BASKETBALL PERFORMANCE MONITORING SYSTEM

Abstract
A basketball performance monitoring system comprising a local microprocessor in communication with a remote computational system. At least one sensor is coupled to the microprocessor. The at least one sensor is coupled to a basketball goal and is configured to sense at least one of an attempt to score a goal and a successful goal. A first display is coupled to the microprocessor and a second display is coupled to the remote computational system.
Description
BACKGROUND

The present invention relates to a basketball performance monitoring system that utilizes a variety of sensors located in the vicinity of a basketball rim that can electronically track missed and successful shots, an associated electronic image capture system and a computer software system to transfer and utilize data generated therefrom for the purpose of monitoring, archiving and subsequent review.


In the game of basketball, it is well known that extensive practice of shooting a ball through a circular rim improves the frequency of making a goal. However, monitoring a player's skill level and improvements in making goals has typically been manually tracked and documented. Skills coaching could typically only be accomplished if the coach was present during a practice session, where feedback could only be given on the spot without any subsequent review.


Previously described systems have utilized a variety of sensor means to monitor shots taken, goals missed and goals made, however, they have not included an easy-to-use recording system that allows players and their coaches to track performance, review the shot-by-shot details of practice sessions and archive data for later viewing. For example, Hampton describes a sensing system that can determine the location of an ascending ball as it passes through a plane extending out from the rim and whether the result of such shot is successful or not. It includes using a telecommunication system to pass the sensor data to a computing device; however, it provides no means to monitor shot history nor is it able to tie such shot history to a video archive of the practice session.


Ianni et al. describes a system that uses a combination of a wrist or arm-mounted accelerometer to determine when a shot is taken and a net-mounted accelerometer to determine when a shot successfully made it through the goal. The system requires a relatively sophisticated acceleration profile correlation to differentiate between a shot and other types of arm motions and a goal versus a rim bounce. They describe a data archiving system, but do not utilize any type of corresponding visual recording. This type of sensor arrangement comes at a higher cost for the additional sensor and is higher complexity. It also has the disadvantage of requiring certain acceleration profiles of the basketball net when a ball passes through. This can prove to be unreliable, with variations of net size (loose or tight) and ball trajectories. A further disadvantage is that it requires a player to wear the accelerometer/radio unit on his/her wrist, which may not be to the liking of some players.


Zuccarini and Gordon have previously disclosed a contracting/expanding rim that may be used to improve skill levels; however, this system did not include any means for recording and tracking of practice sessions.


SUMMARY

In accordance with the present disclosure, there is provided a basketball performance monitoring system comprising a local microprocessor in communication with a remote computational system. At least one sensor is coupled to the microprocessor. The at least one sensor is coupled to a basketball goal and configured to sense at least one of an attempt to score a goal and a successful goal. A first display is coupled to the microprocessor. A second display is coupled to the remote computational system.


In another embodiment a basketball performance monitoring system comprises a local microprocessor in communication with a remote computational system; a first sensor coupled to the local microprocessor; the first sensor is coupled to a basketball goal proximate a net. The first sensor comprises a housing including an arm extendable inside the net, wherein the first sensor is configured to sense an angular orientation responsive to a basketball passing over said arm.


In another and alternative embodiment, a basketball performance monitoring system comprises an array of sensors coupled to a basketball goal. The basketball goal has a backboard and a rim coupled to the backboard. The array of sensors is configured to determine shot information; the shot information comprises the existence of a shot of a basketball towards the goal, at least one of an impact of the basketball with at least one of the backboard and the rim, and a shot passing through the rim. A local microprocessor is coupled to the array of sensors. A remote computational system is in communication with the local microprocessor, wherein the local microprocessor transmits the shot information from the array of sensors to at least one of the remote computational system and a display coupled to the local microprocessor.


In another and alternative embodiment, a method for monitoring basketball performance comprises sensing a basketball shot attempt by a player. The method includes detecting at least one of a completed goal or a missed goal. The method includes recording a time at which each basketball shot occurred. The method includes recording a visual image of the shot; reporting sensing the shot and detecting the completed goal and missed goal. The method includes synchronizing the recording of the visual image of the shot with sensing the shot, and the detecting of the completed goal and missed goal.


Accordingly, it is an object of the present invention to provide a basketball performance monitoring system to improve player skills and allow players, coaches and third parties to review performance at a later time.


It is also an object of the present invention to allow performance monitoring under different conditions, such as shooter position, shot number and rim diameter.


It is another object of the present invention to provide a simple-to-use computer interface that will allow subsequent performance review by a variety of individuals over a network.


It is yet another object of the present invention to utilize an optical retro-reflective sensor configuration to accurately monitor a basketball passing through a goal.


It is yet another object of the present invention to utilize a low-power, inexpensive set of motion sensors to accurately monitor a basketball passing through a goal.


It is a yet another object of the present invention to utilize video recording of basketball training sessions which are synchronized to shot-by-shot goal or miss data.


It is yet another object of the present invention to utilize an optical sensing system to determine the location on a court from which a shot was taken.


It is yet another object of the present invention to utilize a motion detector aimed above the goal to detect attempts that do not interact with the backboard or goal.


It is a further object of the present invention to synchronously share shot, electronic image and/or video data between players who may be located at different basketball goals.


The foregoing objects are attained by the basketball performance monitoring system of the present invention.


The terms basketball system, baskets and in some instances basketball goal used throughout this description, all refer to the same entity, which typically includes a basketball backboard, a basketball rim attached to the basketball backboard, a basketball net hanging from the rim, and a means of supporting these items such as a pole, a ceiling structure, or some other structure capable of rigidly positioning these items at an appropriate height above a court floor. The terms rim and in some instances goal both refer to the substantially hollow circular configuration of a hoop and made from metal or other suitable material known in the art. The terms make, goal, basket and through the rim all refer to the same event of a ball passing from above through the inside of the circular rim.


In accordance with the present invention, a basketball performance monitoring system broadly comprises a basketball goal having a sensing means for acquiring data related to missed or made shots, a communication system to transfer said data to a remote computational and storage system, optional coordination of video capture of a training session and a software system to allow synchronization of optional video and shot data and review, sharing and comparison of optional video and shot data.


Other details of the basketball performance monitoring system are set forth in the following detailed description and the accompanying drawing wherein like reference numerals depict like elements.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a first embodiment of a basketball performance monitoring system in accordance with the present invention;



FIGS. 2 and 3 illustrate block diagrams of a second and third embodiment of a basketball goal system in accordance with the present invention.



FIG. 4 illustrates a graphical user interface in accordance with the present invention;



FIG. 5 illustrates a graphical user interface of a video sequence in accordance with the present invention;



FIG. 6 illustrates a fourth embodiment of a basketball goal system in accordance with the present invention;



FIG. 7 illustrates a first embodiment of a goal detection sensor in accordance with the present invention;



FIG. 8 illustrates a second embodiment of a goal detection sensor in accordance with the present invention;



FIG. 9 illustrates a two-digit seven-segment display of the word “all”;



FIGS. 10 and 11 illustrate two versions of a preferred embodiment of a portion of the basketball performance monitoring system in accordance with the present invention;



FIGS. 12 and 13 illustrate two configurations of a molded version of a preferred embodiment of a portion of the basketball performance monitoring system in accordance with the present invention;



FIGS. 14 and 15 illustrate the operation of the preferred embodiment of a portion of the basketball performance monitoring system;



FIG. 16 illustrates a wireless and internet connection between multiple instances of the basketball performance monitoring system enabling joint play at remote locations;



FIG. 17 illustrates one possible location for a mobile remote computational system, where it is mounted to the pole using a holder;



FIG. 18 illustrates a block diagram of an example microprocessor program for a basketball performance monitoring system.





DETAILED DESCRIPTION


FIG. 1 illustrates a first embodiment of a basketball performance monitoring system in accordance with the present invention. The system includes a basketball rim 1 having a substantially circular configuration and made from metal or other suitable material known in the art. The system further includes a backboard 2 to which the rim 1 is mounted and a flexible net 34 attached below the rim 1 (collectively a goal). The backboard 2 may also be made from any suitable material known in the art. The net 34 may be made from any number of flexible materials including a metal chain, or a cotton or synthetic line. The rim 1 may optionally include a feature for collapsing or expanding its diameter as described in Zuccarini U.S. Pat. No. 7,402,116. Either mounted directly to or in the close vicinity of the rim 1, the backboard 2 or the net 34, is a ball impact sensor 4. The ball impact sensor 4 modality may be vibration, strain, acceleration, optical, video, acoustic or electromagnetic. The function of the ball impact sensor is to determine whether a shot has been executed that touches either the rim 1 or backboard 2. In one embodiment, a vibration sensor is utilized such as model SW18015 available from Jiayi Electronic Co., Ltd Zhejiang, China, which includes a small mass and spring system that when excited, makes contact with a closely fitted conductive contact and completes an electrical circuit in a similar manner to a switch. The vibration sensor is sensitive enough to detect when a ball 33 creates a mechanical vibration by striking against either the rim 1 or backboard 2. The vibration sensor that serves as the ball-impact sensor 4 may be either an analog sensor, such as an accelerometer, or a digital switch, which when vibrated, changes between an open and closed circuit at a high frequency. The advantage of using an accelerometer is that it may more precisely measure the vibration magnitude over time and therefore better characterize the type of interaction between the ball 33 and the backboard 2 or rim 1; however, the disadvantage to such a sensor is that it consumes power while waiting for an impact. This may be an important consideration for a system that is designed to communicate wirelessly and remain in place for extended periods of time (months or years) without exchanging batteries or recharging. Since a switch-type sensor draws little or no power, it may be preferred over the accelerometer for low power embodiments. Alternatively, a switch type sensor may be used for the initial impact detection and then to signal the system to apply power to the accelerometer for a more precise measurement. The accelerometer may then be used to measure the vibration over some time period and then be powered down after the vibration event has subsided. Similarly, a switch-type vibration sensor may be used to wake the microprocessor 12 from a low-power sleep mode so that the microprocessor 12 may monitor all or a subset of its connected sensors during a period when the ball 33 is interacting with the rim 1, backboard 2 and/or net 34.


This first embodiment of the basketball performance monitoring system also has a goal detection sensor 5 mounted directly to or in close vicinity of the rim 1, backboard 2 or net 34. The sensor 5 can be proximate the goal, in an exemplary embodiment the sensor is close enough to the goal to detect an attempted shot anywhere from the court.


The modality of the goal detection sensor 5 may be vibration, strain, acceleration, angle, tilt, optical, video, acoustic or electromagnetic. The goal detection sensor 5 is distinguished from the ball impact sensor 4, as it can determine whether a ball 33 has passed through the goal or not. In some cases, the detection of a ball 33 impacting either the rim 1 or backboard 2 by the ball impact sensor 4 may be followed by the goal detection sensor 5 detecting the ball 33 passing through the rim 1. Therefore, a local microprocessor 12 determines whether a missed shot or made goal is counted following the ball impact detection by monitoring whether the goal detection sensor 5 has been tripped within a specified time frame of the ball impact sensor 4 being tripped. In certain other cases, no ball impact is detected by the ball impact sensor 4, but the ball 33 passes through the goal without touching either the rim 1 or the backboard 2. In this case, the local microprocessor 12 would count an additional shot that resulted in an additional goal based on the exclusive input from the goal detection sensor 5.


Optionally, a third type of sensor, a ball-approach sensor 14, may be used to determine whether a ball is approaching the rim 1 prior to any potential contact. The sensor can be proximate the goal, in an exemplary embodiment the sensor is close enough to the goal to detect an attempted shot anywhere from the court.


The modality of the ball-approach sensor 14 may be pyroelectric, optical, video, acoustic, capacitance, inductance or electromagnetic. The purpose of the ball-approach sensor is to determine that a ball has been released towards the rim 1 and to detect its approach before it arrives. It may serve as an “air ball” sensor to detect a miss that did not collide with either the backboard 2 or the rim 1 and which is not detectable by the impact sensor 4 or goal detection sensor 5. This ball approach sensor 14 may also be used to wake the microprocessor 12 from its sleep mode or as a signal to power up other sensors like an accelerometer-based ball impact sensor 4 as previously described.


Optionally, a fourth type of sensor, a rim diameter sensor 6, determines whether a contracting/expanding rim is at regulation diameter, a larger diameter or a smaller diameter. This information is passed to the microprocessor 12 or the remote computation system 11 so a shot may be associated with a conventional-sized rim 1 or a larger or smaller diameter one.


The optional display unit 7 is connected to the ball impact sensor 4, the goal detection sensor 5 and optionally the ball-approach sensor 14 and the rim diameter sensor 6 through a wire 13 or wireless connection or by way of the remote computation system 11 through a wired or wireless system. The display unit 7 includes one or more light emitting diodes (LEDs), LED character arrays, liquid crystal displays (LCDs) or other type of display 8 that is easily visible from the court. In this first embodiment, the display 8 displays the percent of goals versus total shots taken. It may also display additional data like wireless connectivity status, court time, shooter identification, number of shots taken, etc.


The local microprocessor 12 has a number of functions. For example, it monitors the sensors 4, 5, 6 and 14 on or near the rim 1 or net 34, provides timing and calculations to determine whether a shot measured by the ball impact sensor 4 resulted in a goal as measured by the goal detection sensor 5 within a certain amount of time, typically 2 or 3 seconds. The microprocessor 12 optionally maintains counts for shots taken in a shot counter and goals made in a goal counter and displays the dividend between them times 100 on the display 8 or on the remote computational system 11. Alternatively, the microprocessor 12 may relay the sensor outputs by wire 13 or wireless 10 to the remote computational system 11, which keeps the various counts. In a first embodiment, only two digits are required to display the percent goals and a two digit, seven-segment LED display is utilized. For the special case where no shots are missed and the percent of goals is 100, the two digit display cannot display the required three digits, but may be programmed to display “all” in its two digits to indicate all shots resulted in goals by configuring the first digit to display a lowercase “a” and the second digit to display two vertical lines “||” as shown in FIG. 9.


The display unit 7 may be located anywhere near the basketball goal where it is visible to players and where it may be in communication with the sensors by wire 13, or wireless or alternatively, it may be in communication with the remote computational system 11. In this first embodiment, it is mounted to the pole 3 that supports the backboard 2 and rim 1 and connected to the rim sensors 4, 5, 6 and 14 by a wire cable 13. It may be optionally mounted behind a clear backboard 2, on a different part of the backboard 2 and rim 1 support structure or on a nearby surface or wall.


The display unit 7 also optionally includes a reset button 9 either mounted on the unit or positioned remotely. The reset button 9 resets all counts including the shot counter and goal counter and timings in the microprocessor 12 and/or in the remote computational system 11, so that a new set of data may be taken. This is typically used after the end of a practice session or between different drills or players practicing individually. In addition to maintaining a count for shots taken in a shot counter and goals made in a goal counter, the microprocessor 12 also optionally maintains a count in seconds or milliseconds, etc. of the time since the last reset or if no reset was pushed, since the last power on event. A “soft” reset of the microprocessor counts (i.e. the shot counter and the goal counter), which does not require a player to touch a reset button 9, may also be signaled by either the remote computational system 11 or by a player identifying his desire to reset through a sequence of shots over some time horizon. For example, three successive misses that trigger the ball impact sensor 4 over a time horizon that is significantly shorter than the time expected in a normal shooting drill may be an appropriate code. Another appropriate code may be to purposely miss two or more shots in fewer than 5 seconds. One skilled in the art may think of many such codes that are unlikely to arise during normal shooting drills, so they may be used to signal a reset of the microprocessor counts.


This first embodiment of the basketball performance monitoring system has one or more optional recording sources 18 for recording play on the court. The optional one or more cameras 18 may be mounted either alongside, above, below, or behind the backboard 2, near the rim 1 mount, on the court, near the sideline, on a wall, attached to a player, or held by hand anywhere in the vicinity of the court. The cameras 18 may also be part of the remote computation system 11. For example, they may be the embedded cameras within a cellular phone or mobile tablet. The cameras 18 are used for electronic capture of the shooter or the action on the court that leads up to a shot being taken. The type of camera may be an electronic still camera, a video camera, an infrared camera, a set of stereo cameras, or a 3D scanner, such as a Lidar system or Microsoft Kinect sensor. Recording may be during practice drills, plays or during actual game play. The recorded data may also be processed by a machine vision analysis system to extract data from the 2D or 3D images. This could include player identification, identification of shot location on the court or the type of shot (free through, layup, jump shot, 3-point shot, etc.), identification of type of executed play, etc. Alternatively, the electronic capture from the camera 18 may be streamed to other devices or recorded for future playback. One skilled in the art understands that more than one type of data may be simultaneously recorded by one or more cameras 18 for one or more uses. For example, data capture for both player positioning and recording for future playback could be recorded by two separate cameras.


This first embodiment of the basketball performance monitoring system also includes a wireless connection 10 to a remote computational system 11. The remote computational system 11 is able to wirelessly capture the variables from a practice session from the display unit 7 or directly from the microprocessor 12. This may include identification of the display unit 7 or microprocessor 12 sending the information, elapsed time from the beginning of the session to the time of each goal or miss, whether each shot was a goal or a miss, the state of the rim 1 (contracted or regulation size), the total number of shots and the percent of shots that were goals. Other variables such as the number of goals, the time since power on, battery level, etc. may also be sent.


Referring now to FIG. 2, a second embodiment of the present invention is illustrated. In this embodiment, the ball impact sensor 4, the goal detection sensor 5, the ball approach sensor 14 and the rim diameter sensor 6 are all connected to the microprocessor 12 in the display unit 7. The wireless communication system 15 in the display unit 7 communicates wirelessly 10 to a second wireless communication system 16 attached to or within the external remote computational system 11. The external remote computational system 11 also accepts input from a video recording source 18. The video recording source or camera 18 may either be directly connected to or a part of the remote computational system 11 to allow for immediate digitization into a file, or the video recording source 18 may be independent and record practice sessions separately and later transfer saved data to the remote computational system 11 or a completely separate computer. If directly connected, the remote computational system 11 will inherently be able to determine which time points from the video recording source 18 correspond to which goals or misses that were recorded by the sensors 4, 5, 6, 14 on the rim 1. If the video recording source 18 is independent, then when the video data is transferred, it must be synchronized to the goal timing received wirelessly 10 from the microprocessor 12. This may be accomplished by assuring that any video time stamps recorded by the video recording source 18 are synchronized with the real time clock within the remote computational system 11. Alternatively, the start of the video recording could occur simultaneously with the pressing of the reset button 9 on the display unit 7 or by soft reset. This ensures that as long as the timing electronics in both the video recording device 18 and the remote computational system 11 are accurate, the amount of time from the start of a session to the time that the ball 33 hits the rim or makes a goal are the same between the video recording device 18 and the microprocessor 12.


In this second embodiment, when the microprocessor 12 wirelessly 10 sends the shot data to the remote computational system 11, it also sends the elapsed time from the beginning of the session, that is, when the reset button 9 is pressed or a soft reset occurred, to the time of each ball detection by either the ball impact sensor 4 or the goal detection sensor 5. Alternatively, the microprocessor 12 and the remote computational system 11 may both have real-time clocks, which only need to be infrequently synchronized, as is commonly practiced. If the video recording is from an unconnected independent video source 18 and the start of the video was not synchronized with the initiation of the session, then a manual synchronization may easily be executed by an operator indicating to the remote computational system 11 when for example the ball in the first shot in the video impacted the rim or backboard by pressing a keyboard key or clicking a mouse or using some other input device at the instant the video indicates there was ball contact with the rim 1 or backboard 2. By synchronizing this or some other single event, the entire video will be synchronized to the timing of all of the goals and misses in the session.


It should be noted that it is not required that the microprocessor 12 accurately keep track of the date and time of day or have a precise real-time clock, as long as it has an accurate internal timer that can measure time from the initiation of a session. When the microprocessor 12 wirelessly 10 transfers data to the remote computational system 11, the remote computational system 11 can associate a particular date and time of day to the elapsed microprocessor time at the instant of data transfer. In this manner, all goals and misses may be associated with an accurate date and time of day and therefore, each shot in a video may be associated with a particular date and time of day.


After data from the microprocessor 12 is collected and associated with a particular date and time of day as well as associated with particular times in video data from a video recording source 18 by the remote computational system 11, the information may be stored on a database 20. In other words, the timing data from the sensors and microprocessor 12 is synchronized with the portion of the electronic video capture that is associated with a goal or miss indicated by the sensor timing data. By using a database 20 that is accessible through a network 19, the data may be shared and viewed by several people using secondary remote computational systems 21. All the above features allow for effective remote monitoring of sessions without the need to be present. For example, if coaches are unavailable to monitor a player practice session in person, they are still able to remotely view the performance of the practice session and monitor a video of each shot through a network 19 on a secondary remote computational system 21.


An important feature of the present invention is that it allows subsequent viewing of video of the practice session in an orderly, indexed manner. There is no need to view a video from beginning to end or to manually search through long stretches to find the precise shot that is desired. The synchronization of the shot goal/miss data to the video allow for a simplified viewing of any shot desired.


Referring now to FIG. 3, a third embodiment of the present invention is illustrated. In this embodiment, the ball impact sensor 4 and the goal detection sensor 5 are both connected directly to the microprocessor 12 and an associated wireless communication system 15. Since this embodiment does not utilize a display unit 7, it may be both more compact and require less power to operate. This allows this third embodiment to be more easily installed onto a rim 1 and net 34 system. In a preferred embodiment, the entire sensor 4, 5, microprocessor 12 and communication system 15 may simply be hung on the net 34. FIG. 4 shows one possible embodiment of a user interface that will allow viewers to index to the video of a desired shot. A line chart 22 is displayed to a user that presents the results for each shot. The chart background is colored for example in green or red columns indicating whether a shot was made (green) or missed (red). The superimposed plotted line shows the cumulative percent of shots that resulted in goals. By using a computer input device, such as a mouse, a touch screen or any other similar device, to indicate which shot is desired, a video snippet of just that shot may be immediately reviewed. This may be repeated for any number of shots. Each snippet may easily be constructed by the remote computational system 11, since internally, it has the video time stamp from the end of the previous shot and the video time stamp for the end of the current shot.



FIG. 5 shows a second possible embodiment of a user interface that will allow viewers to index to the video of a desired shot. A timeline of a large portion or the entire video recording is displayed, with indicators for where shots were taken. By using a computer input device, such as a mouse, a touch screen or any other similar device, to indicate which shot is desired, a video snippet of just that shot may be immediately reviewed as previously described.


The video may either be stored as a single recording or may be broken up into a number of shorter recordings, each of which is associated with a shot as indicated by the sensor data. A software program such as the publically available program, FFMPEG, may be used to create multiple video files from the original video recording using a series of shot start and end times based on the sensor data. The end time for each shot would be close to the time that the sensors detect a miss, a goal or an air ball. The start time for each shot could either be close to the end time of the previous shot or some fixed time before the end time for the current shot. It may also be possible to analyze the video images to determine more precise start and end times using image or sound analysis software.


In addition to reviewing captured video on a shot-by-shot basis, the present invention may also be used to extract highlights of games or practice sessions. For example, if a player executed one or more shots with what he/she deems superior skill, he/she may share the highlights of the one or more shots with others. Similarly, if a player is struggling with his/her form on a particular shot, he/she may share the highlights of that shot with coaches or other experts for advice on how to make improvements.


One embodiment of the database 20 that stores data related to sessions includes the use of multiple tables for indexing the data. In the first table, the session information is stored. This may include: session ID, hardware ID, player name(s), team name, coach name(s), time/date of session, season of session, drill/play name, number of trials, number of goals, percent of goals, notes, voice messages, history of sequential shots status and timing during session (goal or miss), first shot ID to index into shot database and whether video was recorded. In a second table in the database, shot data may be recorded. This may include: shot ID, relative shot time, video file reference(s), notes and voice messages. In the preferred database embodiment, the session table does not include data on the timing, video file reference(s), notes or voice messages for each shot, but uses a first shot ID and the number of trials to allow the system to index into the shot table in the database for the appropriate list of shot-by-shot data. This makes for more efficient storage utilization of the database. Additional tables related to customer/user information, etc. may also be part of the database. One skilled in the art will understand that many variations of database architecture are possible.


Databases tables may have multiple levels of security to restrict access to authorized persons. For example, for data associated with a particular player, access may be restricted to that player and his/her coaches. Access to data related to team sessions may be restricted to players and coaches on that team, but not other teams. Players may opt to share data with other individuals if they wish.



FIG. 6 shows a fourth embodiment of the invention, with a system configuration that allows monitoring of practice sessions remotely from any secondary remote computational system 21 such as a computer, smart phone, electronic tablet, etc., which can have access to the network where the database is stored.


In previously described systems such as Hampton, it is difficult to accurately determine whether a goal was made or whether the ball 33 came close enough to a sensor to falsely indicate a goal was made. The problem is that most of the sensors that have been described are precise enough to know whether the ball 33 passed through the rim or just close by. For a retro-reflective optical system that is configured to sense the reflection of a light beam off the ball 33 surface as it passes through the goal, it is difficult to adjust the sensitivity of such a system so that it can sense balls at different locations across the rim area and balls of different materials, colors and states of cleanliness, yet not sense any balls that fall outside of the bounds of the circular rim.



FIG. 7 shows one embodiment of a goal detection sensor 5 that can more precisely make a determination of a goal. A retro-reflective infrared (IR) optical sensor is utilized, which includes a modulated IR light emitting diode (LED) emitter 30 such as a Vishay TSAL6400, a highly reflective tape or other material 32 on the inside diameter of the rim 1 or net 34 and IR-sensitive photodiode 31 such as a Vishay TSOP4838 or similar detector mounted adjacent to the LED emitter 30. In this embodiment, rather than sensing the reflection of the IR beam off the ball 33, the sensor is desensitized, so that reflection off the ball 33 does not generate a signal sufficiently bright to be detected by the photodiode 31. Although a desensitized IR detection system that can more precisely detect a goal may at first seem counterintuitive, when a highly reflective tape 32, such as 3M Scotchlite, is mounted on the inner surface of the distal portion of the rim 1 or net 34, a sufficient reflective signal may be generated and sensed by the photodiode 31, even when it is desensitized to ball 33 reflection. The reflective tape 32 utilizes micro prismatic corner cube technology that does not reflect light in a disperse pattern, but rather in a highly directional fashion, wherein light rays are precisely returned from the direction from which they came. Thus, as long as the photodiode detector 31 is located very close to the LED 30, a sufficiently large fraction of emitted light will be returned to the sensor 31. Because the tape 32 is able to reflect light rays from the same direction they impinge, the sensor 31 receives bright signals from across the entire length and width of tape, relatively independent of the light incident angle to the tape 32. Since the ball 33 is used to block the light returning from the highly reflective tape 32, the system is less sensitive to the optical properties of the ball 33 compared to a system that senses reflection from the ball 33. The present invention is less sensitive to both ball variations and false detection of balls outside the bounds of the rim 1 and thus can measure goals more reliably.



FIG. 8 shows another embodiment of the goal detection sensor 5, the LED 30 and photodiode detector 31 are located at the distal side of the rim 1, away from the backboard 2 and the reflective tape or other material 32 is attached to the rim 1, rim support gusset 35 or the net 34. Generally, there is not a requirement for the reflective material to be inside the net 34, since there is sufficient reflective surface area that is visible by the detector around the net strings. This configuration has the advantage of using a relatively large reflective area of the rim support gusset 35 at the proximal side of the rim that is less distracting to a player than a similarly sized reflective area on the distal side of the rim.



FIGS. 10, 11, 12 and 13 show a third embodiment of the goal detection sensor 5, wherein a sensing element such as an angle or tilt type switch, for example those from Sunhokey Electronics in Shenzhen, Guangdong, China utilizing either mercury or a rolling ball to complete a circuit, or an accelerometer is utilized. In this embodiment, a housing 43 that contains said goal detection sensing element is attached to the net 34 and has an arm 41 extending from it. The arm 41 may be in the shape of a hollow loop, a tongue, or any other appendage that will reliably be struck by a ball 33 passing through the net 34. Said arm 41 is positioned so as to extend out from the sensor housing 43 towards the center of the net 34. The housing 43 also preferably contains a ball impact sensor 4 with sufficient sensitivity to measure impact vibrations through the net, much like a spider might sense high-frequency vibrations through his/her web. It should be noted that the strings of the net 34 act as a mechanical low-pass filter, significantly reducing the magnitude of any high-frequency vibrations from a ball impact against the backboard 2 or rim 1. Thus, no other systems described in the art attempt to measure impact vibrations through the net. However, if significant care is taken in selecting a sufficiently sensitive vibration sensing element 4, which can measure such ball impacts while coupled only to the net 34, then a more unified, compact, solid state, and reliable basketball performance monitoring system may be constructed with all sensing, microprocessor, housing, and geometric features within one easy-to-install, rigid part. As a ball 33 that successfully passed through the rim 1 enters the net 34, it will collide with the arm 41 and push it down, levering the entire sensor housing 43 and changing its angle as the ball 33 continues its downward path through the net 34. This change of angle of the sensor housing 43 relative to the direction of the force of gravity is sensed by the tilt-sensing goal detection sensor 5, which indicates a made shot. In a preferred embodiment, the arm 41 inside the net 34 is counterweighted by the housing 43 outside the net, although the housing may also be facing the inside of the net. Either the flexible net 34 or a rotating mechanical pivot may be utilized to hold the housing and arm approximately horizontally and allow it to tilt when activated. A net reference appendage, hook or arm 42, which is attached to the housing 43 may be utilized to restore the horizontal position of the arm 41 and housing 43 by relying on the physical position of the net 34 or rim 1 as a reference. The net reference arm 42 may extend either downward or upward and either lie against the net 34 or rim 1, hook over a portion of the net 34 or be fastened to the net 34. In order to restore the arm 41 and housing 43 to its original approximately horizontal position, the net reference arm 42 may rely on gravity and the compliance provided by the net 34 as shown in FIGS. 14 and 15, or an additional spring pivot attaching the net 34 or rim 1 to the sensor housing 43.



FIG. 12 shows the details of a molded version of the third embodiment of the goal detection sensor 5 with an integrated ball impact sensor 4. In FIG. 12, the housing cover 44 is depicted as transparent so that the battery 46 and circuit board 45 onto which the goal detection tilt switch sensor 5 and the vibration based ball impact sensor 4 are mounted. The circuit board 45 may also include a microprocessor 12, a wireless communications device 15, power regulation circuitry and display hardware 8, such as LEDs. In a third embodiment illustrated in FIG. 12, the net reference appendage 42 is of the form of a hook that is secured over a loop in the net 34. This allows the entire package 40 to hang inside the net 34, with the housing 43 extending through to the outside of the net 34 to the back of the net 34 and the loop arm 41 extending towards the centerline of the net 34. It is important to select a sufficiently sensitive vibration sensor to serve as the ball impact sensor 4 that can reliably sense vibrations caused by ball 33 impacts anywhere on the rim 1 or backboard 2. One example highly sensitive vibration sensor is a double metal ball switch such as model BL600 from Bailin Electronics in Dongguan City, China. For this type of sensor, the change in contact state from closed to open happens very quickly in just a few milliseconds and with very little vibration energy. To sense the change of state of the sensor, the output of the sensor may be connected to an input pin of the microprocessor 12, which can trigger an interrupt within the microprocessor 12 to register the vibration. An interrupt is commonly used in computer control systems to trigger a piece of code called an interrupt service routine based on some event, either external to the microprocessor 12 or internal. In one embodiment, the microprocessor 12 keeps a count of the number of such interrupts within a short timeframe, say 100 milliseconds. At the end of the timeframe, the number of times that the interrupt was called is an indication of the strength of the vibration. For example, if the interrupt was called only once, then there might have been just a small amount of vibrating noise that should not be counted as a ball impact; however, if it was called say 5 times or more, then it may be reliably assumed that a ball impact occurred.



FIG. 18 illustrates an example software program that runs on the microprocessor 12. The program has a main program loop and two interrupt service routines (ISR1 and ISR2), which are triggered to execute by one or more of the sensors. In this example embodiment, the function of the program is to maintain counts of shots attempted (shot count) and goals made (goal count). In this example, the two interrupt service routines are triggered by a ball impact sensor 4, which is of a type that senses vibration through the making and breaking of an electrical contact one or more times, as described elsewhere. The main program loop is designed to execute when there is activity at the basketball system, but put the microprocessor 12 into a low-power sleep mode when a predetermined idle time has been exceeded. Idle time is the time frame over which no activity from any sensor has been detected. The function of ISR1 is to simply wake the microprocessor 12 from its sleep mode and start running the main loop portion of the program when a transition edge from low to high (or high to low) from the ball impact sensor 4 is seen. Once the microprocessor 12 is awakened, the first thing it does is to switch the interrupt service routine from ISR1 to ISR2. ISR2 increments a vibration count (VC) each time it is triggered. If the count is zero, this means it is the first time ISR2 has been called since the last time a count was completed and reset. Referring back to the main program loop, as long as the idle time has not been exceeded, the goal detection sensor 5 is checked to see if a goal has occurred. If so, both the shot count and the goal count are incremented and the idle time and vibration count VC are reset to 0. If not, then sampling time over which vibrations are counted is check to see if it has reached a preset threshold, if not, the program returns to the beginning of the loop. If it has, then ISR2 is disabled so that the count does not change until it is re-enabled and the magnitude of the vibration count, VC, is checked to see if it exceeded a threshold number. If not, then the detected vibration is deemed to be spurious and VC is reset to 0, ISR2 is re-enabled and the program returns to the beginning of the main loop. If VC does exceed the preset threshold, then a vibration is deemed to be a ball impact and the shot count in incremented. After a ball impact, the program waits a period of time, say two seconds, to allow the ball a chance to bounce around the backboard 2 and rim 1 and either pass through the rim 1 or not. If after the wait time, no goal is detected by the goal detection sensor 5, the vibration count VC is reset to 0, ISR2 is re-enabled and the program returns to the beginning of the main loop. If a goal is detected, then the goal count is incremented before the vibration count VC is reset to 0, ISR2 is re-enabled and the program returns to the beginning of the main loop. Once the idle time is exceeded beyond a preset limit, then the program disables ISR2, enables ISR1, and then puts the microprocessor 12 into a sleep mode.



FIG. 13 illustrates how the a molded version of the main housing of the third embodiment of the goal detection sensor 5 may be designed so that a relatively simple two-part mold is used to simultaneously form the loop arm 41, the housing 43 and the net reference hook reference appendage 42 from a moldable plastic material. In FIG. 13, the cover to the housing is not shown. In this design, the hook reference appendage 42 is designed in approximately the same plane as the housing 43 and the loop arm 41 allowing for a simpler molding process and a relatively flat unit for ease of packaging. A living hinge is designed into the base of the hook reference appendage 42, where it meets the housing 43, allowing the appendage 42 to be bent upwards out of plane at close to a right angle and then snapped securely into place by securing features 47, so that it remains in this configuration, as shown in FIG. 12.


In a preferred embodiment of the performance monitoring system, the microprocessor 12, wireless communication system 15, ball impact sensor 4 and goal detection sensor 5 are all housed in a single sensor housing 43 along with a battery 46. By selecting an appropriate low-power ball impact sensor 4 and goal detection sensor 5, such as dry contact sensors, and programming the microprocessor 12 to go into low-power sleep mode when there is no activity, the portion of the system that is deployed near the rim 1 or net 34 for shot detection may be completely sealed from the elements and not require a change of battery, charging or other type of frequent manual attention. This allows a very low cost, low-maintenance system to be deployed, sealed against the weather and not taken down from the rim 1 or net 34 for many years.


Optionally, the remote portable computational device 11 may be mounted in a location that is clearly visible from the basketball court, such as on the backboard or backboard mounting pole, so that players are able to easily see the data displays from the court. Alternatively, the remote portable computational device 11 may be wearable, such as a watch or arm band, glasses, etc. Another embodiment would include multiple computational devices worn by multiple players. Portable remote computational devices 11 that are fitted with cameras 18 may also be used to record still or video images of players. These images may be used to either document individual players or teams during a shot or a play leading to a shot, or they may be used to track players during play.


If a rolling ball tilt switch type of sensor, for example from Sunhokey Electronics in Shenzhen, Guangdong, China, is utilized as the goal detection sensor 5, it may also be possible to use this same sensor as the ball impact sensor 4, as this type of sensor can measure both vibration and tilt angle. In this case, short contact/break cycles in the switch would signal a vibration and therefore a ball impact, while a more prolonged contact or break would signal a tilt and the detection of a goal.


In one embodiment, the ball impact sensor 4 may be comprised of multiple sensing elements that can localize the impact point. For example, one or more multi-dimensional accelerometers may be used to determine from what direction the initial impact occurs on a rim 1 or backboard 2 and a microprocessor 12 may record that location for feedback to the player or for archiving and analysis purposes. Different sensing modalities may be used, such as machine vision, multiple vibration sensors, accelerometers, strain sensors, pressure sensors, acoustic sensors, etc.


The present invention may be combined with other data capture technologies to provide for a richer analysis of practice sessions and games. For example, individual-player-tracking technologies can record player positions and motions while the present invention records shot results. Instrumented basketballs may be used to record arc shapes, ball spin, ball speeds, etc. and the present invention can relate these parameters to shot results. This enhanced data may provide more valuable feedback to players and coaches to further improve skills.


The present invention allows users to improve their skills through the use of a performance monitoring system. Having a reliable metric of performance that may be tracked through time is widely used in many fields from sports to business to help improve skills. The invention is flexible, as it may be used for many different types of shots including jump shots, free throws, 3-point shots, layups, etc.


The present invention may also be used to keep track of scoring during a conventional basketball game or during any number of non-conventional recreational basketball games such as those known colloquially as: H-O-R-S-E, 21, Fives, Around the World and Lightening. For example, in the popular game of H-O-R-S-E, players take turns trying to make a goal by shooting from a similar location to that of a player that made a goal on his/her most recent turn. By inputting the number of players into the remote computational system 11 at the beginning of the game, the present invention may cycle through the players and keep a record as to whether their attempt was successful or not and display the associated score for each player, including identification of the winner.


For embodiments of the current invention that include a camera system 18, still images or videos generated from the camera 18 may be used to identify players that are participating at any particular time, so that scoring or other activity may be attributed to the appropriate player or team. Image analysis of each player may include identification of particular colors of clothing, skin, glasses, facial characteristics, jersey numbers or graphics on clothing. Such image analysis may also track activities of one team versus another based on team uniform characteristics. Player identification may also be accomplished through RF identification tags, wireless beacons, etc. Embodiments capable of identifying which player shoots the ball may be used in more complex game or practice situations where multiple players are located near the goal and it would otherwise be difficult to identify the player that shot the ball.


In another embodiment of the current invention, players 50 at remote locations may jointly play basketball games with one another. As shown in FIG. 16, one or more microprocessors 12 connected to one or more sensors in the vicinity of the rim 1 can track whether shots were a miss or a goal. This may be communicated wirelessly 10 to a remote mobile computational system 11, which in turn can relay the data through a wireless or cellular system 51 to a network 19 such as the internet. The communicated data may be captured and communicated to remote one or more players 50, who have similar systems at remote basketball courts. If the remote computational systems 11 include input from a camera system 18, images or video may also be shared between remote players 50. With this networked configuration, non-conventional recreational games may be played between non-collocated players 50. The capture of video of a particular basketball shot from a camera 18 at one location and viewing, either real-time live streaming or delayed, of the video at another location enables the play of non-conventional recreational games such as H-O-R-S-E. Without such shared video, verbal descriptions of the shot would make the game overly cumbersome. This enables remote players 50 to attempt to reproduce shots in order to earn points in the game or whatever the objective of the game might be.


When using a remote computational system 11 that is a mobile device, such as a smart phone, a tablet or similar device, in a game with non-collocated players, it may be convenient to locate the remote computational system 11 on, near or behind the backboard 2 or pole 3, as shown in FIG. 17. This easily allows each player to monitor the current score as well as shots from the other players. Preferably, the remote computational system 11 would be attached by a holder 49 that has some compliance and can protect the device 11 in case the ball 33 impacts it. In addition, devices 11 that are mounted to the pole 3 or backboard 2 and outfitted with cameras 18 and the appropriate custom app (software) can record and send video or still imagery of a player to the other non-collocated players, as the devices are positioned in an ideal location to record much or all of the action that a player may want to transmit. Thus, the only requirements to play games with non-collocated players is a performance monitoring system, as described herein, a camera-integrated mobile computational device 11 running the appropriate app, a holder 49 that positions the device on, near or behind the backboard 2 or pole 3 and an internet connection.


As can be seen from the foregoing description, the present invention provides a means for monitoring skills training in order to optimize performance and improve skills. The present invention automatically tracks and reports success of making goals and allows for simple review of video snippets synchronized to each shot and furthermore provides a reliable sensing technology for measuring goals.


There has been provided a basketball performance monitoring system. While the basketball performance monitoring system has been described in the context of specific embodiments thereof, other unforeseen alternatives, modifications, and variations may become apparent to those skilled in the art having read the foregoing description. Accordingly, it is intended to embrace those alternatives, modifications, and variations which fall within the broad scope of the appended claims.

Claims
  • 1-7. (canceled)
  • 8. A basketball performance monitoring system comprising: at least one sensor proximate a basketball goal, said basketball goal having a backboard, a rim coupled to said backboard, and a net having strings coupled to said rim;said at least one sensor configured to determine shot information, said shot information comprising both an impact of said basketball with at least one of said backboard and said rim, and a shot passing through the rim;a local microprocessor coupled to said at least one sensor;a housing containing both said at least one sensor and said local microprocessor;a remote computational system including a display in communication with said local microprocessor, wherein said local microprocessor transmits said shot information from said at least one of sensor to said remote computational system,wherein said housing is securely connected to said net by trapping the strings of the net and said at least one sensor is configured to measure a vibration from said net responsive to said impact of said basketball with at least one of said backboard and said rim in the absence of said basketball touching said net.
  • 9. The system according to claim 8, wherein said monitoring system is configured to determine if said basketball passed through said rim within a predetermined time of said impact; and maintains a count of made and missed shots taken at the goal.
  • 10. The system according to claim 8, wherein said display is configured to visually indicate the percentage of successful shots.
  • 11. The system according to claim 8, further comprising an additional display coupled to said remote computational system; wherein said additional display is configured to remotely display said shot information.
  • 12. The system according to claim 8, wherein said remote computational system is configured to store said shot information related to a session.
  • 13. (canceled) .
  • 14. A method for monitoring basketball performance comprising: sensing a basketball shot attempt by a player;detecting at least one of a completed goal or a missed goal;recording a time of each basketball shot;recording a visual image of said shot;reporting said sensing of said shot and detecting said completed goal and missed goal;synchronizing said recording of said visual image of said shot with said sensing of said shot, and said detecting of said completed goal and missed goal.
  • 15. The method of claim 14, further comprising: detecting a ball impact on at least one of a basketball rim, a basketball backboard and a basketball net; anddetecting said ball passing through said rim.
  • 16. The method of claim 15, wherein said detecting said ball passing through said rim comprises sensing with a sensor comprising a housing including an arm extendable inside said net and a motion sensor mounted within said housing, wherein said basketball passing over said arm triggers said motion sensor to sense an angular orientation.
  • 17. The method of claim 14, wherein said detecting a ball impact on at least one of a basketball rim, a basketball backboard and a basketball net utilizes a ball impact sensor.
  • 18. The method of claim 14, wherein said steps of recording a time of each basketball shot; recording a visual image of said shot; reporting step and detecting said completed goal and missed goal; and synchronizing step utilizes a local microprocessor coupled to an array of sensors; a remote computational system in communication with said local microprocessor, wherein said local microprocessor transmits said information from said array of sensors to at least one of said remote computational system.
  • 19. The method of claim 14, wherein said synchronizing step includes associating a timing of said recording of said visual image with each said shot attempt, and each completed goal and each missed goal with a portion of said recording of said visual image.
  • 20. The method of claim 14, further comprising; networking at least two basketball performance monitoring systems remotely located proximate a first basketball goal and a second basketball goal;sensing a first basketball shot attempt by a player proximate a first basketball goal;detecting at least one of a completed goal or a missed goal for said first basketball goal;recording a time of each basketball shot of said first basketball goal;recording a visual image of said shot of said first basketball goal;reporting said sensing said shot and detecting said completed goal and missed goal of said first basketball goal;sensing a first basketball shot attempt by another player proximate a second basketball goal;detecting at least one of a completed goal or a missed goal for said second basketball goal;recording a time of each basketball shot of said second basketball goal;recording a visual image of said shot of said second basketball goal;reporting said sensing said shot and detecting said completed goal and missed goal of said second basketball goal;displaying results of said first basketball player on at least one display coupled to said at least two basketball performance monitoring systems;displaying results of said second basketball player on said at least one display coupled to said at least two basketball performance monitoring systems.
  • 21. The system according to claim 8, wherein said housing is rigidly connected to an arm extendable into a center of the net.
  • 22. The system according to claim 21, wherein said housing, said local microprocessor, said at least one sensor and said arm are rigidly fixed relative to one another.
  • 23. The system according to claim 9, wherein said predetermined time is utilized to determine if a shot resulting in a goal was a swish or a non-swish goal.
  • 24. The system according to claim 8, wherein at a least one of said at least one sensor is a digital-switch-type vibration sensor that draws no external power when not activated.
  • 25. The system according to claim 24, wherein an activation of said vibration sensor is used to wake said local microprocessor from a sleep mode.
CROSS REFERENCE TO RELATED APPLICATION

This application is a divisional of U.S. patent application Ser. No. 14/662,419, filed Mar. 19, 2015, which claims the benefit of provisional application Ser. No 61/955,856, filed Mar. 20, 2014.

Provisional Applications (1)
Number Date Country
61955856 Mar 2014 US
Divisions (1)
Number Date Country
Parent 14662419 Mar 2015 US
Child 16580689 US