Baseplate and a method for manufacturing a baseplate for a field emission display

Information

  • Patent Grant
  • 6369505
  • Patent Number
    6,369,505
  • Date Filed
    Tuesday, January 23, 2001
    23 years ago
  • Date Issued
    Tuesday, April 9, 2002
    22 years ago
Abstract
The present invention is a baseplate that has a supporting substrate with a primary surface upon which an array of emitters is formed. An insulator layer with a plurality of cavities aligned with respective emitters is disposed on the primary surface, and an extraction grid with a plurality of cavity openings aligned with respective emitters is deposited on the insulator layer. The extraction grid is made from a silicon based layer of material. A current control substrate formed from the silicon based layer of material of the extraction grid is provided such that the current control substrate is electrically isolated from the extraction grid and electrically connected to the emitters. The current control substrate has sufficient resistivity to limit the current from the emitters.
Description




TECHNICAL FIELD




The present invention relates to cold-cathode field emission displays, and, more particularly, to baseplates for field emission displays that have internal current-limiting devices.




BACKGROUND OF THE INVENTION




Field emission displays (FEDs) are packaged vacuum microelectronic devices that are used in connection with computers, television sets, camcorder viewfinders and other electronic devices requiring flat panel displays. FEDs have a baseplate and a faceplate juxtaposed to one another across a narrow vacuum gap. In large FEDs, a number of spacers are positioned between the baseplate and the faceplate to prevent atmospheric pressure from collapsing the plates together. The baseplate typically has a base substrate upon which an array of sharp, cone-shaped emitters are formed. The emitters in each of the rows or columns of the array may be connected to each other and isolated from the emitters in the other rows or columns, respectively. An insulator layer is positioned on the substrate having apertures through which the emitters extend, and an extraction grid formed on the insulator layer around the apertures. The faceplate has a substantially transparent substrate, a transparent conductive layer disposed on the transparent substrate, and a cathodoluminescent material deposited on the transparent conductive layer.




In operation, a potential is established across the extraction grid and the emitters to extricate electrons from the emitters. The electrons pass through the holes in the insulator layer and the extraction grid, and impinge upon the cathodoluminescent material in the desired pattern. In the event that the emitters in a row or column are interconnected and isolated from the emitters in other rows, the emission of electrons from the emitters in individual rows or columns can be controlled.




FEDs may also have a current control device to switch or limit the amount of current that can flow through the emitters. Limiting the emitter current is important because an excessively high current generates a significant amount of heat in the emitters, which may damage or destroy the emitters. Conventional current-limiting devices may be fabricated on the base substrate or a separate substrate formed within the vacuum chamber of an FED. Switching the emitter current is performed in various emitter addressing schemes with several row lines or column lines coupled to switches formed on the baseplate by implanting various materials into the base substrate. The base substrate in such FEDs is often a complex, expensive component to manufacture, and forming current control devices on the base substrate makes the base substrate even more complex. Accordingly, forming current control devices on the base substrate is often more time-consuming and costly than forming the same devices on a separate substrate. Thus, it is often more desirable to fabricate current control devices on a separate substrate




Conventional processes for making an FED having a separate substrate for a current control device typically involve forming the emitters on top of a conductive material, and then masking the emitters with a protective layer. The separate substrate for the current control devices is then deposited on the unprotected areas, after which the mask is removed from the emitters. Subsequently, an insulator layer is disposed over the emitters and the separate substrate, and a layer of conductive material is disposed over the insulator layer. The area over the separate substrate is then masked, and the extraction grid is formed from the conductive layer of material by a chemical mechanical planarization (CMP) process. Conventional baseplates are designed with the understanding that it is desirable to form the grid from a highly conductive material such as a metal or conductive polycrystalline. Finally, the mask over the separate substrate is removed. The separate substrate may be made from a material having sufficient resistivity to act as a resistor, thus allowing the separate substrate itself to act as a current-limiting device. A power source is connected to the separate substrate such that electrons flow to the emitters through the separate substrate.




One problem with forming a separate substrate for the current control device is that it increases the cost of producing an FED. In addition to the basic steps of forming an FED, the production of a separate substrate for a current control device requires several masking steps and the step of depositing the separate substrate itself. Moreover, because the separate substrate for a current control device is often made from a different material than the other components of an FED, it requires separate and generally less efficient handling procedures. Therefore, it would be desirable to develop a process for manufacturing a baseplate with a separate substrate for a current control device that uses fewer steps and fewer materials.




SUMMARY OF THE INVENTION




The baseplate of the present invention has a supporting substrate with a primary surface upon which an array of emitters is formed. An insulator layer with a plurality of openings aligned with respective emitters is disposed on the primary surface, and an extraction grid with a plurality of cavity openings aligned with respective emitters is deposited on the insulator layer. The extraction grid is made from a silicon based layer of material. A substrate that is separate from the supporting substrate is formed from the same silicon based material used for the extraction grid and is electrically isolated from the extraction grid. A current control device on the separate substrate is electrically connected between the emitters and a voltage source such that electrons from the voltage source flow through the current control substrate to the emitters. In one embodiment, the silicon based material of the grid and current control substrate is sufficiently resistant to allow the current control substrate itself to limit the current to the emitters.




The inventive method for manufacturing a baseplate of the present invention includes forming emitters on a supporting substrate, disposing a dielectric material over the emitters and the supporting substrate, and depositing a silicon based material on the dielectric material. The silicon based material is deposited such that it has a first section positioned over at least a portion of the emitters and a second section that is contiguous with the first section. A number of cavity openings are then fabricated in the first section such that each cavity opening is aligned with a corresponding emitter. The layer of silicon based material is then processed to electrically isolate the first and second sections from one another. The dielectric material in the cavity openings of the grid and adjacent to the emitters is removed to open the emitters to the holes. The second section of the silicon based material provides a separate substrate on which a current control device may be formed to control the current flowing to the emitters.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a cross-sectional view of a portion of a baseplate having an extraction grid and a passive current control device fabricated from the same layer of material in accordance with the invention.





FIG. 2

is a cross-sectional view of a baseplate for use in a field emission display having an extraction grid and an active current control device fabricated from the same layer of material in accordance with the invention.





FIG. 3A

is a cross-sectional view of a partially fabricated baseplate produced in a step of a method in accordance of the invention.





FIG. 3B

is a cross-sectional view of another partially fabricated baseplate produced at another step in a method in accordance with the invention.





FIG. 3C

is a cross-sectional view of another partially fabricated baseplate produced at another step in a method in accordance with the invention.





FIG. 3D

is a cross-sectional view of another partially fabricated baseplate produced at another step in a method in accordance with the invention.





FIG. 3E

is a cross-sectional view of another partially fabricated baseplate produced at another step in a method in accordance with the invention.





FIG. 4

is a schematic diagram of a method of the invention.











DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT





FIGS. 1 and 2

illustrate FEDs with an extraction grid and a current control substrate that are both fabricated from the same layer of material.

FIGS. 3A-3E

and

FIG. 4

illustrate a process of fabricating a baseplate in which the extraction grid and the current control substrate are formed from the same layer of material. Like reference numbers refer to like component parts throughout the various figures.




The present invention provides a current control substrate that is separate from a supporting substrate that may itself be a current-limiting device. The current control substrate provides a platform upon which virtually any type of current control device may be fabricated to switch or limit the emitter current. One of the central aspects of the invention is that the separate current control substrate is formed from the same layer of material as the extraction grid in a single step. The extraction grid may be made from a generally resistive material in contravention to the conventional understanding of using substantially conductive materials for the extraction grid. Therefore, the current control substrate may be sufficiently resistive to limit the emitter current, thus making a current-limiting device of the present invention relatively simple and generally less expensive to fabricate compared to conventional processes for fabricating separate substrates in FEDs.





FIG. 1

illustrates a preferred embodiment of a field emission display


10


in accordance with the invention in which a baseplate


12


is juxtaposed to a faceplate


80


in a spaced apart relationship across a vacuum gap


86


. The baseplate


12


has a supporting substrate


20


with a primary surface


21


upon which a conductive material


30


is deposited. The conductive material


30


may be deposited on the substrate in rows or in columns. A number of emitters


22


are constructed on the conductive material


30


. If the supporting substrate


20


is conductive, the conductive material


30


may be omitted and the emitters


22


may be formed directly on the substrate


20


. An insulator layer


40


is positioned on the conductive material


30


and the supporting substrate


20


, and an extraction grid


52


is formed on top of the insulator layer


40


. A number of cavity openings


53


are formed in the extraction grid


52


by a chemical mechanical planarization process such that each cavity opening


53


is aligned with an emitter


22


. A number of cavities


44


are then etched into the insulator


40


adjacent to the emitters


22


such that the insulator


40


does not block the emitters


22


. The differential voltage between the extraction grid


52


and the emitters


22


causes electrons to be extracted from the emitters


22


. The extraction grid


52


is made from a silicon based material, which for the purposes of this invention is defined to include polycrystalline silicon, microcrystalline silicon, amorphous silicon and porous materials. The extraction grid


52


is preferably made from a polysilicon material that is more resistant than conventional metal or crystalline grids while still having sufficient conductivity to allow a small current to flow through the extraction grid


52


without resulting in a significant voltage drop. Moreover, by making the extraction grid


52


from an appropriate semiconductor material, its conductivity may be altered through doping or other applicable techniques.




In the overall operation of the FED


10


, the electrons are extracted from the emitters


22


by the potential between the extraction grid


52


and the emitters


22


. The electrons are further accelerated across the vacuum gap


86


by a larger anode potential on a transparent conductive layer


82


disposed on the inner surface of the faceplate


80


. The electrons impinge upon a cathodoluminescent material


84


that is disposed on the transparent conductive layer


82


. The cathodoluminescent material


84


transforms the energy of the electrons into light in a desired pattern on the faceplate


80


.




A current-limiting substrate


54


separate from the substrate


20


is formed on another section of the insulator layer


40


such that the substrate


54


is electrically isolated from the extraction grid


52


. The substrate


54


may itself be a current-limiting device itself, or it may provide a platform on which a current-limiting device may be fabricated. The substrate


54


is formed from the same layer of silicon based material as the extraction grid


52


and is electrically isolated from the extraction grid


52


by suitable means. For example, gap


55


may be etched in the silicon based material with a silicon etch prior to etching the cavities


44


in the insulator layer


40


with an oxide etch. However, other techniques may be used to electrically isolate the current control substrate


54


from the extraction grid


52


. For example, the extraction grid


52


may be doped to form an n-type material and the substrate


54


may be doped to form a p-type material, thus forming a p-n junction between the substrate


54


and the extraction grid


52


. Since the extraction grid


52


is not more negative than the substrate


54


during normal operation, the p-n junction remains back-biased, thereby electrically isolating the substrate


54


from the extraction grid


52


. Other techniques for electrically isolating the substrate


54


from the extraction grid may also be used.




In one embodiment, the silicon based material from which the grid


52


and substrate


54


is formed has sufficient resistivity to act as a passive current-limiting device


60


without further manipulating the current control substrate


54


. In another embodiment of the invention, the current-limiting device


60


is formed in the current control substrate


54


by doping the substrate


54


with an appropriate impurity that alters the resistance of the silicon based material. The substrate


54


may be doped with boron, arsenic, phosphorous or other appropriate conductive elements. As explained further below, an active device, such as a current limiting or switching transistor, may also be formed in the current control substrate


54


. Electrical contacts


62


and


64


are placed in the current-limiting device


60


such that contact


62


extends through a hole


45


in the insulator layer


40


to the conductive layer


30


, and contact


64


extends to a current source. In another embodiment (not shown), the substrate


54


is formed into the hole


45


in direct connection with the conductive layer


30


.




In operation, electrons flow through the current-limiting device


60


and conductive layer


30


to the emitters


22


. The electrons flowing from the source to the emitters


22


are regulated by the resistance of the passive current-limiting device


60


. Accordingly, by selecting the appropriate materials for the current control substrate


54


, or the dopants for the substrate


54


, the current-limiting device


60


limits the maximum amount of current flowing to the emitters


22


to prevent the emitters from being damaged by excessive heat or spark erosion. It will be understood that one current-limiting device


60


may be provided for either the entire array of emitters or for individual rows or columns of emitters in the array.





FIG. 2

illustrates another embodiment of the invention in which an active current control device


70


is formed onto the current control substrate


54


. For purposes of illustration, the active current control device


70


is a field effect transistor having a p-type polysilicon substrate


54


which is n-doped in two regions to form an n-type source


71


and an n-type drain


73


. A polysilicon gate


75


is positioned on top of a thin insulative layer


77


that may be made from any number of insulative materials such as silicon dioxide. In operation, the current flowing from the emitters


22


is controlled by varying the voltage applied to the polysilicon gate


75


. The active current control device


70


may also be another type of current control device, such as a p-type field effect transistor or a bi-polar transistor. The current control device


70


may be operated in a current-limiting mode to regulate the current flowing from the emitters


22


or in a switching mode to turn on and off the current flowing from the emitters


22


. By providing one active current control device


70


for each row or column of emitters


22


, the emission of electrons from each row or column may be individually controlled.




The process of the invention is illustrated in

FIGS. 3A-3E

and FIG.


4


. The first step


102


of the invention is to form the emitters


22


on the substrate


20


, as illustrated in FIG.


3


A. The emitters


22


are formed by depositing a layer of semiconductive silicon material on the supporting substrate


20


and conductive layer


30


, and depositing an oxide layer on the silicon layer. The oxide is then masked, photo-patterned and etched to define islands of oxide on the surface of the silicon layer. The underlying peripheral regions of the silicon layer beneath the edges of the masked island areas are selectively removed by a plasma-source dry etching process resulting in cone-shaped semiconductor emitters that are positioned in the region immediately under each oxide island. The removal of the underlying peripheral regions of the silicon layer is preferably closely controlled by varying the isotropic and anisotropic characteristics of the etching gas during the etching process. Alternatively, a layer of silicon and a layer of oxide are disposed on the conductive layer


30


and then etched to form islands on the conductive layer


30


. The removal of the underlying regions of the silicon layer may be controlled by oxidizing the surface of the silicon around the masked island areas; the duration of the oxidation phase being long enough to produce sideways growth of the resulting oxide layer beneath the peripheral edges of the masked areas so that only a non-oxidized tip of underlying single-crystal substrate beneath the island mask remains on top of the conductive layer


30


. The oxidized layer is then differentially etched away in the regions immediately surrounding the masked island areas to result in the production of centrally disposed, cone-shaped semiconductor field emitters at the desired field emission cathode sites.




In the next step


104


of the method, an insulator layer


40


is disposed on the conductive layer


30


and the emitters


22


(only one emitter


22


is shown for clarity), as illustrated in FIG.


3


B. In a preferred embodiment, the insulator layer


40


is made from a selectively etchable material such as silicon dioxide, silicon nitride or silicon oxynitride. Other suitable selectively etchable materials may also be used. The thickness of the insulator layer


40


substantially determines the spacing between the extractor grid and both the emitter


22


and the supporting substrate


20


. The insulator layer


40


substantially conforms to the shape of the emitter


22


such that it has a raised portion


41


corresponding to the position of the emitter


22


.




The next step


106


of the invention is the deposition of a layer of silicon based material


50


on top of the insulator layer


40


, as shown in FIG.


3


C. The silicon layer


50


also conforms to the shape of the emitters


22


such that it has a bump


51


corresponding to the position of the emitter


22


. The silicon layer


50


has a first section


56


and a second section


58


that is contiguous with the first section. The silicon layer


50


is preferably made from a polysilicon material that has the properties to act as the extraction grid


52


and the conductivity substrate


54


.




In another step, a number of holes or cavity openings


53


are fabricated in the first section


56


by a chemical mechanical planarization (CMP) process as disclosed in U.S. Pat. No. 5,186,670, entitled “Method to Form Self-Aligned Gate Structures and Focus Rings,” which is incorporated by reference herein. In general, the CMP process involves holding or rotating a wafer of semiconductor material against a wetted polishing surface under a controlled chemical slurry, pressure, and temperature condition. The chemical slurry may contain an abrasive polishing agent, such as alumina or silica, and chemical etchants to simultaneously grind and etch away selected portions of the wafer. Referring to

FIG. 3D

, the chemical mechanical planarization process produces a substantially planar surface in which a portion


46


of the insulating layer


40


is exposed through the silicon layer


50


just above each emitter


22


. Accordingly, the CMP process forms a cavity opening


53


in the first section


56


above each emitter


22


.





FIG. 3E

illustrates the next steps


108


-


116


of the invention in which cavities


44


are etched in the insulator layer


40


, and a gap


55


is etched along a line that separates the first section


56


from the second section


58


. A mask of photoresist material (not shown) with a gap between the first and second sections


56


and


58


is photo-patterned on the silicon layer


50


(shown in FIG.


3


D), and the gap


55


is etched in the silicon layer


50


between the first and second sections


56


and


58


to form the current control substrate


54


. The gap


55


may also be formed by other means such as by masking the area occupied by the gap


55


when the silicon based material is deposited on the insulative layer


40


. Furthermore, the silicon layer


50


may be processed by other means, such as appropriate doping, to electrically isolate the current control substrate


54


from the extraction grid


52


. In a preferred embodiment, a specific type of current control device may then be formed on the current control substrate


54


, or if the substrate


54


has sufficient resistivity, it may serve as the current-limiting current control device itself. A cavity


44


is then selectively etched in the insulator layer


40


to form the grid


52


.




The primary advantage of the present invention is that it simplifies the process for producing an FED with a separate current control substrate. By forming the current control substrate and the extraction grid from the same layer of material, the process of the invention requires fewer steps and the device of the invention requires fewer types of material. Unlike conventional processes, the method of the invention does not require depositing a layer of material with sufficient resistivity solely for use as a resistor, or masking the base substrate and resistor several times to protect them at various stages of the process. Additionally, the product of the invention uses the same material for the extraction grid and the current control substrate. Accordingly, it is expected that the invention will reduce the unit cost of producing baseplates.




It will also be evident that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the scope of the invention is limited only by the appended claims.



Claims
  • 1. A baseplate for use in a field emission display, comprising:a supporting substrate having a primary surface upon which an array of emitters is formed; an insulator layer disposed on the primary surface, the insulator layer having a plurality of cavities aligned with respective emitters; an extraction grid having a plurality of cavity openings aligned with respective emitters, the extraction grid being made from a silicon based layer of material deposited on the insulator layer; and a current control substrate formed from the silicon based layer of material of the extraction grid, the current control substrate being physically non-contiguous with the supporting substrate and electrically isolated from the extraction grid and electrically connected to the emitters by a conductive lead connected between the current control substrate and the supporting substrate, the current control substrate being adapted to control the current flowing from the emitters.
  • 2. The baseplate of claim 1 wherein the current control substrate comprises a passive current-limiting device formed from a conductance altering material doped onto the current control substrate.
  • 3. The baseplate of claim 1 wherein the current control substrate comprises an active current control device fabricated on the current control substrate.
  • 4. The baseplate of claim 3 wherein the active current control device comprises a field effect transistor.
  • 5. The baseplate of claim 3 wherein the active current control device comprises a bipolar transistor.
  • 6. The baseplate of claim 3 wherein the active current control substrate comprises a current-limiting device that regulates the current flowing from the emitters.
  • 7. The baseplate of claim 3 wherein the active current control substrate comprises a current switching device that switches the current flowing from the emitters on and off.
  • 8. The baseplate of claim 1, further comprising a conductive material doped onto the grid.
  • 9. The baseplate of claim 1 wherein the silicon based layer comprises a layer of silicon doped with a substantially conductive material and the current control substrate comprises a layer of silicon doped with a conductance altering material.
  • 10. The baseplate of claim 1 wherein the silicon based layer comprises a substantially resistive material and the grid is doped with a conductive material.
  • 11. The baseplate of claim 1 wherein the emitters in the array are arranged in rows and columns, and wherein the emitters in either the rows or the columns are interconnected to each other and electrically isolated from the other emitters in the array.
  • 12. The baseplate of claim 1 wherein all of the emitters in the array are interconnected to each other.
  • 13. The baseplate of claim 1 wherein the silicon based layer of material is non-contiguous between the extraction grid and the current control substrate so that the extraction grid and the current control substrate are physically separate from each other.
  • 14. The baseplate of claim 1 wherein the insulator layer includes a hole disposed therethrough, the conductive lead passing through the hole.
  • 15. A field emission display, comprising:a faceplate having a transparent substrate, a transparent conductive material disposed on the transparent substrate, and a cathodoluminescent material disposed on the transparent conductive material; a baseplate having a supporting substrate upon which a plurality of emitters are formed and a dielectric layer disposed on the supporting substrate, the dielectric layer having a plurality of cavities aligned with respective emitters; an extraction grid having a plurality of cavity openings aligned with respective emitters, the extraction grid being formed from a silicon based layer of material deposited on the dielectric layer; and a current control substrate formed from the silicon based layer of material of the extraction grid, the current control substrate being physically non-contiguous with the supporting substrate and electrically isolated from the extraction grid and electrically connected to the emitters by a conductive lead connected between the current control substrate and the supporting substrate, the current control substrate being adapted to control the current flowing from the emitters.
  • 16. The field emission display of claim 15 wherein the current control substrate comprises a passive current-limiting device formed from a conductance altering material doped onto the current control substrate.
  • 17. The field emission display of claim 15 wherein the current control substrate comprises an active current-limiting device fabricated on the current control substrate.
  • 18. The field emission display of claim 17 wherein the active current-limiting device comprises a field effect transistor.
  • 19. The field emission display of claim 17 wherein the active current-limiting device comprises a bipolar transistor.
  • 20. The field emission display of claim 17 wherein the active current control substrate comprises a current-limiting device that regulates the current flowing from the emitters.
  • 21. The field emission display of claim 17 wherein the active current control substrate comprises a current switching device that switches the current flowing from the emitters on and off.
  • 22. The field emission display of claim 15, further comprising a conductive impurity doped onto the grid.
  • 23. The field emission display of claim 15 wherein the silicon based layer comprises a layer of silicon doped with a substantially conductive material and the current control substrate comprises a layer of silicon doped with a conductance altering material.
  • 24. The field emission display of claim 15 wherein the silicon based layer is made from a substantially resistive material and the grid is doped with a conductive material.
  • 25. The field emission display of claim 15 wherein the emitters in the array are arranged in rows and columns, and wherein the emitters in either the rows or the columns are interconnected to each other and electrically isolated from the other emitters in the array.
  • 26. The field emission display of claim 15 wherein all of the emitters in the array are interconnected to each other.
  • 27. The field emission display of claim 15 wherein the silicon based layer of material is non-contiguous between the extraction grid and the current control substrate so that the extraction grid and the current control substrate are physically separate from each other.
  • 28. The field emission display of claim 15 wherein the insulator layer includes a hole disposed therethrough, the conductive lead passing through the hole.
  • 29. A baseplate for use in a field emission display, comprising:a supporting substrate having a primary surface upon which at least one emitter is formed; an insulator layer disposed on the primary surface, the insulator layer having at least one cavity aligned with the at least one emitter; and an at least partially conductive layer formed on the insulator layer and having a first portion including at least one opening aligned with the at least one emitter to form an extraction grid, and a second portion including a current control substrate electrically isolated from the extraction grid and electrically connected to the at least one emitter by a conductive lead connected between the current control substrate and the supporting substrate, the current control substrate being adapted to control the current flowing from the at least one emitter.
  • 30. The baseplate of claim 29 wherein the insulator layer includes a hole disposed therethrough, the conductive lead passing through the hole.
  • 31. The baseplate of claim 29 wherein the current control substrate comprises a passive current-limiting device formed from a conductance altering material doped onto the current control substrate.
  • 32. The baseplate of claim 29 wherein the current control substrate comprises an active current control device fabricated on the current control substrate.
  • 33. The baseplate of claim 30 wherein the active current control device comprises a field effect transistor.
  • 34. The baseplate of claim 29 wherein the at least partially conductive layer comprises a silicon-based layer.
  • 35. The baseplate of claim 29 wherein the current control substrate comprises a layer of silicon doped with a conductance altering material.
  • 36. The baseplate of claim 29 wherein the extraction grid comprises a layer of silicon doped with a conductive material.
  • 37. The baseplate of claim 29 wherein the at least partially conductive layer is non-contiguous between the extraction grid and the current control substrate so that the extraction grid and the current control substrate are physically separate from each other.
  • 38. A field emission display, comprising:a faceplate having a transparent substrate, a transparent conductive material disposed on the transparent substrate, and a cathodoluminescent material disposed on the transparent conductive material; and a baseplate operatively coupled to the faceplate, the baseplate including: a supporting substrate upon which at least one emitter is formed, and a dielectric layer disposed on the supporting substrate, the dielectric layer having at least one cavity aligned with the at least one emitter; and an at least partially conductive layer formed on the insulator layer and having a first portion including at least one opening aligned with the at least one emitter to form an extraction grid, and a second portion including a current control substrate electrically isolated from the extraction grid and electrically connected to the at least one emitter by a conductive lead connected between the current control substrate and the supporting substrate, the current control substrate being adapted to control the current flowing from the at least one emitter.
  • 39. The field emission display of claim 38 wherein the insulator layer includes a hole disposed therethrough, the conductive lead passing through the hole.
  • 40. The field emission display of claim 38 wherein the current control substrate comprises a passive current-limiting device formed from a conductance altering material doped onto the current control substrate.
  • 41. The field emission display of claim 38 wherein the current control substrate comprises an active current control device fabricated on the current control substrate.
  • 42. The field emission display of claim 41 wherein the active current control device comprises a field effect transistor.
  • 43. The field emission display of claim 38 wherein the at least partially conductive layer comprises a silicon-based layer.
  • 44. The field emission display of claim 38 wherein the current control substrate comprises a layer of silicon doped with a conductance altering material.
  • 45. The field emission display of claim 38 wherein the extraction grid comprises a layer of silicon doped with a conductive material.
  • 46. The field emission display of claim 38 wherein the at least partially conductive layer is non-contiguous between the extraction grid and the current control substrate so that the extraction grid and the current control substrate are physically separate from each other.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 09/152,772, filed Sep. 10, 1998, now U.S. Pat. No. 6,176,752.

US Referenced Citations (18)
Number Name Date Kind
4940916 Borel et al. Jul 1990 A
5162704 Kobori et al. Nov 1992 A
5186670 Doan et al. Feb 1993 A
5194344 Cathey, Jr. et al. Mar 1993 A
5194346 Rolfson et al. Mar 1993 A
5205770 Lowrey et al. Apr 1993 A
5210472 Casper et al. May 1993 A
5212426 Kane May 1993 A
5229331 Doan et al. Jul 1993 A
5232549 Cathey et al. Aug 1993 A
5259799 Doan et al. Nov 1993 A
5283500 Kochanski Feb 1994 A
5319233 Kane Jun 1994 A
5372973 Doan et al. Dec 1994 A
5653619 Cloud et al. Aug 1997 A
5814924 Komatsu Sep 1998 A
6074887 Lee et al. Jun 2000 A
6118417 Hush Sep 2000 A
Non-Patent Literature Citations (3)
Entry
Cathey, David A., Jr. “Field Emission Displays,” Micron Technology, Inc.
Yokoo, K., “Active Control of Emission Current of Field Emitter Array,” Revue Le Vide, les Couches Minces, 1994, pp. 58-61.
Lee, Kon Jiun, “Current Limiting of Field Emitter Array Cathodes,” thesis, Georgia Institute of Technology, 1986, pp. 1-188.