Basket catheter with balloon

Information

  • Patent Grant
  • 11974803
  • Patent Number
    11,974,803
  • Date Filed
    Monday, October 12, 2020
    3 years ago
  • Date Issued
    Tuesday, May 7, 2024
    13 days ago
Abstract
In one embodiment, a catheter apparatus is configured to be inserted into a body part of a living subject, and including an elongated deflectable element including a distal end, an expandable basket assembly disposed at the distal end and comprising a plurality of splines and a plurality of electrodes disposed on the splines, an irrigation channel disposed in the elongated deflectable element, and an inflatable balloon disposed in the expandable basket assembly and including a plurality of irrigation holes in fluid connection with the irrigation channel.
Description
FIELD OF THE INVENTION

The present invention relates to medical devices, and in particular, but not exclusively to, catheters.


BACKGROUND

A wide range of medical procedures involve placing probes, such as catheters, within a patient's body. Location sensing systems have been developed for tracking such probes. Magnetic location sensing is one of the methods known in the art. In magnetic location sensing, magnetic field generators are typically placed at known locations external to the patient. A magnetic field sensor within the distal end of the probe generates electrical signals in response to these magnetic fields, which are processed to determine the coordinate locations of the distal end of the probe. These methods and systems are described in U.S. Pat. Nos. 5,391,199, 6,690,963, 6,484,118, 6,239,724, 6,618,612 and 6,332,089, in PCT International Publication No. WO 1996/005768, and in U.S. Patent Application Publications Nos. 2002/006455 and 2003/0120150 and 2004/0068178. Locations may also be tracked using impedance or current based systems.


One medical procedure in which these types of probes or catheters have proved extremely useful is in the treatment of cardiac arrhythmias. Cardiac arrhythmias and atrial fibrillation in particular, persist as common and dangerous medical ailments, especially in the aging population.


Diagnosis and treatment of cardiac arrhythmias include mapping the electrical properties of heart tissue, especially the endocardium, and selectively ablating cardiac tissue by application of energy. Such ablation can cease or modify the propagation of unwanted electrical signals from one portion of the heart to another. The ablation process destroys the unwanted electrical pathways by formation of non-conducting lesions. Various energy delivery modalities have been disclosed for forming lesions, and include use of microwave, laser and more commonly, radiofrequency energies to create conduction blocks along the cardiac tissue wall. In a two-step procedure, mapping followed by ablation, electrical activity at points within the heart is typically sensed and measured by advancing a catheter containing one or more electrical sensors into the heart, and acquiring data at a multiplicity of points. These data are then utilized to select the endocardial target areas at which the ablation is to be performed.


Electrode catheters have been in common use in medical practice for many years. They are used to stimulate and map electrical activity in the heart and to ablate sites of aberrant electrical activity. In use, the electrode catheter is inserted into a major vein or artery, e.g., femoral vein, and then guided into the chamber of the heart of concern. A typical ablation procedure involves the insertion of a catheter having a one or more electrodes at its distal end into a heart chamber. A reference electrode may be provided, generally adhered to the skin of the patient or by means of a second catheter that is positioned in or near the heart. RF (radio frequency) current is applied between the catheter electrode(s) of the ablating catheter and an indifferent electrode (which may be one of the catheter electrodes), and current flows through the media between the electrodes, i.e., blood and tissue. The distribution of current may depend on the amount of electrode surface in contact with the tissue as compared to blood, which has a higher conductivity than the tissue. Heating of the tissue occurs due to its electrical resistance. The tissue is heated sufficiently to cause cellular destruction in the cardiac tissue resulting in formation of a lesion within the cardiac tissue which is electrically non-conductive. In some applications, irreversible electroporation may be performed to ablate the tissue.


US Patent Publication 2019/0117301 of Steinke, et al., describes a catheter and catheter system for treatment of a blood vessel of a patient including an elongate flexible catheter body with a radially expandable structure. A plurality of electrodes or other electrosurgical energy delivery surfaces can radially engage material to be treated when the structure expands. A material detector near the distal end of the catheter body may measure circumferential material distribution, and a power source selectively energizes the electrodes to eccentrically treat of a body lumen.


U.S. Pat. No. 9,757,180 to Gelfand, et al., describes systems, devices, and methods for treating a patient having a sympathetically mediated disease associated at least in part with augmented peripheral chemoreflex or heightened sympathetic activation. The treatments include ablating one or more peripheral chemoreceptors or associated afferent nerves to reduce or remove afferent neural signals from the peripheral chemoreceptor.


U.S. Pat. No. 9,474,486 to Eliason, et al., describes an electrophysiology catheter including an elongated, deformable shaft having a proximal end and a distal end and a basket electrode assembly coupled to the distal end of the shaft. The basket electrode assembly has a proximal end and a distal end and is configured to assume a compressed state and an expanded state. The electrode assembly further includes one or more tubular splines having a plurality of electrodes disposed thereon and a plurality of conductors. Each of the plurality of conductors extends through the tubular spline from a corresponding one of the plurality of electrodes to the proximal end of the basket electrode assembly. The tubular splines are configured to assume a non-planar (e.g., a twisted or helical) shape in the expanded state.


U.S. Pat. No. 9,060,756 to Bencini, et al., describes a method of ablating body tissue including: (a) locating an inflatable balloon portion of a cryotherapy balloon catheter at a treatment site internal to a patient's body, and inflating the inflatable balloon portion; (b) employing electrodes that are disposed on an expandable surface of the inflatable balloon portion to electrically characterize body tissue at the treatment site; (c) ablating the body tissue by supplying a cryotherapy agent to the inflatable balloon portion to cool the body tissue to a therapeutic temperature; (d) employing the electrodes to determine whether the ablating caused desired electrical changes in the body tissue; and (e) repeating (c) and (d) when it is determined that the ablating did not cause the desired electrical changes.


U.S. Pat. No. 10,362,952 to Basu, et al., describes a catheter for diagnosing and ablating tissue that has a stabilized spine electrode assembly. The stabilized spine electrode assembly has at least two spines secured to the catheter body at their proximal ends and at least one tether, secured between locations distal of the proximal ends of adjacent spines. The spines have a collapsed arrangement in which the spines are arranged generally along a longitudinal axis of the catheter body and an expanded arrangement in which at least a portion of each spine bows radially outwards from the longitudinal axis and the at least one tether exerts tension on the adjacent spines.


SUMMARY

There is provided in accordance with an embodiment of the present disclosure, a catheter apparatus configured to be inserted into a body part of a living subject, and including an elongated deflectable element including a distal end, an expandable basket assembly disposed at the distal end and including a plurality of splines and a plurality of electrodes disposed on the splines, an irrigation channel disposed in the elongated deflectable element, and an inflatable balloon disposed in the expandable basket assembly and including a plurality of irrigation holes in fluid connection with the irrigation channel.


Further in accordance with an embodiment of the present disclosure the splines are disposed circumferentially around the inflatable balloon.


Still further in accordance with an embodiment of the present disclosure the inflatable balloon is configured to fully inflate so that there is a gap of at least one millimeter between the fully inflated balloon and at least thirty percent of an inner surface area of the splines facing the inflatable balloon.


Additionally, in accordance with an embodiment of the present disclosure each of the splines includes an inner surface and an outer surface, the electrodes being disposed on the inner and outer surface of respective ones of the splines.


Moreover in accordance with an embodiment of the present disclosure the inflatable balloon and the expandable basket assembly include a distal end, the apparatus further including a support element connected to the distal end of the inflatable balloon and the distal end of the expandable basket assembly configured to maintain the gap of at least one millimeter between the fully inflated balloon and at least thirty percent of the inner surface area of the splines facing the inflatable balloon.


Further in accordance with an embodiment of the present disclosure respective ones of the splines include Nitinol.


Still further in accordance with an embodiment of the present disclosure the electrodes of the respective splines include Nitinol.


Additionally, in accordance with an embodiment of the present disclosure respective ones of the splines include respective polymer flex circuits.


Moreover, in accordance with an embodiment of the present disclosure at least ninety percent of the electrodes are disposed in a region of the expandable basket assembly, at least ninety percent of the irrigation holes of the inflatable balloon being disposed more proximally or more distally to the region.


Further in accordance with an embodiment of the present disclosure the electrodes are disposed in a region of the expandable basket assembly, the irrigation holes of the inflatable balloon being disposed more proximally or more distally to the region.


There is also provided in accordance with another embodiment of the present disclosure, a catheter apparatus configured to be inserted into a body part of a living subject, and including an elongated deflectable element including a distal end, an expandable basket assembly disposed at the distal end and including a plurality of splines and a plurality of electrodes disposed on the splines, and an inflatable balloon disposed in the expandable basket assembly and configured to fully inflate so that there is a gap of at least one millimeter between the fully inflated balloon and at least thirty percent of an inner surface area of the splines facing the inflatable balloon.


Still further in accordance with an embodiment of the present disclosure the splines are disposed circumferentially around the inflatable balloon.


Additionally, in accordance with an embodiment of the present disclosure each of the splines includes an inner surface and an outer surface, the electrodes being disposed on the inner and outer surface of respective ones of the splines.


Moreover in accordance with an embodiment of the present disclosure the inflatable balloon and the expandable basket assembly include a distal end, the apparatus further including a support element connected to the distal end of the inflatable balloon and the distal end of the expandable basket assembly configured to maintain the gap of at least one millimeter between the fully inflated balloon and at least thirty percent of the inner surface area of the splines facing the inflatable balloon.


Further in accordance with an embodiment of the present disclosure respective ones of the splines include Nitinol.


Still further in accordance with an embodiment of the present disclosure the electrodes of the respective splines include Nitinol.


Additionally, in accordance with an embodiment of the present disclosure respective ones of the splines include respective polymer flex circuits.


There is also provided in accordance with still another embodiment of the present disclosure, a medical system including a catheter configured to be inserted into a body part of a living subject, and including an elongated deflectable element including a distal end, an expandable basket assembly disposed at the distal end and including a plurality of splines and a plurality of electrodes disposed on the splines, and an inflatable balloon disposed in the expandable basket assembly, and an ablation power generator configured to be connected to the catheter, and apply an electrical signal to at least one of the electrodes to ablate a tissue of the body part.


Moreover, in accordance with an embodiment of the present disclosure the catheter includes an irrigation channel disposed in the elongated deflectable element, and wherein the inflatable balloon includes a plurality of irrigation holes in fluid connection with the irrigation channel.


Further in accordance with an embodiment of the present disclosure the inflatable balloon is configured to fully inflate so that there is a gap of at least one millimeter between the fully inflated balloon and at least thirty percent of an inner surface area of the splines facing the inflatable balloon.


Still further in accordance with an embodiment of the present disclosure each of the splines includes an inner surface and an outer surface, the electrodes being disposed on the inner and outer surface of respective ones of the splines.


Additionally, in accordance with an embodiment of the present disclosure at least ninety percent of the electrodes are disposed in a region of the expandable basket assembly, at least ninety percent of the irrigation holes of the inflatable balloon being disposed more proximally or more distally to the region.


Moreover, in accordance with an embodiment of the present disclosure the electrodes are disposed in a region of the expandable basket assembly, the irrigation holes of the inflatable balloon being disposed more proximally or more distally to the region.


Further in accordance with an embodiment of the present disclosure the ablation power generator is configured to apply the electrical signal between ones of the electrodes to perform irreversible electroporation of the tissue of the body part.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood from the following detailed description, taken in conjunction with the drawings in which:



FIG. 1 is a schematic view of a medical system constructed and operative in accordance with an embodiment of the present invention;



FIG. 2 is a schematic view of a catheter constructed and operative in accordance with an embodiment of the present invention;



FIG. 3A is a cross-sectional view of the catheter of FIG. 2 along line A:A;



FIG. 3B is a cross-sectional view of an alternate embodiment of the device shown in FIG. 2 with a balloon uncoupled to distal end of the basket member;



FIG. 4 is a more detailed cross-sectional view of the catheter inside block A of FIG. 3A;



FIG. 5 is a more detailed cross-sectional view of the catheter inside block B of FIG. 3A; and



FIG. 6 is a cross-sectional view of a catheter constructed and operative in accordance with an alternative embodiment of the present invention.





DESCRIPTION OF EXAMPLE EMBODIMENTS
Overview

Irrigation is commonly used with catheters to provide cooling during medical procedures such as radio-frequency (RF) ablation, for example. One solution for providing irrigation in a basket-type catheter is to have an irrigation channel run through the catheter which terminates in the middle of the basket. Irrigation fluid may then be pumped through the irrigation channel to the distal end of the irrigation channel where the irrigation fluid exits and provides cooling to tissue in the region of the basket as well as diluting blood locally. However, the irrigation is not very well directed and although it may be sufficient for electroporation, which does not generate much heat, it is generally not sufficient to reduce heat created during RF ablation. Another problem encountered with basket catheters is that the basket needs to be in a collapsed or semi-collapsed form during insertion into the body and then deployed to its expanded form in a body cavity. The requirement to be able to collapse and expand the basket adds further complications to providing effective irrigation as an irrigation channel may interfere with the expansion and collapsing of the basket. An additional problem encountered with basket catheters (whether used for ablation or diagnosis) is that during use, it has been found that blood clots may be created within the basket and stagnate there.


Embodiments of the present invention, solve the above problems by providing a catheter with an expandable basket assembly including electrodes thereon, with an inflatable balloon installed in the expandable basket assembly. When deployed, the balloon is inflated in the expanded basket assembly and acts to displace blood from the interior of the basket assembly to prevent blood clots being created within the basket assembly. Additionally, the balloon may include irrigation holes through which irrigation fluid is pumped to cool the electrodes in use. The balloon enables strategically placing the irrigation holes with respect to the electrodes to enhance cooling during use.


In some embodiments, the fully inflated balloon touches the interior surface of the expanded basket assembly. When there is no, or little, gap between the fully inflated balloon and the interior surface of the expanded basket assembly, blood is prevented from entering the interior of the basket assembly thereby preventing blood clots. In other embodiments, there is a gap between the fully inflated balloon and the interior surface of the expanded balloon. When there is a gap, the electrodes may be irrigated more efficiently (depending on the irrigation and electrode configuration), and the inner surface of the basket may include electrodes thereby increasing the electrode surface area that can be used for ablation.


In some embodiments, the catheter includes an elongated deflectable element, and an expandable basket assembly disposed at the distal end of the deflectable element. The basket assembly includes splines and electrodes placed on the splines. The catheter includes an inflatable balloon disposed in the expandable basket assembly with the splines being disposed circumferentially around the inflatable balloon.


In some embodiments, at least some of the splines include Nitinol. In some embodiments, the electrodes of the respective splines include Nitinol. For example, Nitinol splines are selectively covered with an insulating cover to leave electrodes exposed, or the Nitinol splines are covered and windows are opened in the covers to reveal electrodes. In other embodiments, the splines include respective polymer flex circuits. The flex circuits may be supported using Nitinol supports running along at least a given length of each spline.


In some embodiments, the catheter includes an irrigation channel disposed in the elongated deflectable element, and the inflatable balloon includes irrigation holes in fluid connection with the irrigation channel. In some embodiments, the electrodes are disposed in a region of the expandable basket assembly, and the irrigation holes of the inflatable balloon (when the balloon is fully inflated) are disposed more proximally or more distally to the electrode region (when the basket is fully expanded).


In some embodiments, the catheter includes an irrigation channel disposed in the elongated deflectable element, and the inflatable balloon includes irrigation holes in fluid connection with the irrigation channel. In some embodiments, at least ninety percent of the electrodes are disposed in a region of the expandable basket assembly, and at least ninety percent of the irrigation holes of the inflatable balloon (when the balloon is fully inflated) are disposed more proximally or more distally to the electrode region (when the basket is fully expanded).


In other embodiments, the inflatable balloon does not include irrigation holes. In those embodiments, irrigation may optionally be performed using other methods.


In some embodiments, the inflatable balloon is configured to fully inflate so that there is a gap of at least one millimeter between the fully inflated balloon and at least part (e.g., at least thirty percent) of an inner surface area of the splines (of the fully expanded basket assembly) facing the inflatable balloon. The balloon may optionally include irrigation holes. In some embodiments, a support element is connected to the distal end of the inflatable balloon and the distal end of the expandable basket assembly and maintains the gap between the fully inflated balloon and the splines of the fully expanded basket assembly. In some embodiments, when a gap is maintained, electrodes may be disposed on the inner and outer surface of each spline thereby increasing the electrode surface area for use in ablation. The electrode on the inner surface may be integral with, or connected to an electrode on the outer surface. In some embodiments, the fully inflated balloon touches the splines.


The system may include an ablation power generator connected to the catheter, and applies an electrical signal to the electrode(s) to ablate tissue of the body part. In some embodiments, the ablation power generator applies an electrical signal between the electrodes to perform irreversible electroporation of tissue of the body part.


System Description

Reference is now made to FIG. 1, which is a schematic view of a medical system 20 constructed and operative in accordance with an embodiment of the present invention. The system 20 includes a catheter 40 configured to be inserted into a body part of a living subject (e.g., a patient 28). A physician 30 navigates the catheter 40 (for example, a basket catheter produced Biosense Webster, Inc. of Irvine, Calif., USA), to a target location in a heart 26 of the patient 28, by manipulating an elongated deflectable element 22 of the catheter 40, using a manipulator 32 near a proximal end of the catheter 40, and/or deflection from a sheath 23. In the pictured embodiment, physician 30 uses catheter 40 to perform electro-anatomical mapping of a cardiac chamber and ablation of cardiac tissue.


Catheter 40 includes an expandable basket assembly 35, which is inserted in a folded configuration, through sheath 23, and only after the catheter 40 exits sheath 23 does the basket assembly 35 regain its intended functional shape. By containing basket assembly 35 in a folded configuration, sheath 23 also serves to minimize vascular trauma on its way to the target location.


Catheter 40 includes a plurality of electrodes 48 for sensing electrical activity and/or applying ablation power to ablate tissue of the body part. Catheter 40 may incorporate a magnetic sensor (not shown in FIG. 1) at the distal edge of deflectable element 22 (i.e., at the proximal edge of the basket assembly 35). Typically, although not necessarily, the magnetic sensor may be a Triple-Axis Sensor (TAS) or a Dual-Axis Sensor (DAS), or a SAS by way of example only, based for example on sizing considerations. A second magnetic sensor (not shown) may be included at any suitable position on the assembly 35. The second magnetic sensor may be a TAS, a DAS, or a SAS by way of example only, based for example on sizing considerations. The magnetic sensors and electrodes 48 disposed on the assembly 35 are connected by wires running through deflectable element 22 to various driver circuitries in a console 24.


In some embodiments, system 20 comprises a magnetic-sensing sub-system to estimate an ellipticity of the basket assembly 35 of catheter 40, as well as its elongation/retraction state, inside a cardiac chamber of heart 26 by estimating the elongation of the basket assembly 35 from the distance between the magnetic sensors. Patient 28 is placed in a magnetic field generated by a pad containing one or more magnetic field generator coils 42, which are driven by a unit 43. The magnetic fields generated by coil(s) 42 transmit alternating magnetic fields into a region where the body-part is located. The transmitted alternating magnetic fields generate signals in the magnetic sensors, which are indicative of position and/or direction. The generated signals are transmitted to console 24 and become corresponding electrical inputs to processing circuitry 41.


The method of position and/or direction sensing using external magnetic fields and magnetic sensors, is implemented in various medical applications, for example, in the CARTO® system, produced by Biosense-Webster, and is described in detail in U.S. Pat. Nos. 5,391,199, 6,690,963, 6,484,118, 6,239,724, 6,618,612 and 6,332,089, in PCT Patent Publication WO 96/05768, and in U.S. Patent Application Publications 2002/0065455 A1, 2003/0120150 A1 and 2004/0068178 A1.


Processing circuitry 41, typically part of a general-purpose computer, is further connected via a suitable front end and interface circuits 44, to receive signals from body surface-electrodes 49. Processing circuitry 41 is connected to body surface-electrodes 49 by wires running through a cable 39 to the chest of patient 28.


In an embodiment, processing circuitry 41 renders to a display 27, a representation 31 of at least a part of the catheter 40 and a mapped body-part, responsively to computed position coordinates of the catheter 40.


Processing circuitry 41 is typically programmed in software to carry out the functions described herein. The software may be downloaded to the computer in electronic form, over a network, for example, or it may, alternatively or additionally, be provided and/or stored on non-transitory tangible media, such as magnetic, optical, or electronic memory.


The medical system 20 may also include an ablation power generator 69 (such as an RF signal generator) configured to be connected to the catheter 40, and apply an electrical signal to the electrodes 48. The medical system 20 may also include an irrigation reservoir 71 configured to store irrigation fluid, and a pump 73 configured to be connected to the irrigation reservoir 71 and the catheter 40, and to pump the irrigation fluid from the irrigation reservoir 71 through an irrigation tube of the catheter 40 as described in more detail with reference to FIGS. 2, 3, and 5.


The example illustration shown in FIG. 1 is chosen purely for the sake of conceptual clarity. FIG. 1 shows only elements related to the disclosed techniques for the sake of simplicity and clarity. System 20 typically comprises additional modules and elements that are not directly related to the disclosed techniques, and thus are intentionally omitted from FIG. 1 and from the corresponding description. The elements of system 20 and the methods described herein may be further applied, for example, to control an ablation of tissue of heart 26.


Reference is now made to FIG. 2, which is a schematic view of the catheter 40 constructed and operative in accordance with an embodiment of the present invention.


The catheter 40 is configured to be inserted into a body part (e.g., the heart 26 (FIG. 1)) of a living subject. The deflectable element 22 of the catheter 40 has a distal end 33. The deflectable element 22 may be produced from any suitable material, for example, polyurethane or polyether block amide. The assembly 35 is disposed distally to the deflectable element 22 and may be connected to the deflectable element 22 via a proximal coupling member 50 at the distal end 33. The proximal coupling member 50 typically comprises a hollow tube and may be formed from any suitable material, for example, but not limited to polycarbonate with or without glass filler, polyether ether ketone (PEEK) with or without glass filler, polyimide, polyamide, or Polyetherimide (PEI) with or without glass filler. The coupling member 50 may formed as an integral part of the deflectable element 22 or as part of the basket assembly 35 or as a separate element which connects with the deflectable element 22 and the basket assembly 35. As used herein, the term “distal” means that a referenced component is further away from the operator and “proximal” means that the referenced component is closer to the operator of the catheter.


The assembly 35 may include multiple splines 55 (only one labeled for the sake of simplicity), such as flexible strips with the electrodes 48 (only some labeled for the sake of simplicity) being disposed on the splines 55. In the embodiment of FIG. 2, each spline 55 includes a single electrode 48. The assembly 35 may include any suitable number of electrodes 48 with multiple electrodes 48 per spline 55.


In some embodiments, at least some of the splines 55 include Nitinol. In some embodiments, the electrodes 48 of respective ones of the splines 55 include Nitinol. In other embodiments, respective ones of the splines 55 include respective polymer flex circuits. The flex circuits may be supported using Nitinol supports running along at least a length of each spline 55.


In the embodiment of FIG. 2, each spline 55 is formed from Nitinol which is selectively covered with insulating material in the distal and proximal regions 57 (only some labeled for the sake of simplicity) of the splines 55 leaving a central region 59 (only some labeled for the sake of simplicity) of the splines 55 as an electrically active region to perform mapping and/or perform ablation or electroporation, by way of example. The structure of the assembly 35 may vary. For example, splines 55 (or other splines) may include flexible printed circuit boards (PCBs), or any suitable shape-memory alloy.


In some embodiments, the relaxed state of the basket assembly 35 is the expanded deployed form. The basket assembly 35 is configured to collapse into the collapsed form when the catheter 40 is retracted in a sheath 23 (FIG. 1) and is configured to expand to the expanded deployed form when the catheter 40 is removed from the sheath 23. The relaxed shape of the basket assembly 35 may be set by forming the splines 55 from any suitable resilient material such as Nitinol or PEI. In other embodiments, the relaxed state of the expandable basket assembly 35 is the collapsed form and the expandable basket assembly 35 is expanded by retracting a pulling element (e.g., puller wire) disposed in the length of the elongated deflectable element 22 and connected to the distal end of the expandable basket assembly 35.


The catheter 40 includes an inflatable balloon 65 disposed in the expandable basket assembly 35. The splines 55 are generally disposed circumferentially around the inflatable balloon 65. In the embodiment shown in FIG. 2, the inflatable balloon 65 fully inflates so that it touches the splines 55 (along 90% or more of the length of each spline 55) of the fully expanded expandable basket assembly 35. In other embodiments, described in more detail with reference to FIG. 6, there is a gap of at least 1 mm between the fully inflated balloon 65 and at least 30% of the inner surface area of the splines 55 of the fully expanded expandable basket assembly 35.


In some embodiments, the catheter 40 includes an irrigation channel 67 (shown in FIGS. 3A and 5) disposed in the elongated deflectable element 22. In the embodiment shown in FIG. 2, the inflatable balloon 65 is shown including a plurality of irrigation holes 75. The irrigation holes 75 are in fluid connection with the irrigation channel 67 (FIG. 3A).


In some embodiments, the irrigation holes 75 are disposed in one or more regions of the inflatable balloon 65. In other embodiments, the irrigation holes 75 are disposed over the inflatable balloon 65. In some embodiments, the irrigation holes 75 are mainly disposed in regions of the inflatable balloon 65 which are not close to the electrodes 48. In some embodiments, the electrodes 48 are disposed in a given region of the expandable basket assembly 35, and the irrigation holes 75 of the inflatable balloon 65 are disposed more proximally or more distally (with respect to a plane perpendicular to the axis of the non-deflected catheter 40) to the given region when the inflatable balloon 65 and the expandable basket assembly 35 are fully expanded. In some embodiments, at least ninety percent of the electrodes 48 are disposed in a given region of the expandable basket assembly 35, and at least ninety percent of the irrigation holes 75 of the inflatable balloon 65 are disposed more proximally or more distally (with respect to a plane perpendicular to the axis of the non-deflected catheter 40) to the given region when the inflatable balloon 65 and the expandable basket assembly 35 are fully expanded.


In other embodiments, the inflatable balloon 65 does not include irrigation holes. In these embodiments, irrigation may optionally be performed using any suitable method.


The ablation power generator 69 (FIG. 1) is configured to be connected to the catheter 40, and apply an electrical signal to at least one of the electrodes 48 (e.g., between two or more of the electrodes 48 or between one or more of the electrodes 48 and a proximal electrode 77 disposed at the distal end of the elongated deflectable element 22 or with a reference electrode) to ablate tissue of the body part (e.g., heart 26). In some embodiments, the ablation power generator 69 is configured to apply the electrical signal between one or more of the electrodes 48 to perform irreversible electroporation of the tissue of the body part. The inflatable balloon 65 helps prevent the electrical signal from mainly conducting through the center of the expandable basket assembly 35 and instead enhances conduction of the electrical signal through the tissue of the body part.


The inflatable balloon 65 may include a biocompatible material, such as polyurethane, polyether block amide, silicone, nylon, or polyester. Typically, the balloon would have a wall thickness between 0.0005″ and 0.005″. The irrigation holes 75 may have any suitable diameter, for example, in the range of about 0.01 mm to 0.125 mm, e.g. 0.075 mm. The inflatable balloon 65 may include any suitable number of discrete holes 75, for example, between 1 and 200, e.g. 50. In some embodiments, irrigation holes 75 may include laser or mechanically drilled holes.


The pump 73 (FIG. 1) is configured to pump irrigation fluid from the irrigation reservoir 71 (FIG. 1) via the irrigation channel 67 (FIG. 3A) into the inflatable balloon 65 and through the irrigation holes 75. The irrigation fluid is used to inflate the inflatable balloon 65. In embodiments, where the inflatable balloon 65 does not include irrigation holes, the inflatable balloon 65 may be inflated with any suitable fluid, such as saline or a gas.


Reference is now made to FIG. 3A, which is a cross-sectional view of the catheter 40 of FIG. 2 along line A:A. FIG. 3A (inside block A) shows the distal ends of the inflatable balloon 65 and the splines 55 (only two labeled for the sake of simplicity) folded over and connected to a distal connector 85, which in some embodiments is a tube (e.g., polymer tube) or slug (e.g., polymer slug). The distal connector 85 is described in more detail with reference to FIG. 4.


In some embodiments, the splines 55 and/or the inflatable balloon 65 may be connected to the distal connector 85 without being folded over so that when the basket assembly 35 is collapsed the splines 55 are approaching a flat formation along their length.



FIG. 3A (inside block B) shows that the proximal ends of the splines 55 are connected to the inner surface of the proximal coupling member 50. The proximal end of the inflatable balloon 65 is connected to a proximal connector 79 (for example, a polymer slug), which is secured to the proximal coupling member 50. The proximal connector 79 is described in more detail with reference to FIG. 5. FIG. 3A also shows the irrigation channel 67 (which extends through the deflectable element 22, the proximal coupling member 50, and a slot 83 in the proximal connector 79), and a position sensor 81 (e.g., a magnetic position sensor).


In FIG. 3B, an alternate catheter end effector 40′ is shown which has a balloon 65′ arranged so that a distal balloon portion 65a is not fixed or coupled to the catheter distal connector 85. That is, balloon 65′ has a free distal balloon portion 65a (i.e., unconnected to distal connector 85) with the proximal balloon portion 65b coupled to the proximal coupling member 50 so that the balloon 65′ is free to conform to the internal boundary of catheter splines 55. Balloon 65′ in FIG. 3B is different in those aspects as compared to balloon 65 in FIG. 3A.


Reference is now made to FIG. 4, which is a more detailed cross-sectional view of the catheter 40 inside block A of FIG. 3A. The splines 55 are secured to the distal connector 85. The distal end of the inflatable balloon 65 is secured between the splines 55 and a distal securing ring 87. An adhesive or epoxy layer 89 is disposed between the distal securing ring 87 and the distal connector 85 securing the splines 55 and the inflatable balloon 65 in place. In some embodiments, the inflatable balloon 65 and the splines 55 may be secured between the distal connector 85 and distal securing ring 87 using a pressure fit and/or any suitable adhesive. The distal connector 85 and the distal securing ring 87 may be formed from any suitable material, for example, but not limited to polycarbonate with or without glass filler, PEEK with or without glass filler, or PEI with or without glass filler. The distal connector 85 also functions as a slug to plug the distal end of the inflatable balloon 65.


Reference is now made to FIG. 5, which is a more detailed cross-sectional view of the catheter 40 inside block B of FIG. 3A or FIG. 3B.



FIG. 5 shows the proximal connector 79 and the slot 83. The slot 83 allows the irrigation channel 67-3 and electrical wires (e.g., for connection to one or more electrodes and/or sensors) to traverse the proximal connector 79. The irrigation channel 67-2 connects to the irrigation channel 67-3, which is narrower so that it fits in the slot 83. The inflatable balloon 65 is connected to the proximal connector 79, for example using adhesive. The inflatable balloon 65 may be connected to the proximal connector 79 using any suitable connection method.


The proximal ends of the splines 55 are secured between the proximal coupling member 50 and the position sensor 81 and the irrigation channel 67-2. The splines 55 may be secured to the proximal coupling member 50 using a pressure fit and/or any suitable adhesive. The irrigation channel 67-2 is connected to the irrigation channel 67-1, which is disposed in the elongated deflectable element 22.


The proximal connector 79 may be formed from any suitable material, for example, but not limited to polycarbonate with or without glass filler, PEEK with or without glass filler, or PEI with or without glass filler.


Reference is now made to FIG. 6, which is a cross-sectional view of a catheter 100 constructed and operative in accordance with an alternative embodiment of the present invention. The catheter 100 is substantially the same as the catheter 40 of FIGS. 1-5 except for the following differences.


The catheter 100 includes an inflatable balloon 102, which is configured to fully inflate so that there is a gap 104 of at least one millimeter between the fully inflated balloon 102 and at least part (e.g., at least thirty percent) of an inner surface area of the splines 55 facing the inflatable balloon 102. The “inner surface” is defined as the surface of the splines 55 facing the inflatable balloon 102.


In some embodiments, the inflatable balloon 102 includes irrigation holes (not shown). In other embodiments, the inflatable balloon 102 does not include irrigation holes.


In some embodiments, the catheter 100 includes a support element such as the distal connector 85 connected to the distal end of the inflatable balloon 102 and the distal end of the expandable basket assembly 35 (and/or the proximal connector 79 connected to the proximal end of the inflatable balloon 102 and the proximal end of the expandable basket assembly 35) configured to maintain the gap 104 of at least one millimeter between the fully inflated balloon 102 and at least part (e.g., at least thirty percent) of the inner surface area of the splines 55 facing the inflatable balloon 102.


In some embodiments, the electrodes 48 are disposed on the inner and outer surface of respective ones of the splines 55. Using the inner and outer surfaces for the electrodes 48 provides a greater surface area for ablation. One of the electrodes 48 disposed on the inner surface of one of the splines 55 may be electrically connected to the corresponding electrode 48 on the outer surface of that spline 55. In some embodiments, a single electrode may extend from the inner surface to the outer surface (for example, when the spline 55 is formed from a conductor such as Nitinol).


As used herein, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein. More specifically, “about” or “approximately” may refer to the range of values ±20% of the recited value, e.g. “about 90%” may refer to the range of values from 72% to 108%.


Various features of the invention which are, for clarity, described in the contexts of separate embodiments may also be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment may also be provided separately or in any suitable sub-combination.


The embodiments described above are cited by way of example, and the present invention is not limited by what has been particularly shown and described hereinabove. Rather the scope of the invention includes both combinations and sub-combinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.

Claims
  • 1. A catheter apparatus comprising: (a) an elongated deflectable element including a distal end; (b) an expandable basket assembly disposed at the distal end and comprising a plurality of splines and a plurality of electrodes disposed on the splines; (c) an irrigation channel disposed in the elongated deflectable element; (d) an inflatable balloon disposed in the expandable basket assembly and comprising a plurality of irrigation holes in fluid connection with the irrigation channel, each irrigation hole of the plurality of irrigation holes being angularly offset from each spline of the plurality of splines, at least ninety percent of the electrodes being disposed in a region of the expandable basket assembly, at least ninety percent of the irrigation holes of the inflatable balloon being disposed more proximally or more distally to the region.
  • 2. The apparatus according to claim 1, the splines being disposed circumferentially around the inflatable balloon.
  • 3. The apparatus according to claim 1, the inflatable balloon being configured to fully inflate so that there is a gap of at least one millimeter between the fully inflated balloon and at least thirty percent of an inner surface area of the splines facing the inflatable balloon.
  • 4. The apparatus according to claim 3, each of the splines including an inner surface and an outer surface, the electrodes being disposed on the inner and outer surface of respective ones of the splines.
  • 5. The apparatus according to claim 3, wherein the inflatable balloon and the expandable basket assembly include a distal end, the apparatus further comprising a support element connected to the distal end of the inflatable balloon and the distal end of the expandable basket assembly configured to maintain the gap of at least one millimeter between the fully inflated balloon and at least thirty percent of the inner surface area of the splines facing the inflatable balloon.
  • 6. The apparatus according to claim 1, respective ones of the splines including Nitinol.
  • 7. The apparatus according to claim 6, the electrodes of the respective splines including Nitinol.
  • 8. The apparatus according to claim 1, respective ones of the splines including respective polymer flex circuits.
  • 9. The apparatus according to claim 1, each of the splines including an inner surface and an outer surface, the electrodes being disposed on the inner and outer surface of respective ones of the splines.
  • 10. The apparatus according to claim 1, the inflatable balloon and the expandable basket assembly including a distal end, the apparatus further comprising a support element connected to the distal end of the inflatable balloon and the distal end of the expandable basket assembly configured to maintain the gap of at least one millimeter between the fully inflated balloon and at least thirty percent of the inner surface area of the splines facing the inflatable balloon.
  • 11. A medical system comprising: (a) a catheter including: (i) an elongated deflectable element including a distal end; (ii) an expandable basket assembly disposed at the distal end and comprising a plurality of splines and a plurality of electrodes disposed on the splines; and (iii) an inflatable balloon disposed in the expandable basket assembly, a distal portion of the expandable basket assembly being configured to seal a distal end of the inflatable balloon, the inflatable balloon being configured to fully inflate so that there is a gap of at least one millimeter between the fully inflated balloon and at least thirty percent of an inner surface area of the splines facing the inflatable balloon; and (b) an ablation power generator configured to be connected to the catheter, and apply an electrical signal to at least one of the electrodes to ablate a tissue; at least ninety percent of the electrodes being disposed in a region of the expandable basket assembly, the inflatable balloon comprising a plurality of irrigation holes and at least ninety percent of the irrigation holes of the inflatable balloon being disposed more proximally or more distally to the region.
  • 12. The system according to claim 11, the catheter including an irrigation channel disposed in the elongated deflectable element, and the plurality of irrigation holes in fluid connection with the irrigation channel.
  • 13. The system according to claim 11, each of the splines including an inner surface and an outer surface, the electrodes being disposed on the inner and outer surface of respective ones of the splines.
  • 14. The system according to claim 11, the ablation power generator being configured to apply the electrical signal between ones of the electrodes to perform irreversible electroporation of the tissue.
US Referenced Citations (661)
Number Name Date Kind
D123782 Paul Dec 1940 S
3316896 Louis May 1967 A
4276874 Wolvek et al. Jul 1981 A
4587975 Salo et al. May 1986 A
4699147 Chilson et al. Oct 1987 A
4709698 Johnston et al. Dec 1987 A
4805621 Heinze et al. Feb 1989 A
4940064 Desai Jul 1990 A
5178957 Kolpe et al. Jan 1993 A
5215103 Desai Jun 1993 A
5255679 Imran Oct 1993 A
5293869 Edwards et al. Mar 1994 A
5309910 Edwards et al. May 1994 A
5313943 Houser et al. May 1994 A
5324284 Imran Jun 1994 A
5345936 Pomeranz et al. Sep 1994 A
5365926 Desai Nov 1994 A
5391199 Ben Feb 1995 A
5396887 Imran Mar 1995 A
5400783 Pomeranz et al. Mar 1995 A
5411025 Webster, Jr. May 1995 A
5415166 Imran May 1995 A
5429617 Hammersmark et al. Jul 1995 A
5456254 Pietroski et al. Oct 1995 A
5465717 Imran et al. Nov 1995 A
5476495 Kordis et al. Dec 1995 A
5499981 Kordis Mar 1996 A
5526810 Wang Jun 1996 A
5546940 Panescu et al. Aug 1996 A
5549108 Edwards et al. Aug 1996 A
5558073 Pomeranz et al. Sep 1996 A
5577509 Panescu et al. Nov 1996 A
5582609 Swanson et al. Dec 1996 A
5584830 Ladd et al. Dec 1996 A
5595183 Swanson et al. Jan 1997 A
5598848 Swanson et al. Feb 1997 A
5609157 Panescu et al. Mar 1997 A
5628313 Webster, Jr. May 1997 A
5681280 Rusk et al. Oct 1997 A
5702386 Stern et al. Dec 1997 A
5718241 Ben-Haim et al. Feb 1998 A
5722401 Pietroski et al. Mar 1998 A
5722403 McGee et al. Mar 1998 A
5725525 Kordis Mar 1998 A
5730128 Pomeranz et al. Mar 1998 A
5772590 Webster, Jr. Jun 1998 A
5782899 Imran Jul 1998 A
5797903 Swanson et al. Aug 1998 A
5823189 Kordis Oct 1998 A
5860974 Abele Jan 1999 A
5881727 Edwards Mar 1999 A
5893847 Kordis Apr 1999 A
5904680 Kordis et al. May 1999 A
5911739 Kordis et al. Jun 1999 A
5928228 Kordis et al. Jul 1999 A
5968040 Swanson et al. Oct 1999 A
5971983 Lesh Oct 1999 A
6012457 Lesh Jan 2000 A
6014579 Pomeranz et al. Jan 2000 A
6014590 Whayne et al. Jan 2000 A
6024740 Lesh et al. Feb 2000 A
6042580 Simpson Mar 2000 A
6119030 Morency Sep 2000 A
6123718 Tu et al. Sep 2000 A
6142993 Whayne Nov 2000 A
6164283 Lesh Dec 2000 A
6171275 Webster, Jr. Jan 2001 B1
6176832 Habu et al. Jan 2001 B1
6198974 Webster, Jr. Mar 2001 B1
6216043 Swanson et al. Apr 2001 B1
6216044 Kordis Apr 2001 B1
6226542 Reisfeld May 2001 B1
6239724 Doron May 2001 B1
6301496 Reisfeld Oct 2001 B1
6322558 Taylor et al. Nov 2001 B1
6332089 Acker Dec 2001 B1
6380957 Banning Apr 2002 B1
6402740 Ellis et al. Jun 2002 B1
6428537 Swanson et al. Aug 2002 B1
D462389 Provence et al. Sep 2002 S
6456864 Swanson et al. Sep 2002 B1
6471693 Carroll et al. Oct 2002 B1
6484118 Govari Nov 2002 B1
6522930 Schaer et al. Feb 2003 B1
6574492 Ben-Haim et al. Jun 2003 B1
6584345 Govari Jun 2003 B2
6600948 Ben-Haim et al. Jul 2003 B2
6618612 Acker Sep 2003 B1
6656174 Hegde et al. Dec 2003 B1
6690963 Ben Feb 2004 B2
6738655 Sen et al. May 2004 B1
6741878 Fuimaono et al. May 2004 B2
6748255 Fuimaono et al. Jun 2004 B2
6780183 Jimenez, Jr. et al. Aug 2004 B2
6814733 Schwartz et al. Nov 2004 B2
6837886 Collins et al. Jan 2005 B2
6866662 Fuimaono et al. Mar 2005 B2
6892091 Ben-Haim et al. May 2005 B1
6893433 Lentz May 2005 B2
6970730 Fuimaono et al. Nov 2005 B2
6973340 Fuimaono et al. Dec 2005 B2
6980858 Fuimaono et al. Dec 2005 B2
6986744 Krivitski Jan 2006 B1
6987995 Drysen Jan 2006 B2
6997924 Schwartz et al. Feb 2006 B2
7048734 Fleischman et al. May 2006 B1
7142903 Rodriguez et al. Nov 2006 B2
7149563 Fuimaono et al. Dec 2006 B2
7156816 Schwartz et al. Jan 2007 B2
7255695 Falwell et al. Aug 2007 B2
7257434 Fuimaono et al. Aug 2007 B2
7274957 Drysen Sep 2007 B2
7340307 Maguire et al. Mar 2008 B2
7377906 Selkee May 2008 B2
7399299 Daniel et al. Jul 2008 B2
7410486 Fuimaono et al. Aug 2008 B2
7442190 Abbound et al. Oct 2008 B2
7522950 Fuimaono et al. Apr 2009 B2
7536218 Govari et al. May 2009 B2
7591799 Selkee Sep 2009 B2
7593760 Rodriguez et al. Sep 2009 B2
RE41334 Beatty et al. May 2010 E
7720517 Drysen May 2010 B2
7756576 Levin Jul 2010 B2
7842031 Abboud et al. Nov 2010 B2
7846157 Kozel Dec 2010 B2
7853302 Rodriguez et al. Dec 2010 B2
7930018 Harlev et al. Apr 2011 B2
8000765 Rodriguez et al. Aug 2011 B2
8007495 McDaniel et al. Aug 2011 B2
8021327 Selkee Sep 2011 B2
8048032 Root et al. Nov 2011 B2
8048063 Aeby et al. Nov 2011 B2
8103327 Harlev et al. Jan 2012 B2
8167845 Wang et al. May 2012 B2
8224416 De La Rama et al. Jul 2012 B2
8231617 Satake Jul 2012 B2
8235988 Davis et al. Aug 2012 B2
8267932 Baxter et al. Sep 2012 B2
8275440 Rodriguez et al. Sep 2012 B2
8346339 Kordis et al. Jan 2013 B2
8348888 Selkee Jan 2013 B2
8357152 Govari et al. Jan 2013 B2
D682289 DiJulio et al. May 2013 S
D682291 Baek et al. May 2013 S
8435232 Aeby et al. May 2013 B2
8447377 Harlev et al. May 2013 B2
8498686 Grunewald Jul 2013 B2
8517999 Pappone et al. Aug 2013 B2
D690318 Kluttz et al. Sep 2013 S
8545490 Mihajlovic et al. Oct 2013 B2
8560086 Just et al. Oct 2013 B2
8567265 Aeby et al. Oct 2013 B2
D694652 Tompkin Dec 2013 S
8641709 Sauvageau et al. Feb 2014 B2
8712550 Grunewald Apr 2014 B2
8721590 Seward et al. May 2014 B2
8755861 Harlev et al. Jun 2014 B2
8777161 Pollock et al. Jul 2014 B2
8825130 Just et al. Sep 2014 B2
D716340 Bresin et al. Oct 2014 S
8852181 Malecki et al. Oct 2014 B2
8906011 Gelbart et al. Dec 2014 B2
D720766 Mandal et al. Jan 2015 S
D721379 Moon et al. Jan 2015 S
8945120 McDaniel et al. Feb 2015 B2
D724618 Shin Mar 2015 S
8979839 De La Rama et al. Mar 2015 B2
8998893 Avitall Apr 2015 B2
D729263 Ahn et al. May 2015 S
9037264 Just et al. May 2015 B2
9060756 Bencini Jun 2015 B2
9089350 Willard Jul 2015 B2
D736780 Wang Aug 2015 S
9126023 Sahatjian et al. Sep 2015 B1
9131980 Bloom Sep 2015 B2
D740308 Kim et al. Oct 2015 S
D743424 Danielyan et al. Nov 2015 S
D744000 Villamor et al. Nov 2015 S
9173758 Brister et al. Nov 2015 B2
9204929 Solis Dec 2015 B2
D747742 Fan et al. Jan 2016 S
D750644 Bhutani et al. Mar 2016 S
9277960 Weinkam et al. Mar 2016 B2
9283034 Katoh et al. Mar 2016 B2
9289141 Lowery et al. Mar 2016 B2
D753690 Vazquez et al. Apr 2016 S
9314208 Altmann et al. Apr 2016 B1
9320631 Moore et al. Apr 2016 B2
9339331 Tegg et al. May 2016 B2
9345540 Mallin et al. May 2016 B2
D759673 Looney et al. Jun 2016 S
D759675 Looney et al. Jun 2016 S
D764500 Wang Aug 2016 S
D765709 Gagnier Sep 2016 S
D767616 Jones et al. Sep 2016 S
D768696 Gagnier Oct 2016 S
9474486 Eliason Oct 2016 B2
9486282 Solis Nov 2016 B2
9554718 Bar-Tal et al. Jan 2017 B2
D782686 Werneth et al. Mar 2017 S
9585588 Marecki et al. Mar 2017 B2
9597036 Aeby et al. Mar 2017 B2
D783037 Hariharan et al. Apr 2017 S
9655677 Salahieh et al. May 2017 B2
9687297 Just et al. Jun 2017 B2
D791805 Segars Jul 2017 S
9693733 Altmann et al. Jul 2017 B2
9757180 Gelfand Sep 2017 B2
9782099 Williams et al. Oct 2017 B2
9788895 Solis Oct 2017 B2
9795442 Salahieh et al. Oct 2017 B2
9801681 Laske et al. Oct 2017 B2
9814618 Nguyen et al. Nov 2017 B2
9833161 Govari Dec 2017 B2
9894756 Weinkam et al. Feb 2018 B2
9895073 Solis Feb 2018 B2
9907609 Cao et al. Mar 2018 B2
9907610 Beeckler et al. Mar 2018 B2
9956035 Govari et al. May 2018 B2
9974460 Wu et al. May 2018 B2
9986949 Govari et al. Jun 2018 B2
9993160 Salvestro et al. Jun 2018 B2
10014607 Govari et al. Jul 2018 B1
10028376 Weinkam et al. Jul 2018 B2
10034637 Harlev et al. Jul 2018 B2
10039494 Altmann et al. Aug 2018 B2
10045707 Govari Aug 2018 B2
10078713 Auerbach et al. Sep 2018 B2
10111623 Jung et al. Oct 2018 B2
10130420 Basu et al. Nov 2018 B2
10136828 Houben et al. Nov 2018 B2
10143394 Solis Dec 2018 B2
10172536 Maskara et al. Jan 2019 B2
10182762 Just et al. Jan 2019 B2
10194818 Williams et al. Feb 2019 B2
10201311 Chou et al. Feb 2019 B2
10219860 Harlev et al. Mar 2019 B2
10219861 Just et al. Mar 2019 B2
10231328 Weinkam et al. Mar 2019 B2
10238309 Bar-Tal et al. Mar 2019 B2
10278590 Salvestro et al. May 2019 B2
D851774 Werneth et al. Jun 2019 S
10314505 Williams et al. Jun 2019 B2
10314507 Govari et al. Jun 2019 B2
10314648 Ge et al. Jun 2019 B2
10314649 Bakos et al. Jun 2019 B2
10349855 Zeidan et al. Jul 2019 B2
10350003 Weinkam et al. Jul 2019 B2
10362952 Basu Jul 2019 B2
10362991 Tran et al. Jul 2019 B2
10375827 Weinkam et al. Aug 2019 B2
10376170 Quinn et al. Aug 2019 B2
10376221 Iyun et al. Aug 2019 B2
10398348 Osadchy et al. Sep 2019 B2
10403053 Katz et al. Sep 2019 B2
D861717 Brekke et al. Oct 2019 S
10441188 Katz et al. Oct 2019 B2
10470682 Deno et al. Nov 2019 B2
10470714 Altmann et al. Nov 2019 B2
10482198 Auerbach et al. Nov 2019 B2
10492857 Guggenberger et al. Dec 2019 B2
10542620 Weinkam et al. Jan 2020 B2
10575743 Basu et al. Mar 2020 B2
10575745 Solis Mar 2020 B2
10582871 Williams et al. Mar 2020 B2
10582894 Ben Zrihem et al. Mar 2020 B2
10596346 Aeby et al. Mar 2020 B2
10602947 Govari et al. Mar 2020 B2
10617867 Viswanathan et al. Apr 2020 B2
10660702 Viswanathan et al. May 2020 B2
10667753 Werneth et al. Jun 2020 B2
10674929 Houben et al. Jun 2020 B2
10681805 Weinkam et al. Jun 2020 B2
10682181 Cohen et al. Jun 2020 B2
10687892 Long et al. Jun 2020 B2
10688278 Beeckler et al. Jun 2020 B2
10702178 Dahlen et al. Jul 2020 B2
10716477 Salvestro et al. Jul 2020 B2
10758304 Aujla Sep 2020 B2
10765371 Hayam et al. Sep 2020 B2
10772566 Aujila Sep 2020 B2
10799281 Goertzen et al. Oct 2020 B2
10842558 Harlev et al. Nov 2020 B2
10842561 Viswanathan et al. Nov 2020 B2
10863914 Govari et al. Dec 2020 B2
10881376 Shemesh et al. Jan 2021 B2
10898139 Guta et al. Jan 2021 B2
10905329 Bar-Tal et al. Feb 2021 B2
10912484 Ziv-Ari et al. Feb 2021 B2
10918306 Govari et al. Feb 2021 B2
10939871 Altmann et al. Mar 2021 B2
10952795 Cohen et al. Mar 2021 B2
10973426 Williams et al. Apr 2021 B2
10973461 Baram et al. Apr 2021 B2
10987045 Basu et al. Apr 2021 B2
11006902 Bonyak et al. May 2021 B1
11040208 Govari et al. Jun 2021 B1
11045628 Beeckler et al. Jun 2021 B2
11051877 Sliwa et al. Jul 2021 B2
11109788 Rottmann et al. Sep 2021 B2
11116435 Urman et al. Sep 2021 B2
11129574 Cohen et al. Sep 2021 B2
11160482 Solis Nov 2021 B2
11164371 Yellin et al. Nov 2021 B2
20010031961 Hooven Oct 2001 A1
20020002369 Hood Jan 2002 A1
20020006455 Levine Jan 2002 A1
20020065455 Ben-Haim et al. May 2002 A1
20020068931 Wong et al. Jun 2002 A1
20020077627 Johnson et al. Jun 2002 A1
20020160134 Ogushi et al. Oct 2002 A1
20030018327 Truckai et al. Jan 2003 A1
20030028183 Sanchez et al. Feb 2003 A1
20030050637 Maguire et al. Mar 2003 A1
20030060820 Maguire et al. Mar 2003 A1
20030120150 Govari Jun 2003 A1
20030144658 Schwartz et al. Jul 2003 A1
20040068178 Govari Apr 2004 A1
20040122445 Butler et al. Jun 2004 A1
20040147920 Keidar Jul 2004 A1
20040210121 Fuimaono et al. Oct 2004 A1
20040225285 Gibson Nov 2004 A1
20050070887 Taimisto et al. Mar 2005 A1
20050096647 Steinke et al. May 2005 A1
20050119686 Clubb Jun 2005 A1
20060009689 Fuimaono et al. Jan 2006 A1
20060009690 Fuimaono et al. Jan 2006 A1
20060013595 Trezza et al. Jan 2006 A1
20060100669 Fuimaono et al. May 2006 A1
20060106375 Werneth et al. May 2006 A1
20060135953 Kania et al. Jun 2006 A1
20070071792 Varner et al. Mar 2007 A1
20070080322 Walba Apr 2007 A1
20070083194 Kunis et al. Apr 2007 A1
20070093806 Desai et al. Apr 2007 A1
20070276212 Fuimaono et al. Nov 2007 A1
20070287994 Patel Dec 2007 A1
20080018891 Hell et al. Jan 2008 A1
20080021313 Eidenschink et al. Jan 2008 A1
20080051707 Phan et al. Feb 2008 A1
20080140072 Stangenes et al. Jun 2008 A1
20080183132 Davies et al. Jul 2008 A1
20080188912 Stone et al. Aug 2008 A1
20080202637 Hector et al. Aug 2008 A1
20080208186 Slater Aug 2008 A1
20080234564 Beatty et al. Sep 2008 A1
20080249463 Pappone et al. Oct 2008 A1
20080262489 Steinke Oct 2008 A1
20080281312 Werneth et al. Nov 2008 A1
20090163890 Clifford et al. Jun 2009 A1
20090182318 Abboud et al. Jul 2009 A1
20090270850 Zhou et al. Oct 2009 A1
20100069836 Satake Mar 2010 A1
20100114269 Wittenberger et al. May 2010 A1
20100204560 Salahieh et al. Aug 2010 A1
20100256629 Wylie et al. Oct 2010 A1
20100324552 Kauphusman et al. Dec 2010 A1
20110118632 Sinelnikov et al. May 2011 A1
20110118726 De La Rama et al. May 2011 A1
20110130648 Beeckler et al. Jun 2011 A1
20110160574 Harlev et al. Jun 2011 A1
20110190625 Harlev et al. Aug 2011 A1
20110245756 Arora et al. Oct 2011 A1
20110282338 Fojtik Nov 2011 A1
20110295248 Wallace et al. Dec 2011 A1
20110301587 Deem et al. Dec 2011 A1
20110301597 McDaniel et al. Dec 2011 A1
20110313286 Whayne et al. Dec 2011 A1
20120019107 Gabl et al. Jan 2012 A1
20120029511 Smith et al. Feb 2012 A1
20120065503 Rogers et al. Mar 2012 A1
20120071870 Salahieh et al. Mar 2012 A1
20120079427 Carmichael et al. Mar 2012 A1
20120101413 Beetel et al. Apr 2012 A1
20120101538 Ballakur et al. Apr 2012 A1
20120136350 Goshgarian May 2012 A1
20120143177 Avitall Jun 2012 A1
20120143293 Mauch et al. Jun 2012 A1
20120191079 Moll et al. Jul 2012 A1
20120209260 Lambert et al. Aug 2012 A1
20130085360 Grunewald Apr 2013 A1
20130085493 Bloom Apr 2013 A1
20130090649 Smith et al. Apr 2013 A1
20130090651 Smith Apr 2013 A1
20130109982 Sato et al. May 2013 A1
20130150693 D'Angelo et al. Jun 2013 A1
20130165916 Mathur et al. Jun 2013 A1
20130165941 Murphy Jun 2013 A1
20130165990 Mathur et al. Jun 2013 A1
20130169624 Bourier et al. Jul 2013 A1
20130172872 Subramaniam et al. Jul 2013 A1
20130172883 Lopes et al. Jul 2013 A1
20130178850 Lopes et al. Jul 2013 A1
20130190587 Lopes et al. Jul 2013 A1
20130197499 Lalonde et al. Aug 2013 A1
20130261692 Cardinal et al. Oct 2013 A1
20130274562 Ghaffari et al. Oct 2013 A1
20130274658 Steinke et al. Oct 2013 A1
20130282084 Mathur et al. Oct 2013 A1
20130296852 Madjarov et al. Nov 2013 A1
20130318439 Landis et al. Nov 2013 A1
20140012242 Lee et al. Jan 2014 A1
20140018788 Engelman et al. Jan 2014 A1
20140025069 Willard et al. Jan 2014 A1
20140031813 Tellio et al. Jan 2014 A1
20140052118 Laske et al. Feb 2014 A1
20140058197 Salahieh et al. Feb 2014 A1
20140121470 Scharf et al. May 2014 A1
20140148805 Stewart et al. May 2014 A1
20140180147 Thakur et al. Jun 2014 A1
20140180151 Maskara et al. Jun 2014 A1
20140180152 Maskara et al. Jun 2014 A1
20140227437 DeBoer et al. Aug 2014 A1
20140243821 Salahieh et al. Aug 2014 A1
20140257069 Eliason et al. Sep 2014 A1
20140275993 Ballakur Sep 2014 A1
20140276712 Mallin et al. Sep 2014 A1
20140276756 Hill Sep 2014 A1
20140276811 Koblish et al. Sep 2014 A1
20140288546 Sherman et al. Sep 2014 A1
20140309512 Govari et al. Oct 2014 A1
20140330266 Thompson et al. Nov 2014 A1
20140357956 Salahieh et al. Dec 2014 A1
20150005799 Lindquist et al. Jan 2015 A1
20150011991 Buysman et al. Jan 2015 A1
20150025532 Hanson et al. Jan 2015 A1
20150025533 Groff et al. Jan 2015 A1
20150045863 Litscher et al. Feb 2015 A1
20150057655 Osypka Feb 2015 A1
20150067512 Roswell Mar 2015 A1
20150080693 Solis Mar 2015 A1
20150080883 Haverkost et al. Mar 2015 A1
20150105770 Amit Apr 2015 A1
20150105774 Lindquist et al. Apr 2015 A1
20150112256 Byrne et al. Apr 2015 A1
20150112321 Cadouri Apr 2015 A1
20150119875 Fischell et al. Apr 2015 A1
20150119878 Heisel et al. Apr 2015 A1
20150133919 McDaniel et al. May 2015 A1
20150141982 Lee May 2015 A1
20150157382 Avitall et al. Jun 2015 A1
20150196740 Mallin et al. Jul 2015 A1
20150208942 Bar-Tal et al. Jul 2015 A1
20150216591 Cao et al. Aug 2015 A1
20150216650 Shaltis Aug 2015 A1
20150250424 Govari et al. Sep 2015 A1
20150265329 Lalonde et al. Sep 2015 A1
20150265339 Lindquist et al. Sep 2015 A1
20150265812 Lalonde Sep 2015 A1
20150270634 Buesseler et al. Sep 2015 A1
20150272667 Govari et al. Oct 2015 A1
20150327805 Ben-Haim Nov 2015 A1
20150341752 Flynn Nov 2015 A1
20150342532 Basu et al. Dec 2015 A1
20160000499 Lennox et al. Jan 2016 A1
20160051321 Salahieh et al. Feb 2016 A1
20160081746 Solis Mar 2016 A1
20160085431 Kim et al. Mar 2016 A1
20160106499 Ogata et al. Apr 2016 A1
20160113582 Altmann et al. Apr 2016 A1
20160113709 Maor Apr 2016 A1
20160166306 Pageard Jun 2016 A1
20160175041 Govari et al. Jun 2016 A1
20160183877 Williams et al. Jun 2016 A1
20160196635 Cho et al. Jul 2016 A1
20160228023 Govari Aug 2016 A1
20160228062 Altmann et al. Aug 2016 A1
20160256305 Longo et al. Sep 2016 A1
20160278853 Ogle et al. Sep 2016 A1
20160302858 Bencini Oct 2016 A1
20160338770 Bar-Tal et al. Nov 2016 A1
20160374748 Salahieh et al. Dec 2016 A9
20170027638 Solis Feb 2017 A1
20170042614 Salahieh et al. Feb 2017 A1
20170042615 Salahieh et al. Feb 2017 A1
20170065227 Marrs et al. Mar 2017 A1
20170071543 Basu et al. Mar 2017 A1
20170071544 Basu et al. Mar 2017 A1
20170071665 Solis Mar 2017 A1
20170080192 Giasolli et al. Mar 2017 A1
20170095173 Bar-Tal et al. Apr 2017 A1
20170100187 Basu et al. Apr 2017 A1
20170143227 Marecki et al. May 2017 A1
20170143359 Nguyen et al. May 2017 A1
20170156790 Aujla Jun 2017 A1
20170164464 Weinkam et al. Jun 2017 A1
20170172442 Govari Jun 2017 A1
20170185702 Auerbach et al. Jun 2017 A1
20170202515 Zrihem et al. Jul 2017 A1
20170221262 Laughner et al. Aug 2017 A1
20170224958 Cummings et al. Aug 2017 A1
20170265812 Williams et al. Sep 2017 A1
20170281031 Houben et al. Oct 2017 A1
20170281268 Tran et al. Oct 2017 A1
20170296125 Altmann et al. Oct 2017 A1
20170296251 Wu et al. Oct 2017 A1
20170311829 Beeckler et al. Nov 2017 A1
20170311893 Beeckler et al. Nov 2017 A1
20170312012 Harlev Nov 2017 A1
20170312022 Beeckler et al. Nov 2017 A1
20170312420 Harlev Nov 2017 A1
20170347896 Keyes et al. Dec 2017 A1
20170347959 Guta et al. Dec 2017 A1
20170348049 Vrba Dec 2017 A1
20170354338 Levin et al. Dec 2017 A1
20170354339 Zeidan et al. Dec 2017 A1
20170354364 Bar-Tal et al. Dec 2017 A1
20180028084 Williams et al. Feb 2018 A1
20180049803 Solis Feb 2018 A1
20180074693 Jones et al. Mar 2018 A1
20180082203 Bender et al. Mar 2018 A1
20180085064 Auerbach et al. Mar 2018 A1
20180110562 Govari et al. Apr 2018 A1
20180125575 Schwartz et al. May 2018 A1
20180132749 Govari et al. May 2018 A1
20180137687 Katz et al. May 2018 A1
20180160936 Govari et al. Jun 2018 A1
20180160978 Cohen et al. Jun 2018 A1
20180161093 Basu Jun 2018 A1
20180168511 Hall et al. Jun 2018 A1
20180184982 Basu et al. Jul 2018 A1
20180192958 Wu Jul 2018 A1
20180206792 Auerbach et al. Jul 2018 A1
20180235692 Efimov et al. Aug 2018 A1
20180249959 Osypka Sep 2018 A1
20180256109 Wu et al. Sep 2018 A1
20180256247 Govari et al. Sep 2018 A1
20180279954 Hayam et al. Oct 2018 A1
20180280080 Govari et al. Oct 2018 A1
20180303414 Toth et al. Oct 2018 A1
20180310987 Altmann et al. Nov 2018 A1
20180311497 Viswanathan et al. Nov 2018 A1
20180333162 Saab Nov 2018 A1
20180338722 Altmann et al. Nov 2018 A1
20180344188 Govari Dec 2018 A1
20180344202 Bar-Tal et al. Dec 2018 A1
20180344251 Harlev et al. Dec 2018 A1
20180344393 Gruba et al. Dec 2018 A1
20180360534 Teplitsky et al. Dec 2018 A1
20180365355 Auerbach et al. Dec 2018 A1
20180368927 Lyons et al. Dec 2018 A1
20190000540 Cohen et al. Jan 2019 A1
20190008582 Govari et al. Jan 2019 A1
20190015007 Rottmann et al. Jan 2019 A1
20190030328 Stewart et al. Jan 2019 A1
20190053708 Gliner Feb 2019 A1
20190059766 Houben et al. Feb 2019 A1
20190059818 Herrera et al. Feb 2019 A1
20190060622 Beeckler Feb 2019 A1
20190069950 Viswanathan et al. Mar 2019 A1
20190069954 Cohen et al. Mar 2019 A1
20190117111 Osadchy et al. Apr 2019 A1
20190117301 Steinke Apr 2019 A1
20190117303 Claude et al. Apr 2019 A1
20190117315 Keyes et al. Apr 2019 A1
20190125439 Rohl et al. May 2019 A1
20190133552 Shemesh et al. May 2019 A1
20190142293 Solis May 2019 A1
20190143079 Beeckler et al. May 2019 A1
20190164633 Ingel et al. May 2019 A1
20190167137 Bar-Tal et al. Jun 2019 A1
20190167140 Williams et al. Jun 2019 A1
20190175262 Govari et al. Jun 2019 A1
20190175263 Altmann et al. Jun 2019 A1
20190183567 Govari et al. Jun 2019 A1
20190188909 Yellin et al. Jun 2019 A1
20190201664 Govari Jul 2019 A1
20190201669 Govari et al. Jul 2019 A1
20190209089 Baram et al. Jul 2019 A1
20190216346 Ghodrati et al. Jul 2019 A1
20190216347 Ghodrati et al. Jul 2019 A1
20190217065 Govari et al. Jul 2019 A1
20190231421 Viswanathan et al. Aug 2019 A1
20190231423 Weinkam et al. Aug 2019 A1
20190239811 Just et al. Aug 2019 A1
20190246395 Govari et al. Aug 2019 A1
20190297441 Dehe et al. Sep 2019 A1
20190298441 Clark et al. Oct 2019 A1
20190298442 Ogata et al. Oct 2019 A1
20190314083 Herrera et al. Oct 2019 A1
20190328260 Zeidan et al. Oct 2019 A1
20190343580 Nguyen et al. Nov 2019 A1
20190365451 Jung, Jr. Dec 2019 A1
20200000518 Kiernan et al. Jan 2020 A1
20200001054 Jimenez et al. Jan 2020 A1
20200008705 Ziv-Ari et al. Jan 2020 A1
20200008869 Byrd Jan 2020 A1
20200009378 Stewart et al. Jan 2020 A1
20200015693 Beeckler et al. Jan 2020 A1
20200015890 To et al. Jan 2020 A1
20200022653 Moisa Jan 2020 A1
20200029845 Baram et al. Jan 2020 A1
20200046421 Govari Feb 2020 A1
20200046423 Viswanathan et al. Feb 2020 A1
20200060569 Tegg Feb 2020 A1
20200077959 Altmann et al. Mar 2020 A1
20200085497 Zhang et al. Mar 2020 A1
20200093539 Long et al. Mar 2020 A1
20200129089 Gliner et al. Apr 2020 A1
20200129125 Govari et al. Apr 2020 A1
20200129128 Gliner et al. Apr 2020 A1
20200155226 Valls et al. May 2020 A1
20200163707 Sliwa May 2020 A1
20200179650 Beeckler et al. Jun 2020 A1
20200196896 Solis Jun 2020 A1
20200205689 Squires et al. Jul 2020 A1
20200205690 Williams et al. Jul 2020 A1
20200205737 Beeckler Jul 2020 A1
20200205876 Govari Jul 2020 A1
20200205892 Viswanathan et al. Jul 2020 A1
20200206461 Govari et al. Jul 2020 A1
20200206498 Arora et al. Jul 2020 A1
20200289197 Viswanathan et al. Sep 2020 A1
20200297234 Houben et al. Sep 2020 A1
20200297281 Basu et al. Sep 2020 A1
20200305726 Salvestro et al. Oct 2020 A1
20200305946 DeSimone et al. Oct 2020 A1
20200397328 Altmann et al. Dec 2020 A1
20200398048 Krimsky et al. Dec 2020 A1
20210015549 Haghighi-Mood et al. Jan 2021 A1
20210022684 Govari et al. Jan 2021 A1
20210045805 Govari et al. Feb 2021 A1
20210059549 Urman et al. Mar 2021 A1
20210059550 Urman et al. Mar 2021 A1
20210059608 Beeckler et al. Mar 2021 A1
20210059743 Govari Mar 2021 A1
20210059747 Krans et al. Mar 2021 A1
20210077184 Basu et al. Mar 2021 A1
20210082157 Rosenberg et al. Mar 2021 A1
20210085200 Auerbach et al. Mar 2021 A1
20210085204 Auerbach et al. Mar 2021 A1
20210085215 Auerbach et al. Mar 2021 A1
20210085387 Amit et al. Mar 2021 A1
20210093292 Baram et al. Apr 2021 A1
20210093294 Shemesh et al. Apr 2021 A1
20210093374 Govari et al. Apr 2021 A1
20210093377 Herrera et al. Apr 2021 A1
20210100612 Baron et al. Apr 2021 A1
20210113822 Beeckler et al. Apr 2021 A1
20210127999 Govari et al. May 2021 A1
20210128010 Govari et al. May 2021 A1
20210133516 Govari et al. May 2021 A1
20210145282 Bar-Tal et al. May 2021 A1
20210169421 Govari Jun 2021 A1
20210169567 Govari et al. Jun 2021 A1
20210169568 Govari et al. Jun 2021 A1
20210177294 Gliner et al. Jun 2021 A1
20210177356 Gliner et al. Jun 2021 A1
20210178166 Govari et al. Jun 2021 A1
20210186363 Gliner et al. Jun 2021 A1
20210187241 Govari et al. Jun 2021 A1
20210196372 Altmann et al. Jul 2021 A1
20210196394 Govari et al. Jul 2021 A1
20210212591 Govari et al. Jul 2021 A1
20210219904 Yarnitsky et al. Jul 2021 A1
20210278936 Katz et al. Sep 2021 A1
20210282659 Govari et al. Sep 2021 A1
20210307815 Govari et al. Oct 2021 A1
20210308424 Beeckler et al. Oct 2021 A1
20210338319 Govari et al. Nov 2021 A1
Foreign Referenced Citations (100)
Number Date Country
101422637 May 2009 CN
102271607 Dec 2011 CN
102458566 May 2012 CN
203539434 Apr 2014 CN
104244856 Dec 2014 CN
14546117 Apr 2015 CN
105150844 Dec 2015 CN
105473091 Apr 2016 CN
105473093 Apr 2016 CN
11248996 Jun 2020 CN
111248993 Jun 2020 CN
0668740 Aug 1995 EP
0779059 Jun 1997 EP
0644738 Mar 2000 EP
0727183 Nov 2002 EP
0727184 Dec 2002 EP
1790304 May 2007 EP
2749214 Jul 2014 EP
2783651 Oct 2014 EP
2865350 Apr 2015 EP
2875790 May 2015 EP
2699151 Nov 2015 EP
2699152 Nov 2015 EP
2699153 Dec 2015 EP
2498706 Apr 2016 EP
2578173 Jun 2017 EP
3238645 Nov 2017 EP
3238646 Nov 2017 EP
3238648 Nov 2017 EP
32516622 Dec 2017 EP
2887931 Jan 2018 EP
3300680 Apr 2018 EP
3315087 May 2018 EP
3332727 Jun 2018 EP
2349440 Aug 2019 EP
3571983 Nov 2019 EP
3318211 Dec 2019 EP
3581135 Dec 2019 EP
3586778 Jan 2020 EP
2736434 Feb 2020 EP
3451962 Mar 2020 EP
3653153 May 2020 EP
3972510 Mar 2022 EP
H6261951 Sep 1994 JP
H1176223 Mar 1999 JP
2000504242 Apr 2000 JP
2005052424 Mar 2005 JP
2010507404 Mar 2010 JP
2012024156 Feb 2012 JP
2013013726 Jan 2013 JP
2013078587 May 2013 JP
2013529109 Jul 2013 JP
20145229419 Nov 2014 JP
2015503365 Feb 2015 JP
2015100706 Jun 2015 JP
2015112113 Jun 2015 JP
2015112114 Jun 2015 JP
2015518776 Jul 2015 JP
2016515442 May 2016 JP
2016116863 Jun 2016 JP
9421167 Sep 1994 WO
9421169 Sep 1994 WO
WO1996005768 Feb 1996 WO
9625095 Aug 1996 WO
9634560 Nov 1996 WO
0056237 Sep 2000 WO
0182814 May 2002 WO
021102231 Dec 2002 WO
2004087249 Oct 2004 WO
2005041748 May 2005 WO
2008049087 Apr 2008 WO
2011143468 Nov 2011 WO
2012100185 Jul 2012 WO
2013049601 Apr 2013 WO
2013052852 Apr 2013 WO
2013052919 Apr 2013 WO
2013154776 Oct 2013 WO
2013162884 Oct 2013 WO
2013173917 Nov 2013 WO
2013176881 Nov 2013 WO
2014168987 Oct 2014 WO
2017176205 Oct 2014 WO
2015049784 Apr 2015 WO
2015200518 Dec 2015 WO
2016019760 Feb 2016 WO
2016044687 Mar 2016 WO
2016183337 Nov 2016 WO
2016210437 Dec 2016 WO
2017024306 Feb 2017 WO
2017087549 May 2017 WO
2018106569 Jun 2018 WO
2018111600 Jun 2018 WO
2018129133 Jul 2018 WO
2018191149 Oct 2018 WO
2019084442 May 2019 WO
2019095020 May 2019 WO
2019143960 Jul 2019 WO
2020062617 Feb 2020 WO
2020026328 Oct 2020 WO
2021119479 Jun 2021 WO
Non-Patent Literature Citations (34)
Entry
Partial European Search Report dated Mar. 14, 2022, from corresponding European Application No. 21201890.7.
Extended European Search Report dated Jun. 14, 2022, from corresponding European Application No. 21201890.7.
Angelo O., “AF Symposium 2017: First-in-Man Study Shows Promising Results with a Multi-Electrode Radiofrequency Balloon for Paroxysmal AF Treatment,” Cardiac Rhythm News, Jan. 20, 2017, 2 Pages [Retrieved on Dec. 16, 2020] Retrieved from URL: https://cardiacrhythmnews/first-in-man-study-shows-promising-results-with-a-multi-electrode-radiofrequency-balloon-for-paroxysmal-af-treatment/.
Casella M., “Ablation Index as a Predictor of Long-Term Efficacy in Premature Ventricular Complex Ablation: A Regional Target Value Analysis,” Heart Rhythm Society, Jun. 2019, vol. 16, No. 6, pp. 888-895.
Co-Pending U.S. Appl. No. 14/578,807, filed Dec. 22, 2014, 21 pages.
Das, M., et al., “Ablational Index, a Novel Narker of Ablation Lesion Quality: Prediction of Pulmonary Vein Reconnection at Repeat Electrophysiology, Study and Regional Differences in Target Values,” Eurospace, 2017, Publsihed Online May 31, 2016, vol. 19, pp. 775-783.
Dorobantu M., et al., “Oral Anticoagulation During Atrial Fibrillation Ablation: Facts and Controversies,” Cor et Vasa, 2013, Accepted on Dec. 3, 2012, vol. 55, No. 2, pp. e101-e106, Retrieved from URL: https://www.sciencedirect.com/science/article/pii/S0010865012001415.
Extended European Search Report for European Application No. EP17168513.4 mailed Sep. 18, 2017, 11 pages.
Extended European Search Report for European Application No. 15201723.2, mailed May 11, 2016, 07 Pages.
Extended European Search Report for European Application No. 17168393.1 mailed Dec. 15, 2017, 12 Pages.
Extended European Search Report for European Application No. 17168518.3, mailed Sep. 20, 2017, 9 Pages.
Extended European Search Report for European Application No. 17173893.3, mailed Nov. 6, 2017, 8 Pages.
Extended European Search Report for European Application No. 17201434.2, mailed Feb. 1, 2018, 10 Pages.
Extended European Search Report for European Application No. 17205876.0, mailed Jun. 1, 2018, 13 Pages.
Extended European Search Report for European Application No. 19177365.4, mailed Nov. 8, 2019, 7 Pages.
Extended European Search Report for European Application No. 19183327.6, mailed Nov. 21, 2019, 8 Pages.
Extended European Search Report for European Application No. 20153872.5, mailed May 7, 2020, 9 Pages.
Extended European Search Report for European Application No. 20195648.9, mailed Feb. 12, 2021, 8 Pages.
Fornell D., “Multi-Electrode RF Balloon Efficient for Acute Pulmonary Vein Isolation,” Diagnostic and Interventinal Cardiology, May 17, 2017, 3 Pages, [Retrieved on Dec. 16, 2020]Retrieved from URL: www.dicardiology.com/article/multi-electrode-rf-balloon-efficient-for-acute-pulmonary-vein-isolation.
Haines D.E., et al., “The Promise of Pulsed Field Ablation,” Dec. 2019, vol. 19, No. 12, 10 pages.
Honarbakhsh S., et al., “Radiofrequency Balloon Catheter Ablation for Paroxysmal Artial Fibrillation, Radiance Study—a UK experience,” EP Europace, Oct. 2017, vol. 19, No. 1, p. i21, 3 Pages.
International Search Report and Written Opinion for International Application No. PCT/IB2019/052313, mailed Jul. 22, 2019, 8 Pages.
International Search Report and Written Opinion for International Application No. PCT/IB2019/056381, mailed Dec. 17, 2019, 10 pages.
International Search Report and Written Opinion for International Application No. PCT/IB2019/057743, mailed Dec. 6, 2019, 16 Pages.
International Search Report and Written Opinion issued in corresponding International Application No. PCT/IB2019/057742, dated Nov. 28, 2019, 18 Pages.
Nagashima K., et al., “Hot Balloon Versus Cryoballoon Ablation for Atrial Fibrillation,” Circulation: Arrythmia and Electrophysiology, May 2018, vol. 11, No. 5, e005861, 9 Pages.
Napoli N., et al., “For Atrial Fibrillation Ablation, Newer Anticoagulant Reduces Major Bleeds,” American College of Cardiology, Mar. 19, 2017, 4 Pages, [Retrieved on Jan. 21, 2022] Retrieved from URL: https://acc.org/about-acc/press-releases/2017/03/18/08/47/sun-1045am-for-atrial-fibrillation-ablation-newer-anticoagulant-reduces-major-bleeds.
Okano T., “Wire Perforation Casuing Cardiopulomary Arrest During Radiofrequency Hot Balloon Ablation for Pulmonary Vein Isolation,” Journal of Cardioology Cases, Feb. 15, 2019, vol. 19, No. 5, pp. 169-172.
Partial European Search Report for European Application No. 17168393.1 mailed Sep. 13, 2017, 13 Pages.
Partial European Search Report for European Application No. 17205876.0, mailed Feb. 22, 2018, 10 Pages.
Reddy V.Y., et al., “Balloon Catheter Ablation to Treat Paroxysmal Atrial Fibrilation: What is the Level of Pulomary Venous Isolation?,” Heart Rythym, Mar. 2008, vol. 5, No. 3, pp. 353-360, 3 Pages.
Winkle R.A., et al., “Atrial Fibrilation Ablation Using Open-Irrigated Tip Radiofrequency: Experience with Intraprocedural Activated Clotting Times ≤120 Seconds,” Heart Rythym, Jun. 2014, Epub Mar. 27, 2014, vol. 11, No. 6, pp. 963-968.
YouTube: “Intensity™ CX4 Professional E-Stim/ Ultrasound Combo,” Dec. 22, 2015, 1 Page, [Retrieived on Nov. 19, 2020], Retrieved from URL: https://www.youtube.com/watch?v=76s1QkMWJME].
YouTube: “New Interface TactoCath Contact Force Ablation Catheter,” Nov. 26, 2013, 1 Pages, [Retrieived on Nov. 19, 2020], Retrieved from URL: https: /Avww.youtube.com/watch?v=aYvYO8Hpylg].
Related Publications (1)
Number Date Country
20220110675 A1 Apr 2022 US