The present invention relates generally to a plant stalk decortication system and method for stripping, removing, recovering, and sorting plant fiber and woody core from the vascular tissue of plant stalks.
Certain dicotyledonous plants, including examples such as hemp (Cannabis stiva), jute (Corchorus sp.), and kenaf (Hibiscus cannabinus), have woody stalks containing two main types of fiber useful for processing into various cellulosic products including, but not limited to, textiles, twine, rope, cordage, yarns, sorbents, pet bedding, and other similar products. These fiber types are longer fibrovascular bundle phloem fibers (“bast”) located between the epidermis and inner woody core and short fibers contained in the core or stem of the plant (“hurd”). Phloem fibers are constituted from bundles of tube-like cell walls of various layers that may be much longer than the wood fibers. Phloem fibers also have higher crystalline cellulosic content, which makes them desirable for industrial processes.
These fibers may be produced through biochemical processes, including retting and enzymatic treatment, which results in an overall degradation and loss of hemicellulose, pectin, and lignin of the short hurd fiber making it less desirable for some uses. Fibers may also be produced through manual or mechanical decortication causing the release of fiber bundles. Decortication processes typically comprise a series of unit operations performed on one or more dicotyledonous plant stalks by various mechanical apparatus for primary recovery of the fibers through destruction of the stem or plant part containing the fiber. Such operations generally include: breaking, decortication, and cleaning. Primary separation of the bast from the hurd is typically done by a series of mechanical operations through imposing stress on the plant stalk through squeezing and breaking. Stresses imposed on the fiber through this process create conditions that may lead to breaking of fiber, low yield due to misalignment of the fiber in the apparatus, hurd contamination, and inefficient separation of the phloem.
Normal stress critical to the breaking operation must be applied so as to compress the stalks, thereby creating fissures along the major axis in order to break, crush, and divide the stalk into longitudinal sections, and then, just prior to stretching, breaking each section along a plane perpendicular to the major axis in alignment with and along the major axis of the stalk. These breaking, crushing, and stretching operations must not be done with excessive force that would prevent subsequent shear forces from separating the bast from the woody stalk material. Such mechanical actions by various apparatus for this purpose generally do so through the use of a plurality of corrugated rollers, beaters, shredders, and rubbing devices opposing or along the flow of stalks through the apparatus.
Critical to the operation is proper application of stress on a plurality of stalks being processed through an apparatus for the purpose of aligning and separating stalk bundles to create uniform feed through the apparatus, thereby allowing for uniform application of stress along planes parallel and perpendicular to the major axis of the stalks so as to produce uniform fracturing along both the longitudinal and transverse axis of the plant stalks. Known systems and method of plant stalk decortication generally do not achieve these objectives in an efficient manner.
Accordingly, a need exists in the art for an improved device, system, and method for decortication of plant stalks.
In one aspect, a plant stalk decortication apparatus is provided. The apparatus comprises a plant stalk alignment system that longitudinally aligns the stalks with an axis of a bed as the system conveys the stalks along the bed. The alignment system comprises a plurality of rotating spindles disposed horizontally over the horizontal bed, which is preferably a fixed bed. Each spindle extends transversely across the bed in a direction perpendicular to the axis of the bed, which is parallel to a direction of conveyance of the plant stalks along the bed. Each spindle has a plurality of radially extending blades attached to the spindle in a spaced relation along a length of the spindle. Each blade is preferably a circular blade having a plurality of teeth disposed around an outer perimeter of the blade. The plurality of spindles are arranged along the direction of conveyance so that the blades of each spindle are intermeshed with the blades of adjacent spindles. Thus, the blades of one spindle fit within the spaces between the blades of the adjacent spindles. There is a nominal clearance between the bed and the lowermost edge of each of the blades. All of the spindles rotate simultaneously in the same direction with each of the blades attached to the spindles rotating parallel to the direction of conveyance of the plant stalks on the bed. Because of the intermeshing arrangement of the plurality of parallel rotating blades, the plant stalks automatically become longitudinally aligned with the blades and thus with the axis of the bed. The intermeshing blade arrangement also prevents the plant stalks from being lifted off of the bed by the rotating blades. The continuous rotation of the blades causes all of the stalks to become longitudinally aligned on the bed parallel to the axis of the bed as the rotating blades convey the stalks downstream to other components of the apparatus for applying stress to the stalks for decortication. In a preferred embodiment, the alignment system is configured such that the relative speed of rotation of downstream spindles is faster than the speed of rotation of upstream spindles relative to the direction of conveyance of the plant stalks on the bed so that the speed of rotation of successive spindles increases as the plant stalks move along the direction of conveyance on the bed, which aids in conveying the stalks along the bed. By aligning the stalks on the feed bed, the system creates a uniform feed stream of plant stalks through the apparatus, which allows for uniform application of stress along planes both parallel and perpendicular to a longitudinal axis of each stalk so as to produce uniform fracturing along both the longitudinal and transverse axis of each plant stalk.
In a preferred embodiment, the apparatus further comprises a pair of rotating opposing crushing rollers downstream of the plurality of spindles and a pair of rotating opposing breakers downstream of the rollers. The rollers are each disposed in a position transverse to the bed and are operatively connected to a motor configured to drive rotation of the opposing rollers in opposite directions. The breakers are also disposed in a position transverse to the bed. Each breaker comprises a plurality of spaced blades each attached to a rod. The blades extend longitudinally along the length of the rod and radially outward from the rod around the circumference of the rod. Each breaker is also operatively connected to a motor configured to drive rotation of the opposing breakers in opposite directions. The opposing breakers are spaced so that the blades of the breakers continuously intermesh with each other as the breakers rotate in opposite directions.
The rotating blades of the alignment system convey the plant stalks to the crushing rollers, which then convey the stalks to the breakers. The stalks are crushed by the rollers as they pass between the opposing rollers, which applies stress to the stalks to help separate the bast fiber from the woody hurd material. The stalks then pass between the breakers. As the stalks move between the opposing breakers, the longitudinal intermeshing blades on the breakers break the hurd portion of the plant stalks into shorter lengths.
In a preferred embodiment, the apparatus further comprises a suction chamber fluidly connected to an outlet of the opposing breakers. A fan may then be used to suck the bast fibers of the stalks into the suction chamber as the hurd chips are discharged downward from the breakers, thereby separating the bast from the hurd. Thus, in a preferred embodiment, the plant stalk decortication apparatus comprises components that perform a series of operations on a plurality of plant stalks, such as dicotyledonous plants, in order to effectively and efficiently separate and sort phloem fibers (bast) and inner woody core and short fibers contained in the core or stem of the plant (hurd). These components may perform operations on the plant stalks in series as the stalks are conveyed through the apparatus.
The apparatus produces longitudinal alignment of plant stalks as the stalks are conveyed along the bed by the rotating spindles and blades such that forces applied through subsequent action by the crushing rollers and the breakers is performed first longitudinally along the length each of the stalks and subsequently perpendicularly to the longitudinal axis of the stalks. The apparatus may also align and distribute woody stalks within the apparatus such that pressure applied through the use of rollers is distributed along a horizontal plane so as to create uniform stresses within the stalk sufficient for breaking the inner woody core into uniform chips or particles, which may then be separated from the bast fiber. The apparatus may further provide both mechanical and pneumatic action of physically separating and recovering both the hurd and bast fiber into separate streams after deconstruction of the plant stalks.
It should be understood that the summary above is provided to introduce in simplified form a selection of concepts that are further described in the detailed description. It is not meant to identify key or essential features of the claimed subject matter, the scope of which is defined uniquely by the claims that follow the detailed description. Furthermore, the claimed subject matter is not limited to implementations that solve any disadvantages noted above or in any part of this disclosure.
These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
In the Summary above and in this Detailed Description, and the claims below, and in the accompanying drawings, reference is made to particular features, including method steps, of the invention. It is to be understood that the disclosure of the invention in this specification includes all possible combinations of such particular features. For example, where a particular feature is disclosed in the context of a particular aspect or embodiment of the invention, or a particular claim, that feature can also be used, to the extent possible, in combination with/or in the context of other particular aspects of the embodiments of the invention, and in the invention generally.
The term “comprises” and grammatical equivalents thereof are used herein to mean that other components, ingredients, steps, etc. are optionally present. For example, an article “comprising” components A, B, and C can contain only components A, B, and C, or can contain not only components A, B, and C, but also one or more other components.
Where reference is made herein to a method comprising two or more defined steps, the defined steps can be carried out in any order or simultaneously (except where the context excludes that possibility), and the method can include one or more other steps which are carried out before any of the defined steps, between two of the defined steps, or after all the defined steps (except where the context excludes that possibility).
In one aspect, as shown in
As shown in
All of the spindles 26 rotate simultaneously in the same direction with each of the blades 28 attached to the spindles 26 rotating parallel to the direction 25 of conveyance of the plant stalks on the bed 22. Because of the intermeshing arrangement of the plurality of parallel rotating blades 28, the plant stalks automatically become longitudinally aligned with the blades 28 and thus with the axis 24 of the bed 22. As best seen in
Each spindle 26 is operatively connected to a motor 32 configured to drive rotation of the spindle 26. Each of the spindles 26 rotates simultaneously in the same direction during normal operation of the apparatus 10. In a preferred embodiment, as shown in
In a preferred embodiment, as best seen in
In a preferred embodiment, as best seen in
In a preferred embodiment, the apparatus 10 further comprises a roller assembly 14 downstream of the alignment system 12 and a breaker assembly 16 downstream of the roller assembly 14, as shown in
The rollers 40 are each disposed in a position transverse to the bed 22, as best seen in
The breakers 50 are also disposed in a position transverse to the bed 22. Each breaker 50 comprises a plurality of spaced blades 54 each attached to a rod 52. These blades 54 are preferably blunted blades, as these blades are used for breaking rather than cutting the hurd material. The blades 54 extend longitudinally along the length of the rod 52 and radially outward from the rod 52 around the circumference of the rod. The opposing breakers 50 are spaced so that the blades 54 of the breakers 50 continuously intermesh with each other as the breakers 50 rotate in opposite directions, as best illustrated in
In a preferred embodiment, as best seen in
To use the apparatus 10, plant stalks are first loaded onto the bed 22 and fed into the intermeshing rotating blades 28 of the alignment system 12. The forward facing teeth 38 of the rotating blades 28 on the first spindle 26A pull the stalks into the alignment system 12. All of the rotating blades 28 on the spindles 26 work in concert to longitudinally align the plant stalks parallel to the axis 24 of the bed 22 and convey the stalks along the bed 22 to the crushing rollers 40. Thus, when the stalks are fed between the rollers 40, the longitudinal axis of each stalk is perpendicular to the rollers 40. The teeth 38 of the rotating blades 28 also compress and score the stalks as the stalks are conveyed. The configuration of the teeth 38 of blades 28A and 28B on spindles 26A and 26B allow these blades to function primarily in scoring the stalks. The teeth 38 of these blades 28A, 28B form initial fractures longitudinally along the length of the stalks. This cutting process also commences alignment of the stalks. As the stalks pass under the rotating teeth of each blade, the cutting action causes initial transverse compression fractures to form in the woody core, which forms initial perpendicular breakage planes for hurd chip formation.
The rotating blades 28 rotate parallel to the axis 24 and perpendicular to the upper surface of the bed 22, which also creates a combing action by the teeth 38 on the stalks being conveyed along the bed 22. The configuration of the rearward facing teeth 38 of blades 28C and 28D on spindles 26C, 26D, and 26E allow these blades to function primarily in combing the stalks, which aids in stretching the stalks and beginning to separate the bast fibers. Through the use of progressively faster rotating spindles 26 along the bed 22 of the apparatus 10, the plant stalks are aligned with the axis 24 of the bed 22 and also stretched and separated such that the stalks are both aligned and uniformly distributed along the bed 22 of the apparatus. A uniform feed of longitudinally aligned plant stalks to the downstream rollers 40 and breakers 50 increases the efficiency of the decortication process. The uniform action of the intermeshing rotating blades 28 also provides an initial application of force to the stalks to begin separating the fibers and breaking the woody core into sections longitudinally.
The rotating blades 28 convey the stalks to the crushing rollers 40, and the rollers 40 crush the stalks as the stalks pass perpendicularly between the opposing rollers 40, which applies stress to the stalks to help further separate the bast fiber from the woody hurd material. The rollers 40 create sufficient shear force for stretching and stripping the plant stalks, thereby causing the bast fiber and hurd to separate. Pressure applied by the rollers 40 is distributed along a horizontal plane so as to create uniform stresses within each of the stalks. The rotating rollers 40 then convey the plant stalks between the opposing breakers 50. The guide roller 44 is preferably utilized to guide the stalks between the breakers 50. The breakers 50 rotate simultaneously in opposite directions, thereby causing the crushed plant stalks to pass between the breakers 50 so that the longitudinal intermeshing blades 54 on the breakers 50 break the hurd portion of the plant stalks into shorter lengths. The blades 54 of the breakers 50 flex the bast fibers and apply force transverse to the longitudinal axis of the stalks that is sufficient to break the inner woody hurd material into uniform chips or particles that can be separated from the bast fiber. The bast fiber temporarily wraps around the breakers 50 while the heavier hurd material drops downward below the breakers 50. As best shown in
It will be appreciated that the configurations and methods shown and described herein are illustrative only, and that these specific examples are not to be considered in a limiting sense, because numerous variations are possible. The subject matter of the present disclosure includes all novel and non-obvious combinations and sub-combinations of the various systems and configurations, and other features, functions, and/or properties disclosed herein. It is understood that versions of the invention may come in different forms and embodiments. Additionally, it is understood that one of skill in the art would appreciate these various forms and embodiments as falling within the scope of the invention as disclosed herein.
This application claims the benefit of U.S. Provisional Application No. 62/927,018, filed on Oct. 28, 2019, which application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1200615 | Hubler | Oct 1916 | A |
1268975 | Hubler | Jun 1918 | A |
1299946 | Hubler | Apr 1919 | A |
1964633 | Haynes | Jun 1934 | A |
1973583 | Stone | Sep 1934 | A |
1981575 | Jeffrey | Nov 1934 | A |
2197683 | Burkardt | Apr 1940 | A |
2222793 | Burkardt | Nov 1940 | A |
2233753 | Burkardt | Mar 1941 | A |
2263591 | Patterson | Nov 1941 | A |
2264236 | Bokum | Nov 1941 | A |
2288652 | Simons | Jul 1942 | A |
2341290 | Reeves | Feb 1944 | A |
2402634 | Kaiser | Jun 1946 | A |
2404457 | Reeves | Jul 1946 | A |
2460448 | Cook | Feb 1949 | A |
2576406 | Mccrae | Nov 1951 | A |
3872545 | Heino | Mar 1975 | A |
4241474 | Doutre | Dec 1980 | A |
5447238 | Aldridge | Sep 1995 | A |
5447276 | Aldridge | Sep 1995 | A |
5507073 | Aldridge | Apr 1996 | A |
5507074 | Chen | Apr 1996 | A |
5906030 | Leduc | May 1999 | A |
6079647 | Leduc | Jun 2000 | A |
6357083 | Stratton | Mar 2002 | B1 |
7152610 | Csavas | Dec 2006 | B2 |
9080257 | Lupien | Jul 2015 | B2 |
20070044890 | Sherwood | Mar 2007 | A1 |
20130167327 | Lupien | Jul 2013 | A1 |
20130276998 | Park | Oct 2013 | A1 |
20180103591 | Jin | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
122769 | Oct 1984 | EP |
1007525 | May 1952 | FR |
249196 | Mar 1926 | GB |
Number | Date | Country | |
---|---|---|---|
62927018 | Oct 2019 | US |