. | Nov 2011 | A1 |
20110291821 | Chung | Dec 2011 | A1 |
20110301876 | Yamashita | Dec 2011 | A1 |
20130018489 | Grunthaner et al. | Jan 2013 | A1 |
20130076374 | Huang | Mar 2013 | A1 |
20130106756 | Kono et al. | May 2013 | A1 |
20130106769 | Bakken et al. | May 2013 | A1 |
20130269446 | Fukushima et al. | Oct 2013 | A1 |
20140002113 | Schediwy et al. | Jan 2014 | A1 |
20140028327 | Potyrailo et al. | Jan 2014 | A1 |
20140137585 | Lu | May 2014 | A1 |
20140225599 | Hess | Aug 2014 | A1 |
20140267065 | Levesque | Sep 2014 | A1 |
20150022174 | Nikitin | Jan 2015 | A1 |
20150027139 | Lin | Jan 2015 | A1 |
20150077094 | Baldwin et al. | Mar 2015 | A1 |
20150084874 | Cheng et al. | Mar 2015 | A1 |
20150293695 | Schonleben et al. | Oct 2015 | A1 |
20150329199 | Golborne et al. | Nov 2015 | A1 |
20160018940 | Lo et al. | Jan 2016 | A1 |
20160048256 | Day | Feb 2016 | A1 |
20160117084 | Ording | Apr 2016 | A1 |
20160162031 | Westerman et al. | Jun 2016 | A1 |
20160169717 | Zhitomirsky | Jun 2016 | A1 |
20160179243 | Schwartz | Jun 2016 | A1 |
20160231874 | Baughman et al. | Aug 2016 | A1 |
20160241227 | Hirata | Aug 2016 | A1 |
20160252403 | Murakami | Sep 2016 | A1 |
20160305997 | Wiesbauer et al. | Oct 2016 | A1 |
20160357296 | Picciotto et al. | Dec 2016 | A1 |
20170023429 | Straeussnigg et al. | Jan 2017 | A1 |
20170077735 | Leabman | Mar 2017 | A1 |
20170093222 | Joye et al. | Mar 2017 | A1 |
20170097437 | Widmer et al. | Apr 2017 | A1 |
20170140644 | Hwang et al. | May 2017 | A1 |
20170147068 | Yamazaki et al. | May 2017 | A1 |
20170168578 | Tsukamoto et al. | Jun 2017 | A1 |
20170184416 | Kohlenberg et al. | Jun 2017 | A1 |
20170185173 | Ito et al. | Jun 2017 | A1 |
20170187541 | Sundaresan et al. | Jun 2017 | A1 |
20170237293 | Faraone et al. | Aug 2017 | A1 |
20170282715 | Fung et al. | Oct 2017 | A1 |
20170322643 | Eguchi | Nov 2017 | A1 |
20170328740 | Widmer et al. | Nov 2017 | A1 |
20170371380 | Oberhauser et al. | Dec 2017 | A1 |
20170371381 | Liu | Dec 2017 | A1 |
20170371473 | David et al. | Dec 2017 | A1 |
20180019722 | Birkbeck | Jan 2018 | A1 |
20180055448 | Karakaya et al. | Mar 2018 | A1 |
20180059793 | Hajati | Mar 2018 | A1 |
20180067601 | Winokur et al. | Mar 2018 | A1 |
20180088064 | Potyrailo et al. | Mar 2018 | A1 |
20180088702 | Schutzberg et al. | Mar 2018 | A1 |
20180135409 | Wilson et al. | May 2018 | A1 |
20180182212 | Li et al. | Jun 2018 | A1 |
20180183372 | Li et al. | Jun 2018 | A1 |
20180195881 | Acker | Jul 2018 | A1 |
20180221796 | Bonifas et al. | Aug 2018 | A1 |
20180229161 | Maki et al. | Aug 2018 | A1 |
20180231485 | Potyrailo et al. | Aug 2018 | A1 |
20180260049 | O'Lionaird et al. | Sep 2018 | A1 |
20180260050 | Unseld et al. | Sep 2018 | A1 |
20180321748 | Rao et al. | Nov 2018 | A1 |
20190179146 | De Nardi | Jun 2019 | A1 |
20190197218 | Schwartz | Jun 2019 | A1 |
20190204929 | Attari et al. | Jul 2019 | A1 |
20190235629 | Hu et al. | Aug 2019 | A1 |
20190286263 | Bagheri et al. | Sep 2019 | A1 |
20190302161 | You et al. | Oct 2019 | A1 |
20190302193 | Maru et al. | Oct 2019 | A1 |
20190302890 | Marijanovic et al. | Oct 2019 | A1 |
20190302922 | Das et al. | Oct 2019 | A1 |
20190302923 | Maru et al. | Oct 2019 | A1 |
20190326906 | Camacho Cardenas et al. | Oct 2019 | A1 |
20190339313 | Vandermeijden | Nov 2019 | A1 |
20190377468 | Micci et al. | Dec 2019 | A1 |
20200006495 | Siemieniec et al. | Jan 2020 | A1 |
20200064160 | Maru et al. | Feb 2020 | A1 |
20200133455 | Sepehr et al. | Apr 2020 | A1 |
20200177290 | Reimer et al. | Jun 2020 | A1 |
20200191761 | Potyrailo et al. | Jun 2020 | A1 |
20200271477 | Kost et al. | Aug 2020 | A1 |
20200271706 | Wardlaw et al. | Aug 2020 | A1 |
20200271745 | Das et al. | Aug 2020 | A1 |
20200272301 | Duewer et al. | Aug 2020 | A1 |
20200319237 | Maru et al. | Oct 2020 | A1 |
20200320966 | Clark et al. | Oct 2020 | A1 |
20200373923 | Walsh et al. | Nov 2020 | A1 |
20200382113 | Beardsworth et al. | Dec 2020 | A1 |
20200386804 | Das et al. | Dec 2020 | A1 |
20210064137 | Wopat et al. | Mar 2021 | A1 |
20210140797 | Kost et al. | May 2021 | A1 |
20210149538 | LaPointe et al. | May 2021 | A1 |
20210152174 | Yancey et al. | May 2021 | A1 |
20210361940 | Yeh et al. | Nov 2021 | A1 |
20210396610 | Li et al. | Dec 2021 | A1 |
20210404901 | Kost et al. | Dec 2021 | A1 |
20210405764 | Hellman et al. | Dec 2021 | A1 |
20220075500 | Chang et al. | Mar 2022 | A1 |
20220268233 | Kennedy | Aug 2022 | A1 |
20220307867 | Das et al. | Sep 2022 | A1 |
20220308000 | Das et al. | Sep 2022 | A1 |
Number | Date | Country |
---|---|---|
10542884 | Mar 2016 | CN |
106471708 | Mar 2017 | CN |
107076623 | Aug 2017 | CN |
209069345 | Jul 2019 | CN |
4004450 | Aug 1991 | DE |
602004005672 | Dec 2007 | DE |
102015215330 | Feb 2017 | DE |
102015215331 | Feb 2017 | DE |
1697710 | Apr 2007 | EP |
2682843 | Jan 2014 | EP |
2394295 | Apr 2004 | GB |
2573644 | Nov 2019 | GB |
2582065 | Sep 2020 | GB |
2582864 | Oct 2020 | GB |
2586722 | Feb 2022 | GB |
2006246289 | Sep 2006 | JP |
20130052059 | May 2013 | KR |
0033244 | Jun 2000 | WO |
20061354832 | Dec 2006 | WO |
2007068283 | Jun 2007 | WO |
2016032704 | Mar 2016 | WO |
2021101722 | May 2021 | WO |
2021101723 | May 2021 | WO |
Entry |
---|
Combined Search and Examination Report under Sections 17 and 18(3), UKIPO, Application No. GB2111666.0, dated Feb. 11, 2022. |
Examination Report under Section 18(3), UKIPO, Application No. GB2101804.9, dated Feb. 25, 2022. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2022/012721, dated Apr. 26, 2022. |
Second Office Action, China National Intellectual Property Administration, Application No. 201980022693 5, dated Apr. 13, 2022. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2020/059113, dated Feb. 23, 2021. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2020/059101, dated Mar. 9, 2021. |
First Office Action, China National Intellectual Property Administration, Application No. 201980022689.9, dated Jun. 2, 2021. |
First Office Action, China National Intellectual Property Administration, Application No. 201980022693.5, dated Jul. 8, 2021. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2021/035695, dated Sep. 9, 20201. |
Second Office Action, China National Intellectual Property Administration, Application No. 201980022689.9, dated Oct. 27, 2021. |
Second Office Action, China National Intellectual Property Administration, Application No. 201980022693.5, dated Dec. 14, 2021. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2019/045554, datd Oct. 17, 2019. |
Combined Search and Examination Report, UKIPO, Application No. GB1904250.6, dated Sep. 10, 2019. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2019/022518, dated May 24, 2019. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2019/022578, dated May 27, 2019. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2019/021838, dated May 27, 2019. |
Combined Search and Examination Report under Sections 17 and 18(3), UKIPO, Application No. GB2001341.3, dated Jun. 29, 2020. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2022/018886, dated Jun. 10, 2022. |
Combined Search and Examination Report under Sections 17 and 18(3), UKIPO, Application No. GB2201194.4, dated Jul. 1, 2022. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2022/018475, dated Aug. 2, 2022. |
First Office Action, China National Intellectual Property Administration, Application No. 202010105829.3, dated Apr. 12, 2022, received by counsel Jul. 28, 2022. |
Examination Report under Section 18(3), UKIPO, Application No. GB2015439.9, dated May 10, 2022. |
Notice of Preliminary Rejection, Korean Intellectual Property Office, Application No. 10-2020-7029597, dated Jul. 29, 2022. |
Number | Date | Country | |
---|---|---|---|
20210396610 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
63040733 | Jun 2020 | US |