Basket catheter with mushroom shape distal tip

Information

  • Patent Grant
  • 12004804
  • Patent Number
    12,004,804
  • Date Filed
    Thursday, September 9, 2021
    3 years ago
  • Date Issued
    Tuesday, June 11, 2024
    8 months ago
Abstract
Embodiments of the present invention include a medical probe having an insertion tube, a basket assembly, an axial electrode, and a plurality of radial electrodes. The insertion tube is configured for insertion into a body cavity of a patient. The basket assembly has a proximal end that is connected distally to the insertion tube and includes a plurality of resilient spines, which are configured to bow radially outward from an axis of the basket assembly and are conjoined at a distal end of the basket assembly. The axial electrode is disposed at the distal end of the basket assembly, having a diameter of at least 1.5 millimeters, and is configured to contact tissue in the body cavity. The plurality of radial electrodes are configured to contact the tissue in the body cavity and include radial electrodes disposed on the spines.
Description
FIELD OF THE INVENTION

The present invention relates generally to medical probes, and specifically to a medical probe comprising a mushroom-shaped ablation electrode affixed to a distal end of a basket assembly.


BACKGROUND OF THE INVENTION

Arrhythmias are abnormal heart rhythms that are typically caused by a small area of cardiac tissue that produces irregular heartbeats. Cardiac ablation is a medical procedure that can be performed to treat an arrhythmia by destroying the area of the cardiac tissue causing the irregular heartbeats. Some medical systems use irreversible electroporation (IRE) to ablate cardiac tissue. IRE is a nonthermal ablation method based on the unrecoverable permeabilization of cell membranes caused by short pulses of high voltage delivered to the tissue.


U.S. Patent Application 2016/0113582 to Altmann et al., describes a catheter with a distal tip comprising a microelectrode array that can be used for acute focal mapping. The catheter comprises a basket assembly having a plurality of electrode-carrying spines. The distal tip has a nonmetallic, electrically insulating substrate body with indentations in which microelectrodes are positioned in a manner to present a generally smooth distal tip profile.


U.S. Patent Application 2012/0143298 to Just et al., describes an electrode assembly for a catheter. In one embodiment, the electrode assembly comprises one or more positioning electrodes and one or more ablation electrodes disposed at a distal end of a shaft. In another embodiment, the electrode assembly comprises a basket portion of the catheter having non-contact electrodes.


U.S. Patent Application 2018/0279896 to Ruppersberg describes a system and method for analyzing electrophysiological data. The system comprises an ablation module configured to deliver RF ablation energy to ablation electrodes disposed near a distal end of a catheter. In one embodiment, the system comprises a catheter having an elongated body that includes a tip electrode and a ground electrode that are electrically isolated from each other and can be used for electro-ablation of body tissue.


U.S. Patent Application 2014/0303469 to Kordis et al., describes a method for detecting cardiac rhythm disorders. The system uses a catheter comprising a basket assembly with spines that are used to guide a plurality of exposed electrodes that are configured to sense local electric voltages from endocardial surface of a heart.


U.S. Patent Application 2018/0344188 to Govari describes a catheter comprising a basket assembly. The basket assembly comprises plurality of spline electrodes disposed on splines of the assembly, and a far-field electrode is disposed in the interior of the assembly. The spline electrodes can be used to generate an intracardiac electrogram and the far-field electrode can be used to generate a far-field electrogram.


The description above is presented as a general overview of related art in this field and should not be construed as an admission that any of the information it contains constitutes prior art against the present patent application.


SUMMARY OF THE INVENTION

There is provided, in accordance with an embodiment of the present invention, a medical probe, including an insertion tube configured for insertion into a body cavity of a patient, a basket assembly having a proximal end that is connected distally to the insertion tube and including a plurality of resilient spines, which are configured to bow radially outward from an axis of the basket assembly and are conjoined at a distal end of the basket assembly, an axial electrode disposed at the distal end of the basket assembly, having a diameter of at least 1.5 millimeters, and configured to contact tissue in the body cavity, and a plurality of radial electrodes, which are configured to contact the tissue in the body cavity and include radial electrodes disposed on the spines.


In one embodiment, the medical probe further includes an electric signal generator coupled to the axial and the radial electrodes.


In another embodiment, the electrical signal generator is configured to deliver irreversible electroporation (IRE) pulses to the axial electrode. In some embodiments, the electric signal generator is configured to deliver IRE energy simultaneously to the axial electrode and at least one radial electrode. In other embodiments, the electrical signal generator is configured to deliver radio frequency energy to the axial electrode.


In an additional embodiment, the spines have respective outer sides and inner sides, and wherein each given radial electrode includes a conductive material biased towards the outer side of its respective spine.


In a further embodiment, the axial electrode is circularly shaped with a rounded surface. In some embodiments, the axial electrode has a thickness of at least 20% of the diameter. In other embodiments, the axial electrode has sides having a radius of curvature that is at least 25% of the thickness. In supplemental embodiments, the axial electrode has sides having a radius of curvature that is at most 50% of the thickness.


There is also provided, in accordance with an embodiment of the present invention, a method for fabricating a medical probe, including providing an insertion tube configured for insertion into a body cavity of a patient, providing a basket assembly having a proximal end that is connected distally to the insertion tube and including a plurality of resilient spines, which are configured to bow radially outward from an axis of the basket assembly and are conjoined at a distal end of the basket assembly, providing an axial electrode disposed at the distal end of the basket assembly, having a diameter of at least 1.5 millimeters, and configured to contact tissue in the body cavity, and providing a plurality of radial electrodes, which are configured to contact the tissue in the body cavity and include radial electrodes disposed on the spines.


There is additionally provided, in accordance with an embodiment of the present invention, a method for treatment, including inserting, into a body cavity, an insertion tube having a distal end containing a lumen passing through the insertion tube, deploying, into the body cavity from the distal end, a basket assembly having a proximal end that is connected distally to the insertion tube and including a plurality of resilient spines, which are configured to bow radially outward from an axis of the basket assembly and are conjoined at a distal end of the basket assembly, the basket assembly including an axial electrode disposed at the distal end of the basket assembly, having a diameter of at least 1.5 millimeters, and configured to contact tissue in the body cavity, and a plurality of radial electrodes, which are configured to contact the tissue in the body cavity and include radial electrodes disposed on the spines, positioning the basket assembly so that the axial electrode presses against tissue in the body cavity, and conveying, via the axial electrode, ablation energy to the tissue.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure is herein described, by way of example only, with reference to the accompanying drawings, wherein:



FIG. 1 is a schematic pictorial illustration of a medical system 20 comprising an axial electrode fixed to a distal end of a basket assembly, in accordance with an embodiment of the present invention;



FIG. 2 is a schematic illustration of the basket assembly in an expanded configuration, in accordance with an embodiment of the present invention;



FIG. 3 is a schematic latitudinal view of the axial electrode, in accordance with an embodiment of the present invention;



FIG. 4 is a schematic side view of the axial electrode, in accordance with an embodiment of the present invention;



FIG. 5 is a schematic side view of the basket assembly in a collapsed configuration, in accordance with an embodiment of the present invention;



FIG. 6 is a flow diagram that schematically illustrates a method of using the axial electrode to perform a tissue ablation medical procedure in a chamber of a heart, in accordance with an embodiment of the present invention; and



FIGS. 7 and 8 are schematic pictorial illustrations of the basket assembly inside the chamber of the heart during the medical procedure, in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION OF EMBODIMENTS
Overview

While a distal tip of a basket catheter may comprise a diagnostic electrode, constraints on the size of the electrode make it difficult to operate the electrode as an ablation electrode. In contrast to a diagnostic electrode, an ablation electrode must support transfer of relatively large currents without being damaged or deformed, as well as having sufficient surface area and geometry to avoid high current density which can create localized electrical arcing.


Embodiments of the present invention provide a medical probe comprising a basket assembly having an ablation electrode fixed to its distal end. As described hereinbelow, the medical probe comprises an insertion tube configured for insertion into a body cavity of a patient, and a basket assembly having a proximal end that is connected distally to the insertion tube, i.e., is connected to a distal end of the insertion tube. The basket assembly comprises a plurality of resilient spines, which are configured to bow radially outward from an axis of the basket assembly and are conjoined at a distal end of the basket assembly. The medical probe also comprises an axial electrode disposed at the distal end of the basket assembly, having a diameter of at least 1.5 millimeters (mm), and configured to contact tissue in the body cavity. In addition to the axial electrode, the medical probe further comprises a plurality of radial electrodes, which are configured to contact the tissue in the body cavity and which are disposed on the spines.


In some embodiments, the axial electrode is mushroom-shaped (i.e., a thick disc with a rounded surface), and has a contact area (i.e., because of the at least 1.5 mm described supra) large enough that provides sufficient lateral surface area to dissipate heat during an ablation procedure. In addition to increasing the surface area, the rounded surface of the axial electrode helps prevent arcing and is atraumatic to tissue.


System Description


FIG. 1 is a schematic, pictorial illustration of a medical system 20 comprising a medical probe 22 and a control console 24, in accordance with an embodiment of the present invention. Medical system 20 may be based, for example, on the CARTO® system, produced by Biosense Webster Inc. of 31 Technology Drive, Suite 200, Irvine, CA 92618 USA. In embodiments described hereinbelow, medical probe 22 can be used for diagnostic or therapeutic treatment, such as for performing ablation procedures in a heart 26 of a patient 28. Alternatively, medical probe 22 may be used, mutatis mutandis, for other therapeutic and/or diagnostic purposes in the heart or in other body organs.


Probe 22 comprises a flexible insertion sheath 30 and a handle 32 coupled to a proximal end of the insertion sheath. Probe 22 also comprises a flexible insertion tube 74 that is contained within insertion sheath 30. During a medical procedure, a medical professional 34 can insert probe 22 through the vascular system of patient 28 so that a distal end 36 of insertion sheath 30 enters a body cavity such as a chamber of heart 26. Upon distal end 36 entering the chamber of heart 26, medical professional 34 can deploy a basket assembly 38 affixed to a distal end 73 of insertion tube 74. Basket assembly 38 comprises a set of electrodes 40, as described in the description referencing FIG. 2 hereinbelow.


To start performing a medical procedure such as irreversible electroporation (IRE) ablation, medical professional 34 can manipulate handle 32 to position distal end 73 so that one or more electrodes 40 engage cardiac tissue at a desired location or locations.


In the configuration shown in FIG. 1, control console 24 is connected, by a cable 42, to body surface electrodes, which typically comprise adhesive skin patches 44 that are affixed to patient 28. Control console 24 comprises a processor 46 that, in conjunction with a current tracking module 48, determines location coordinates of distal end 73 inside heart 26 based on impedances and/or currents measured between adhesive skin patches 44 and electrodes 40 that are affixed to basket assembly 38. In addition to being used as location sensors during a medical procedure, electrodes 40 may perform other tasks such as ablating tissue in the heart.


As described hereinabove, in conjunction with current tracking module 48, processor 46 may determine location coordinates of distal end 73 inside heart 26 based on impedances and/or currents measured between adhesive skin patches 44 and electrodes 40. Such a determination is typically after a calibration process relating the impedances or currents to known locations of distal end 73 has been performed. While embodiments presented herein describe electrodes 40 that are (also) configured to deliver IRE ablation energy to tissue in heart 26, configuring electrodes 40 to deliver any other type of ablation energy to tissue in any body cavity is considered to be within the spirit and scope of the present invention.


Processor 46 may comprise real-time noise reduction circuitry 50 typically configured as a field programmable gate array (FPGA), followed by an analog-to-digital (A/D) signal conversion integrated circuit 52. The processor can be programmed to perform one or more algorithms disclosed herein, each of the one or more algorithms comprising steps described hereinbelow. The processor uses circuitry 50 and circuit 52 as well as features of modules which are described in more detail below, in order to perform the one or more algorithms.


Although the medical system shown in FIG. 1 uses impedance or current-based sensing to measure a location of distal end 73, other location tracking techniques may be used (e.g., techniques using magnetic-based sensors). Impedance and current-based location tracking techniques are described, for example, in U.S. Pat. Nos. 5,983,126, 6,456,864 and 5,944,022. The methods of location sensing described hereinabove are implemented in the above-mentioned CARTO® system and are described in detail in the patents cited above.


Control console 24 also comprises an input/output (I/O) communications interface 54 that enables control console 24 to transfer signals from, and/or transfer signals to electrodes 40 and adhesive skin patches 44. In the configuration shown in FIG. 1, control console 24 additionally comprises an electric signal generator 56 and a switching module 58. While embodiments described herein present the electric signal generator as IRE ablation module 56 (i.e., electric signal generator 56 is also referred to herein as IRE ablation module 56), other types of electric signal generators are considered to be within the spirit and scope of the present invention. For example, electric signal generator 56 may be configured to generate radio frequency (RF) energy.


IRE ablation module 56 can be configured to generate IRE pulses comprising peak power in the range of tens of kilowatts. As described hereinbelow, medical system 20 performs IRE ablation by IRE ablation module 56 delivering IRE pulses to pairs of electrodes 40 simultaneously. In some embodiments, a given pair of the electrodes comprises two sets of electrodes 40 with each of the sets having at least one electrode 40. Using switching module 58, IRE ablation module 56 can deliver one or more IRE pulses independently to each of the pairs of the electrodes.


In order to dissipate the heat and to improve the efficiency of the ablation process, system 20 supplies irrigation fluid (e.g., a normal saline solution) to distal end 73 via a channel (not shown) in insertion tube 74. Control console 24 comprises an irrigation module 60 to monitor and control irrigation parameters, such as the pressure and the temperature of the irrigation fluid.


Typically, based on signals received from electrodes 40 and/or adhesive skin patches 44, processor 46 can generate an electroanatomical map 62 that shows the location of distal end 73 in the patient's body. During the procedure, processor 46 can present map 62 to medical professional 34 on a display 64, and store data representing the electroanatomical map in a memory 66. Memory 66 may comprise any suitable volatile and/or non-volatile memory, such as random-access memory or a hard disk drive.


In some embodiments, medical professional 34 can manipulate map 62 using one or more input devices 68. In alternative embodiments, display 64 may comprise a touchscreen that can be way configured to accept inputs from medical professional 34, in addition to presenting map 62.



FIG. 2 is a schematic illustration of distal end 73 comprising basket assembly 38 in an expanded configuration, in accordance with an embodiment of the present invention. Basket assembly 38 can assume an expanded configuration when unconstrained, such as by being advanced out of an insertion sheath lumen 70 of insertion sheath 30.


In FIG. 2, electrodes 40 can be differentiated by appending a letter to the identifying numeral, so that the electrodes comprise electrodes 40A and 40B. In embodiments herein, electrode 40A may also be referred to as axial electrode 40A and electrodes 40B may also be referred to as radial electrodes 40B.


By way of example, basket assembly 38 comprises a plurality of resilient spines 72 that are formed at a distal end 73 insertion tube 74. A proximal end 71 of basket assembly 38 is connected to distal end 73 of insertion tube 74, and spines 72 are cojoined at a distal end 80 of the basket assembly (FIG. 2).


During a medical procedure, medical professional 34 can deploy basket assembly 38 by extending insertion tube 74 from distal end 36 of insertion sheath 30. Spines 72 may have oval (e.g., elliptical or circular) or rectangular (that may appear to be flat) cross-sections, and typically comprise a flexible, resilient material (e.g., a shape-memory alloy such as nickel-titanium, also known as Nitinol). In its expanded configuration, basket assembly 38 has an expanded arrangement wherein spines 72 bow in a radially outward direction 75 from a longitudinal axis 77 of the basket assembly.


In the configuration shown in FIG. 2, one or more electrodes 40B are inserted on to each given spine 72 so as to fit the electrodes to the spines. Each spine 72 has an outer side 76 and an inner side 78. In embodiments of the present invention, for a given radial electrode 40B fitted to a given spine 72, the given spine is assumed to be planar at the given radial electrode, wherein the plane divides the given electrode asymmetrically so that there is more conductive material on the outer side (of the plane) than on the inner side. In the inset of FIG. 2 showing a side view of electrode 40B, the spine 72 extends through the electrode 40B such that the spine 72 is offset or “asymmetric” with respect to the center line L-L by being on one side of center line L-L. With the spine 72 offset (by being on one side of center line L-L), electrode 40B will have more of its upper surface (inset of FIG. 2) extending into biological tissues.


In these embodiments, each electrode 40 (i.e., when fitted to a given spine 72) comprises a conductive material that is geometrically biased towards the outer sides of its respective spine 72, because of the asymmetry referred to above. Therefore, each given radial electrode 40B has a greater surface area on its outer side compared to the surface area of the given electrode on its inner side. By biasing radial electrodes 40B to outer side 76, the radial electrodes deliver more ablation energy from the portion of the radial electrodes outer side of the spines (i.e., significantly more than the ablation energy delivered from the portion of the radial electrodes on the inner side of the spines).


In embodiments of the present invention, probe 22 also comprises axial electrode 40A disposed at distal end 80 of basket assembly 38. Axial electrode 40A has a circular shape, and is described in FIGS. 3-5 hereinbelow. The three spines 72 can be affixed (e.g. welding, brazing or glued) to each other at the intersection of the spines 72 of the distal end 80 of the basket 38. The electrode 40A may have its outer surface affixed (e.g., welding, brazing or glued) to the outer surface of the one or more of the three spines intersecting at the distal end 80 of basket 38.


In embodiments described herein, electrodes 40 can be configured to deliver ablation energy to tissue in heart 26. In addition to using electrodes 40 to deliver ablation energy, the electrodes can also be used to determine the location of basket assembly 38 and/or to measure a physiological property such as local surface electrical potentials at respective locations on tissue in heart 26.


Examples of materials ideally suited for forming electrodes 40 include gold, platinum and palladium (and their respective alloys). These materials also have very high thermal conductivity which allows the minimal heat generated on the tissue (i.e., by the ablation energy delivered to the tissue) to be conducted through the electrodes to the back side of the electrodes (i.e., the portions of the electrodes on the inner sides of the spines), and then to the blood pool in heart 26.


Probe 22 also comprises a set of wires 82 that couple IRE ablation module 56 to electrodes 40. In some embodiments each spine 72 comprises at least one wire 82 affixed to its inner side 78.


In some embodiments, distal end 80 of basket assembly 38 comprises a stem 84 that extends longitudinally from distal end 73 of insertion tube 74. As described supra, control console 24 comprises irrigation module 60 that delivers irrigation fluid to distal end 73. Stem 84 comprises multiple spray ports 86, wherein each given spray port 86 is angled to aim delivery of the irrigation fluid to either a given electrode 40 or to tissue in heart 26 (i.e., by aiming the delivery between two adjacent spines 72).


Since electrodes 40 do not comprise spray ports that deliver irrigation fluid, the configuration described hereinabove enables heat to be transferred from the tissue (i.e., during an ablation procedure) to the portion of the electrodes on the inner side of the spines, and the electrodes can be cooled by aiming the irrigation fluid, via spray ports 86, at the portion of the electrodes on the inner side of the spines.



FIG. 3 is a schematic latitudinal (i.e., top-down) view of axial electrode 40A, in accordance with an embodiment of the present invention. In embodiments of the present invention, axial electrode 40A is configured to deliver ablation energy (i.e., from IRE ablation module 56) to tissue in heart 26. Therefore, axial electrode 40A can have a diameter 90 (i.e., between sides 92 of the axial electrode) of at least 1.5 millimeters (mm). Typical values of diameter 90 are 1.5, 1.75, 2.0, 2.25, 2.5 mm and 3.0 mm. These large diameters also provide axial electrode 40A with sufficient lateral surface area to dissipate heat during ablation.



FIG. 4 is a schematic side view of axial electrode 40A, in accordance with an embodiment of the present invention. In some embodiments, axial electrode 40A has a minimum thickness 100 (i.e., due to the rounded surface of the axial electrode) that is at least 20% of diameter 90.


In embodiments of the invention, axial electrode 40A has a rounded surface 102 comprising a distal end 104, a proximal end 106 and sides 92 that are all rounded. Therefore, surface 102 has no edges. In some embodiments, sides 92 are typically rounded so as to have a largest possible radius of curvature 107, while not creating an edge. Therefore, radius of curvature 107 can be between (at least) one-quarter (25%) of thickness 100 and (at most) one-half (50%) of thickness 100. The smallest radius of curvature of sides 92 typically occurs at terminal points of diameter 90, and is indicated schematically in the figure by a circle 108, with a center 109, that is tangential to one of the terminal points of diameter 90.


As described supra, axial electrode 40A has a mushroom-like shape (or a biscuit-like shape) whose rounded surface 102 and thickness constraints (a) make the axial electrode atraumatic to an engaged tissue in heart 26 (or tissue in any other body cavity in patient 28), (b) prevents high current density that can cause arcing during IRE ablation, (c) provides the axial electrode with sufficient surface area to dissipate heat during ablation, and (d) provides greater maneuverability for the axial electrode.



FIG. 5 is a schematic side view of basket assembly 38 in a collapsed configuration and arranged generally along longitudinal axis 77, in accordance with an embodiment of the present invention. As shown in FIG. 5, the outward bias of electrodes 40 enable spines 72 to lay flush with insertion tube 74 when basket assembly 38 is collapsed within insertion sheath 30.


In some embodiments, lumen 70 has a lumen diameter 110 between 3.0 and 3.33 mm (i.e., medical probe 22 is a 10 French catheter). In these embodiments, diameter 90 of axial electrode 40A is less than lumen diameter 110 so as to enable basket assembly 38 to traverse lumen 70.



FIG. 6 is a flow diagram that schematically illustrates a method of using medical probe 22 to perform a tissue ablation medical procedure in a chamber 140 of heart 26, and FIGS. 7 and 8 are schematic pictorial illustrations of distal end 73 inside the chamber of the heart during the medical procedure, in accordance with an embodiment of the present invention.


In a tissue selection step 120, medical professional 34 selects a region 142 of intracardial tissue 144, and in an insertion step 122, the medical professional inserts distal end 36 of insertion sheath 30 into chamber 140 of heart 26.


In a deployment step 124, medical professional deploys basket assembly 38 from lumen 70 to chamber 140.


As medical professional 34 maneuvers the basket assembly within the chamber (e.g., by manipulating handle 32), processor 46 determines, in a location determination step 126, the location(s) of the basket assembly within the chamber. In some embodiments, processor 46 can present, to medical professional 34 (i.e., in map 62 on display 64), the location(s) of basket assembly 38.


In an ablation type selection step 128, if medical professional 34 wants to solely use axial electrode 40A to ablate the selected region of tissue 144, then in a first positioning step 130, medical professional 34 positions basket assembly 38 so that axial electrode 40A presses against the selected region on intracardiac tissue 144, as shown in FIG. 7.


In first ablation step 132, in response to an input from medical professional 34, IRE ablation module 56 conveys IRE pulses to axial electrode 40A, which the axial electrode delivers to the selected region of intracardiac tissue 144, and the method ends. In some embodiments, IRE ablation module 56 can receive the input from a given input device 68 or from an additional input device (not shown) on handle 32.


While embodiments herein describe IRE ablation module 56 delivering IRE pulses to one or more electrodes 40 so as to ablate intracardiac tissue 144, configuring medical system 20 to deliver, to any electrode 40, other types of ablation energy (e.g., radiofrequency energy) is considered to be within the spirit and scope of the present invention.


Returning to step 128, if medical professional 34 wants to use one or more pairs of electrodes 40 that comprise axial electrode 40A, then in a second positioning step 134, medical professional 34 positions basket assembly 38 so that axial electrode 40A and one or more radial electrodes 40B press against the selected region on intracardiac tissue 144, as shown in FIG. 8.


In an electrode selection step 136, medical professional 34 selects (e.g., using a given input device 68) axial electrode and at least one radial electrode 40B that is engaging intracardiac tissue 144, and in a second ablation step 138, in response to an input from medical professional 34, IRE ablation module 56 conveys IRE pulses to the selected electrodes, which the selected electrodes deliver to the selected region of intracardiac tissue 144, and the method ends.


In one embodiment, the selected electrodes comprise pairs of electrodes 40. In these embodiments, medical system 20 performs IRE ablation by delivering IRE pulses to pairs of electrodes 40. In additional embodiments, a given pair of the electrodes comprises two sets of electrodes 40 with each of the sets having at least one electrode 40. The electrodes in any given pair may be fixed to a single spine 72 or to multiple spines 72. Using switching module 58, IRE ablation module 56 can deliver one or more IRE pulses independently to each of the pairs of the electrodes.


It will be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.

Claims
  • 1. A medical probe, comprising: an insertion tube configured for insertion into a body cavity of a patient;a basket assembly having a proximal end that is connected distally to the insertion tube and comprising a plurality of resilient spines, which are configured to bow radially outward from an axis of the basket assembly and are conjoined at a distal end of the basket assembly;an axial electrode attached to the plurality of resilient spines and disposed at the distal end of the basket assembly, the axial electrode configured to contact tissue in the body cavity and comprising: a circular shape with a rounded surface;a diameter of at least 1.5 millimeters;a thickness of at least 20% of the diameter; andsides having a radius of curvature of at least 25% and at most 50% of the thickness; anda plurality of radial electrodes disposed on the plurality of resilient spines which are configured to contact the tissue in the body.
  • 2. The medical probe according to claim 1, and further comprising an electrical signal generator coupled to the axial and the plurality of radial electrodes.
  • 3. The medical probe according to claim 2, wherein the electrical signal generator is configured to deliver irreversible electroporation (IRE) pulses to the axial electrode.
  • 4. The medical probe according to claim 2, wherein the electrical signal generator is configured to deliver IRE energy simultaneously to the axial electrode and at least one of the plurality radial electrodes.
  • 5. The medical probe according to claim 2, wherein the electrical signal generator is configured to deliver radio frequency energy to the axial electrode.
  • 6. The medical probe according to claim 1, wherein the plurality of resilient spines have respective outer sides and inner sides, and wherein each of the plurality of radial electrodes comprises a conductive material biased towards the outer side of a respective spine of the plurality of resilient spines.
  • 7. The medical probe of claim 1, further comprising a stem that extends longitudinally from a distal end of the insertion tube along a longitudinal axis of the basket assembly, wherein a distance from the stem to the axial electrode decreases as the basket assembly moves from a collapsed configuration to an expanded configuration.
  • 8. A method for fabricating a medical probe, comprising: providing an insertion tube configured for insertion into a body cavity of a patient;connecting a proximal end of a basket assembly to a distal end of the insertion tube, the basket assembly comprising a plurality of resilient spines, which are configured to bow radially outward from an axis of the basket assembly and are conjoined at a distal end of the basket assembly;providing an axial electrode attached to the plurality of resilient spines and disposed at the distal end of the basket assembly, the axial electrode configured to contact tissue in the body cavity and comprising: a circular shape with a rounded surface;a diameter of at least 1.5 millimeters;a thickness of at least 20% of the diameter; andsides having a radius of curvature of at least 25% and at most 50% of the thickness; andproviding a plurality of radial electrodes disposed on the plurality of resilient spines which are configured to contact the tissue in the body cavity.
  • 9. The method according to claim 8, and further comprising providing an electrical signal generator coupled to the axial and the plurality of radial electrodes.
  • 10. The method according to claim 9, wherein the electrical signal generator is configured to deliver irreversible electroporation (IRE) pulses to the axial electrode.
  • 11. The method according to claim 9, wherein the electrical signal generator is configured to deliver IRE energy simultaneously to the axial electrode and at least one of the plurality of radial electrodes.
  • 12. The method according to claim 9, wherein the electrical signal generator is configured to deliver radio frequency energy to the axial electrode.
  • 13. The method according to claim 8, wherein each of the plurality of resilient spines have respective outer sides and inner sides, and wherein each of the plurality of radial electrodes comprises a conductive material biased towards the outer side of a respective spine of the plurality of resilient spines.
  • 14. A method for treatment, comprising: inserting, into a body cavity, an insertion tube having a distal end containing a lumen passing through the insertion tube;deploying, into the body cavity from the distal end, a basket assembly having a proximal end that is connected distally to the insertion tube and comprising a plurality of resilient spines, which are configured to bow radially outward from an axis of the basket assembly and are conjoined at a distal end of the basket assembly, the basket assembly comprising: an axial electrode attached to the plurality of resilient spines and disposed at the distal end of the basket assembly, the axial electrode configured to contact tissue in the body cavity and comprising:a circular shape with a rounded surface;a diameter of at least 1.5 millimeters;a thickness of at least 20% of the diameter; andsides having a radius of curvature of at least 25% and at most 50% of the thickness, anda plurality of radial electrodes disposed on the plurality of resilient spines which are configured to contact the tissue in the body;positioning the basket assembly so that the axial electrode presses against the tissue in the body cavity; andconveying, via the axial electrode, ablation energy to the tissue.
  • 15. The medical probe of claim 7, wherein the stem comprises one or more spray ports to deliver irrigation fluid to the tissue in the body cavity, the axial electrode, an electrode of the plurality of radial electrodes, or a combination thereof.
US Referenced Citations (398)
Number Name Date Kind
4699147 Chilson et al. Oct 1987 A
4940064 Desai Jul 1990 A
5215103 Desai Jun 1993 A
5255679 Imran Oct 1993 A
5293869 Edwards et al. Mar 1994 A
5309910 Edwards et al. May 1994 A
5313943 Houser et al. May 1994 A
5324284 Imran Jun 1994 A
5345936 Pomeranz et al. Sep 1994 A
5365926 Desai Nov 1994 A
5396887 Imran Mar 1995 A
5400783 Pomeranz et al. Mar 1995 A
5411025 Webster, Jr. May 1995 A
5415166 Imran May 1995 A
5456254 Pietroski et al. Oct 1995 A
5465717 Imran et al. Nov 1995 A
5476495 Kordis et al. Dec 1995 A
5499981 Kordis Mar 1996 A
5526810 Wang Jun 1996 A
5546940 Panescu et al. Aug 1996 A
5549108 Edwards et al. Aug 1996 A
5558073 Pomeranz et al. Sep 1996 A
5577509 Panescu et al. Nov 1996 A
5595183 Swanson et al. Jan 1997 A
5598848 Swanson et al. Feb 1997 A
5609157 Panescu et al. Mar 1997 A
5628313 Webster, Jr. May 1997 A
5681280 Rusk et al. Oct 1997 A
5722401 Pietroski et al. Mar 1998 A
5722403 McGee et al. Mar 1998 A
5725525 Kordis Mar 1998 A
5730128 Pomeranz et al. Mar 1998 A
5772590 Webster, Jr. Jun 1998 A
5782899 Imran Jul 1998 A
5823189 Kordis Oct 1998 A
5881727 Edwards Mar 1999 A
5893847 Kordis Apr 1999 A
5904680 Kordis et al. May 1999 A
5911739 Kordis et al. Jun 1999 A
5928228 Kordis et al. Jul 1999 A
5944022 Nardella et al. Aug 1999 A
5968040 Swanson et al. Oct 1999 A
5983126 Wittkampf Nov 1999 A
6014579 Pomeranz et al. Jan 2000 A
6014590 Whayne et al. Jan 2000 A
6119030 Morency Sep 2000 A
6216043 Swanson et al. Apr 2001 B1
6216044 Kordis Apr 2001 B1
6428537 Swanson et al. Aug 2002 B1
6456864 Swanson et al. Sep 2002 B1
6574492 Ben-Haim et al. Jun 2003 B1
6584345 Govari Jun 2003 B2
6600948 Ben-Haim et al. Jul 2003 B2
6738655 Sen et al. May 2004 B1
6741878 Fuimaono et al. May 2004 B2
6748255 Fuimaono et al. Jun 2004 B2
6780183 Jimenez, Jr. et al. Aug 2004 B2
6837886 Collins et al. Jan 2005 B2
6866662 Fuimaono et al. Mar 2005 B2
6892091 Ben-Haim et al. May 2005 B1
6970730 Fuimaono et al. Nov 2005 B2
6973340 Fuimaono et al. Dec 2005 B2
6980858 Fuimaono et al. Dec 2005 B2
7048734 Fleischman et al. May 2006 B1
7149563 Fuimaono et al. Dec 2006 B2
7255695 Falwell et al. Aug 2007 B2
7257434 Fuimaono et al. Aug 2007 B2
7399299 Daniel et al. Jul 2008 B2
7410486 Fuimaono et al. Aug 2008 B2
7522950 Fuimaono et al. Apr 2009 B2
RE41334 Beatty et al. May 2010 E
7846157 Kozel Dec 2010 B2
7930018 Harlev et al. Apr 2011 B2
8007495 McDaniel et al. Aug 2011 B2
8048063 Aeby et al. Nov 2011 B2
8103327 Harlev et al. Jan 2012 B2
8167845 Wang et al. May 2012 B2
8224416 De La Rama et al. Jul 2012 B2
8235988 Davis et al. Aug 2012 B2
8346339 Kordis et al. Jan 2013 B2
8435232 Aeby et al. May 2013 B2
8447377 Harlev et al. May 2013 B2
8498686 Grunewald Jul 2013 B2
8517999 Pappone et al. Aug 2013 B2
8545490 Mihajlovic et al. Oct 2013 B2
8560086 Just et al. Oct 2013 B2
8567265 Aeby et al. Oct 2013 B2
8712550 Grunewald Apr 2014 B2
8755861 Harlev et al. Jun 2014 B2
8825130 Just et al. Sep 2014 B2
8906011 Gelbart et al. Dec 2014 B2
8945120 McDaniel et al. Feb 2015 B2
8979839 De La Rama et al. Mar 2015 B2
9037264 Just et al. May 2015 B2
9131980 Bloom Sep 2015 B2
9204929 Solis Dec 2015 B2
9277960 Weinkam et al. Mar 2016 B2
9314208 Altmann et al. Apr 2016 B1
9339331 Tegg et al. May 2016 B2
9486282 Solis Nov 2016 B2
9554718 Bar-Tal et al. Jan 2017 B2
D782686 Werneth et al. Mar 2017 S
9585588 Marecki et al. Mar 2017 B2
9597036 Aeby et al. Mar 2017 B2
9687297 Just et al. Jun 2017 B2
9693733 Altmann et al. Jul 2017 B2
9782099 Williams et al. Oct 2017 B2
9788895 Solis Oct 2017 B2
9801681 Laske et al. Oct 2017 B2
9814618 Nguyen et al. Nov 2017 B2
9833161 Govari Dec 2017 B2
9894756 Weinkam et al. Feb 2018 B2
9895073 Solis Feb 2018 B2
9907609 Cao et al. Mar 2018 B2
9974460 Wu et al. May 2018 B2
9986949 Govari et al. Jun 2018 B2
9993160 Salvestro et al. Jun 2018 B2
10014607 Govari et al. Jul 2018 B1
10028376 Weinkam et al. Jul 2018 B2
10034637 Harlev et al. Jul 2018 B2
10039494 Altmann et al. Aug 2018 B2
10045707 Govari Aug 2018 B2
10078713 Auerbach et al. Sep 2018 B2
10111623 Jung et al. Oct 2018 B2
10130420 Basu et al. Nov 2018 B2
10136828 Houben et al. Nov 2018 B2
10143394 Solis Dec 2018 B2
10172536 Maskara et al. Jan 2019 B2
10182762 Just et al. Jan 2019 B2
10194818 Williams et al. Feb 2019 B2
10201311 Chou et al. Feb 2019 B2
10219860 Harlev et al. Mar 2019 B2
10219861 Just et al. Mar 2019 B2
10231328 Weinkam et al. Mar 2019 B2
10238309 Bar-Tal et al. Mar 2019 B2
10278590 Salvestro et al. May 2019 B2
D851774 Werneth et al. Jun 2019 S
10314505 Williams et al. Jun 2019 B2
10314507 Govari et al. Jun 2019 B2
10314648 Ge et al. Jun 2019 B2
10314649 Bakos et al. Jun 2019 B2
10349855 Zeidan et al. Jul 2019 B2
10350003 Weinkam et al. Jul 2019 B2
10362991 Tran et al. Jul 2019 B2
10375827 Weinkam et al. Aug 2019 B2
10376170 Quinn et al. Aug 2019 B2
10376221 Iyun et al. Aug 2019 B2
10398348 Osadchy et al. Sep 2019 B2
10403053 Katz et al. Sep 2019 B2
10441188 Katz et al. Oct 2019 B2
10470682 Deno et al. Nov 2019 B2
10470714 Altmann et al. Nov 2019 B2
10482198 Auerbach et al. Nov 2019 B2
10492857 Guggenberger et al. Dec 2019 B2
10542620 Weinkam et al. Jan 2020 B2
10575743 Basu et al. Mar 2020 B2
10575745 Solis Mar 2020 B2
10582871 Williams et al. Mar 2020 B2
10582894 Ben Zrihem et al. Mar 2020 B2
10596346 Aeby et al. Mar 2020 B2
10602947 Govari et al. Mar 2020 B2
10617867 Viswanathan et al. Apr 2020 B2
10660702 Viswanathan et al. May 2020 B2
10667753 Werneth et al. Jun 2020 B2
10674929 Houben et al. Jun 2020 B2
10681805 Weinkam et al. Jun 2020 B2
10682181 Cohen et al. Jun 2020 B2
10687892 Long et al. Jun 2020 B2
10702178 Dahlen et al. Jul 2020 B2
10716477 Salvestro et al. Jul 2020 B2
10758304 Aujla Sep 2020 B2
10765371 Hayam et al. Sep 2020 B2
10772566 Aujila Sep 2020 B2
10799281 Goertzen et al. Oct 2020 B2
10842558 Harlev et al. Nov 2020 B2
10842561 Viswanathan et al. Nov 2020 B2
10863914 Govari et al. Dec 2020 B2
10881376 Shemesh et al. Jan 2021 B2
10898139 Guta et al. Jan 2021 B2
10905329 Bar-Tal et al. Feb 2021 B2
10912484 Ziv-Ari et al. Feb 2021 B2
10918306 Govari et al. Feb 2021 B2
10939871 Altmann et al. Mar 2021 B2
10952795 Cohen et al. Mar 2021 B2
10973426 Williams et al. Apr 2021 B2
10973461 Baram et al. Apr 2021 B2
10987045 Basu et al. Apr 2021 B2
11006902 Bonyak et al. May 2021 B1
11040208 Govari et al. Jun 2021 B1
11045628 Beeckler et al. Jun 2021 B2
11051877 Sliwa et al. Jul 2021 B2
11109788 Rottmann et al. Sep 2021 B2
11116435 Urman et al. Sep 2021 B2
11129574 Cohen et al. Sep 2021 B2
11160482 Solis Nov 2021 B2
11164371 Yellin et al. Nov 2021 B2
20040210121 Fuimaono et al. Oct 2004 A1
20060009689 Fuimaono et al. Jan 2006 A1
20060009690 Fuimaono et al. Jan 2006 A1
20060100669 Fuimaono et al. May 2006 A1
20070093806 Desai et al. Apr 2007 A1
20070276212 Fuimaono et al. Nov 2007 A1
20080234564 Beatty et al. Sep 2008 A1
20100076426 de la Rama Mar 2010 A1
20110118726 De La Rama et al. May 2011 A1
20110160574 Harlev et al. Jun 2011 A1
20110190625 Harlev et al. Aug 2011 A1
20110245756 Arora et al. Oct 2011 A1
20110301597 McDaniel et al. Dec 2011 A1
20120143298 Just et al. Jun 2012 A1
20130172872 Subramaniam et al. Jul 2013 A1
20130172883 Lopes et al. Jul 2013 A1
20130178850 Lopes et al. Jul 2013 A1
20130190587 Lopes et al. Jul 2013 A1
20130296852 Madjarov et al. Nov 2013 A1
20140025069 Willard et al. Jan 2014 A1
20140039484 Leung Feb 2014 A1
20140052118 Laske et al. Feb 2014 A1
20140180147 Thakur et al. Jun 2014 A1
20140180151 Maskara et al. Jun 2014 A1
20140180152 Maskara et al. Jun 2014 A1
20140257069 Eliason et al. Sep 2014 A1
20140276712 Mallin et al. Sep 2014 A1
20140303469 Kordis et al. Oct 2014 A1
20140309512 Govari et al. Oct 2014 A1
20150011991 Buysman et al. Jan 2015 A1
20150045863 Litscher et al. Feb 2015 A1
20150080693 Solis Mar 2015 A1
20150105770 Amit Apr 2015 A1
20150119878 Heisel et al. Apr 2015 A1
20150133919 McDaniel et al. May 2015 A1
20150208942 Bar-Tal et al. Jul 2015 A1
20150231729 Yang Aug 2015 A1
20150250424 Govari et al. Sep 2015 A1
20150270634 Buesseler et al. Sep 2015 A1
20150342532 Basu et al. Dec 2015 A1
20160081746 Solis Mar 2016 A1
20160113582 Altmann et al. Apr 2016 A1
20160113709 Maor Apr 2016 A1
20160183877 Williams et al. Jun 2016 A1
20160228023 Govari Aug 2016 A1
20160228062 Altmann et al. Aug 2016 A1
20160278853 Ogle et al. Sep 2016 A1
20160302858 Bencini Oct 2016 A1
20160338770 Bar-Tal et al. Nov 2016 A1
20170027638 Solis Feb 2017 A1
20170065227 Marrs et al. Mar 2017 A1
20170071543 Basu et al. Mar 2017 A1
20170071544 Basu et al. Mar 2017 A1
20170071665 Solis Mar 2017 A1
20170095173 Bar-Tal et al. Apr 2017 A1
20170100187 Basu et al. Apr 2017 A1
20170143227 Marecki et al. May 2017 A1
20170156790 Aujla Jun 2017 A1
20170172442 Govari Jun 2017 A1
20170185702 Auerbach et al. Jun 2017 A1
20170202515 Zrihem et al. Jul 2017 A1
20170221262 Laughner et al. Aug 2017 A1
20170224958 Cummings et al. Aug 2017 A1
20170265812 Williams et al. Sep 2017 A1
20170281031 Houben et al. Oct 2017 A1
20170281268 Tran et al. Oct 2017 A1
20170296125 Altmann et al. Oct 2017 A1
20170296251 Wu et al. Oct 2017 A1
20170312012 Harlev Nov 2017 A1
20170347959 Guta et al. Dec 2017 A1
20170354338 Levin et al. Dec 2017 A1
20170354339 Zeidan et al. Dec 2017 A1
20170354364 Bar-Tal et al. Dec 2017 A1
20180008203 Iyun et al. Jan 2018 A1
20180028084 Williams et al. Feb 2018 A1
20180049803 Solis Feb 2018 A1
20180085064 Auerbach et al. Mar 2018 A1
20180132749 Govari et al. May 2018 A1
20180137687 Katz et al. May 2018 A1
20180160936 Govari et al. Jun 2018 A1
20180160978 Cohen et al. Jun 2018 A1
20180168511 Hall et al. Jun 2018 A1
20180184982 Basu et al. Jul 2018 A1
20180192958 Wu Jul 2018 A1
20180206792 Auerbach et al. Jul 2018 A1
20180235692 Efimov et al. Aug 2018 A1
20180249959 Osypka Sep 2018 A1
20180256109 Wu et al. Sep 2018 A1
20180279896 Ruppersberg Oct 2018 A1
20180279954 Hayam et al. Oct 2018 A1
20180303414 Toth et al. Oct 2018 A1
20180310987 Altmann et al. Nov 2018 A1
20180311497 Viswanathan et al. Nov 2018 A1
20180338722 Altmann et al. Nov 2018 A1
20180344188 Govari Dec 2018 A1
20180344202 Bar-Tal et al. Dec 2018 A1
20180344251 Harlev et al. Dec 2018 A1
20180344393 Gruba et al. Dec 2018 A1
20180360534 Teplitsky et al. Dec 2018 A1
20180365355 Auerbach et al. Dec 2018 A1
20190000540 Cohen et al. Jan 2019 A1
20190008582 Govari et al. Jan 2019 A1
20190015007 Rottmann et al. Jan 2019 A1
20190030328 Stewart et al. Jan 2019 A1
20190053708 Gliner Feb 2019 A1
20190059766 Houben et al. Feb 2019 A1
20190069950 Viswanathan Mar 2019 A1
20190069954 Cohen et al. Mar 2019 A1
20190117111 Osadchy et al. Apr 2019 A1
20190117303 Claude et al. Apr 2019 A1
20190117315 Keyes et al. Apr 2019 A1
20190125439 Rohl et al. May 2019 A1
20190133552 Shemesh et al. May 2019 A1
20190142293 Solis May 2019 A1
20190164633 Ingel et al. May 2019 A1
20190167137 Bar-Tal et al. Jun 2019 A1
20190167140 Williams et al. Jun 2019 A1
20190188909 Yellin et al. Jun 2019 A1
20190201664 Govari Jul 2019 A1
20190209089 Baram et al. Jul 2019 A1
20190216346 Ghodrati et al. Jul 2019 A1
20190216347 Ghodrati et al. Jul 2019 A1
20190231421 Viswanathan et al. Aug 2019 A1
20190231423 Weinkam et al. Aug 2019 A1
20190239811 Just et al. Aug 2019 A1
20190246935 Govari et al. Aug 2019 A1
20190298442 Ogata et al. Oct 2019 A1
20190314083 Herrera et al. Oct 2019 A1
20190328260 Zeidan et al. Oct 2019 A1
20190343580 Nguyen et al. Nov 2019 A1
20200000518 Kiernan et al. Jan 2020 A1
20200008705 Ziv-Ari et al. Jan 2020 A1
20200008869 Byrd Jan 2020 A1
20200009378 Stewart et al. Jan 2020 A1
20200015890 To et al. Jan 2020 A1
20200022653 Moisa Jan 2020 A1
20200029845 Baram et al. Jan 2020 A1
20200046421 Govari Feb 2020 A1
20200046423 Viswanathan et al. Feb 2020 A1
20200060569 Tegg Feb 2020 A1
20200077959 Altmann et al. Mar 2020 A1
20200093539 Long et al. Mar 2020 A1
20200129089 Gliner et al. Apr 2020 A1
20200129125 Govari et al. Apr 2020 A1
20200129128 Gliner et al. Apr 2020 A1
20200179650 Beeckler et al. Jun 2020 A1
20200196896 Solis Jun 2020 A1
20200205689 Squires et al. Jul 2020 A1
20200205690 Williams et al. Jul 2020 A1
20200205737 Beeckler Jul 2020 A1
20200205876 Govari Jul 2020 A1
20200205892 Viswanathan et al. Jul 2020 A1
20200206461 Govari et al. Jul 2020 A1
20200206498 Arora et al. Jul 2020 A1
20200230403 Bowers Jul 2020 A1
20200289197 Viswanathan et al. Sep 2020 A1
20200297234 Houben et al. Sep 2020 A1
20200297281 Basu et al. Sep 2020 A1
20200305726 Salvestro et al. Oct 2020 A1
20200305946 DeSimone et al. Oct 2020 A1
20200397328 Altmann et al. Dec 2020 A1
20200398048 Krimsky et al. Dec 2020 A1
20210015549 Haghighi-Mood et al. Jan 2021 A1
20210022684 Govari et al. Jan 2021 A1
20210045805 Govari et al. Feb 2021 A1
20210059549 Urman et al. Mar 2021 A1
20210059550 Urman et al. Mar 2021 A1
20210059608 Beeckler et al. Mar 2021 A1
20210059743 Govari Mar 2021 A1
20210059747 Krans et al. Mar 2021 A1
20210077184 Basu et al. Mar 2021 A1
20210082157 Rosenberg et al. Mar 2021 A1
20210085200 Auerbach et al. Mar 2021 A1
20210085204 Auerbach et al. Mar 2021 A1
20210085215 Auerbach et al. Mar 2021 A1
20210085387 Amit et al. Mar 2021 A1
20210093292 Baram et al. Apr 2021 A1
20210093294 Shemesh et al. Apr 2021 A1
20210093374 Govari et al. Apr 2021 A1
20210093377 Herrera et al. Apr 2021 A1
20210100612 Baron et al. Apr 2021 A1
20210113822 Beeckler et al. Apr 2021 A1
20210127999 Govari et al. May 2021 A1
20210128010 Govari et al. May 2021 A1
20210133516 Govari et al. May 2021 A1
20210145282 Bar-Tal et al. May 2021 A1
20210169421 Govari Jun 2021 A1
20210169568 Govari et al. Jun 2021 A1
20210177294 Gliner et al. Jun 2021 A1
20210177356 Gliner et al. Jun 2021 A1
20210178166 Govari et al. Jun 2021 A1
20210186363 Gliner et al. Jun 2021 A1
20210187241 Govari et al. Jun 2021 A1
20210196372 Altmann et al. Jul 2021 A1
20210196394 Govari et al. Jul 2021 A1
20210212591 Govari et al. Jul 2021 A1
20210219904 Yarnitsky et al. Jul 2021 A1
20210278936 Katz et al. Sep 2021 A1
20210282659 Govari et al. Sep 2021 A1
20210307815 Govari et al. Oct 2021 A1
20210308424 Beeckler et al. Oct 2021 A1
20210338319 Govari et al. Nov 2021 A1
Foreign Referenced Citations (42)
Number Date Country
111248993 Jun 2020 CN
111248996 Jun 2020 CN
0668740 Aug 1995 EP
0644738 Mar 2000 EP
1323451 Sep 2002 EP
0727183 Nov 2002 EP
0727184 Dec 2002 EP
2783651 Oct 2014 EP
2699151 Nov 2015 EP
2699152 Nov 2015 EP
2699153 Dec 2015 EP
2498706 Apr 2016 EP
2578173 Jun 2017 EP
3238645 Nov 2017 EP
2884931 Jan 2018 EP
2349440 Aug 2019 EP
3318211 Dec 2019 EP
3581135 Dec 2019 EP
2736434 Feb 2020 EP
3451962 Mar 2020 EP
3972510 Mar 2022 EP
2020517355 Jul 2020 JP
9421167 Sep 1994 WO
9421169 Sep 1994 WO
9625095 Aug 1996 WO
9634560 Nov 1996 WO
0182814 May 2002 WO
2004087249 Oct 2004 WO
2012100185 Jul 2012 WO
2013052852 Apr 2013 WO
2013162884 Oct 2013 WO
2013173917 Nov 2013 WO
2013176881 Nov 2013 WO
2014176205 Oct 2014 WO
2016019760 Feb 2016 WO
2016044687 Mar 2016 WO
2018111600 Jun 2018 WO
2018191149 Oct 2018 WO
2019084442 May 2019 WO
2019143960 Jul 2019 WO
2020026217 Feb 2020 WO
2020206328 Oct 2020 WO
Non-Patent Literature Citations (1)
Entry
Extended European Search Report dated Feb. 28, 2023, from corresponding European Application No. 22194535.5.
Related Publications (1)
Number Date Country
20230075838 A1 Mar 2023 US