Generally, the performance of a bat is related to the efficiency with which the bat can impart force to a ball upon impact. Bat manufacturers often evaluate a bat's coefficient of restitution (COR) to measure its performance. Previously, bat manufacturers typically sought to improve the performance of bats to achieve an increased COR. Today, however, bat manufacturers are typically concerned with manufacturing bats that provide the greatest performance possible but without exceeding maximum performance metrics of various leagues and other organized forms of play.
Generally, increased deformation experienced by a bat upon impact with a ball corresponds to an increased COR of the bat. Some existing bat designs aim to prevent a bat from exceeding an imposed COR limit by limiting deformation of the bat upon impact of the bat with a ball. For example, U.S. Pat. No. 8,632,428 to Burger describes a bat that includes a central tube positioned coaxially within the barrel and one or more rigid, “washer-shaped” restriction members to limit the deformation of the bat upon impact with a ball. The washer-shaped restriction members have an outer diameter that is less than the inner diameter of the barrel, such that the barrel is able to deform until the inner wall of the barrel contacts the washer-shaped restriction members. By controlling the amount of possible deformation, it is thus possible to control the amount of deformation experienced by a bat at impact, and thus, limit the maximum COR provided by the bat.
While such a design may sufficiently limit the maximum COR provided by a bat, the bat's performance at lower impact forces may be unnecessarily reduced. That is, at lower forces (e.g., lower swing speed or lower ball speed), deformation of the bat does not need to be limited to prevent the bat from exceeding the maximum COR limit, but the high rigidity and incompressibility of a washer-shaped restriction member would likely prevent deformation of the bat's barrel even at lower forces such that performance of the bat at the lower forces is unnecessarily reduced. More particularly, such a bat may perform substantially differently within three ranges of ball speed. At low speed impacts (e.g., a low speed range), only the barrel may flex. At higher speeds (e.g., a medium speed range), a single side of the barrel (e.g., the portion of the barrel impacting the ball) may engage the washer-shaped restriction member, and at still higher speeds (e.g., a high speed range), two sides of the barrel (e.g., the portion of the barrel impacting the ball and the portion of the barrel directly opposite the impact location) may engage the washer-shaped restriction member. For impacts in the high speed range, the incompressible nature of the washer-shaped restriction member may prevent flex of the washer-shaped restriction member and of the barrel system, as a whole, which can be detrimental to bat performance, particularly at high-force impacts (e.g., impacts with a ball in the high speed range).
What is needed, therefore, is a bat designed to maximize performance within a given set of guidelines at high impact forces while simultaneously maximizing absolute performance of the bat at lower impact forces. It is to such a bat that embodiments of the present invention are primarily directed.
Embodiments of the present invention relate to a baseball or softball bat having a hollow barrel and one or more deformable rings suspending within the hollow barrel by a plurality of rods positioned longitudinally within the hollow barrel. Each of the plurality of rods can be offset from a central axis of the hollow barrel by a common radius, and the deformable ring can have a substantially circular outer wall that has a diameter less than an inner diameter of the hollow barrel. The deformable ring can also have a plurality of holes positioned equidistantly about a circumference corresponding to the common radius, with each hole at least partially receiving a rod of the three or more rods. Thus, the deformable ring can be positioned such that it is in coaxial alignment with the hollow barrel when the bat is at rest. Embodiments can also include an end cap that has holes extending partially therethrough, with each end cap hole at least partially receiving an end of a rod.
According the disclosed technology, a bat can include a hollow barrel and an internal assembly disposed within the hollow barrel. The internal assembly can comprise a plurality of rigid rods disposed longitudinally within the hollow barrel, an alignment insert, a deformable ring, and an end cap. The alignment insert can have an outer diameter approximately equal to an inner diameter of the hollow barrel and a plurality of through-holes that are each (i) axially extending through the alignment insert, (ii) offset from a central axis of the alignment insert by a common radius and positioned such that the plurality of through-holes is disposed equidistantly along a circumference corresponding to the common radius, and (iii) configured to receive a portion of a corresponding rigid rod. The deformable ring can comprise an outer wall having an outer diameter smaller than the inner diameter of the hollow barrel and a plurality of holes disposed equidistantly about the circumference corresponding to the common radius. Each hole of the deformable ring can be configured to at least partially receive a corresponding rigid rod. The end cap can be configured to insert into an end of the hollow barrel, and the end cap can have a plurality of recesses disposed equidistantly about the circumference corresponding to the common radius. Each recess can be configured to receive an end of a corresponding rigid rod. The end cap and the alignment insert can be configured to maintain the plurality of rigid rods in a predetermined configuration when the bat is at rest. The predetermined configuration can correspond to each of the plurality of rigid rods being parallel. The plurality of rigid rods can be configured to maintain the deformable ring in a predetermined suspended position within the hollow barrel such that, when the bat is at rest, each point along the outer wall of the deformable ring is disposed a predetermined gap distance from an inner surface of the hollow barrel.
The hollow barrel can be configured to flex inwardly responsive to receiving force from an impact with an object such that the inner surface of the hollow barrel contacts the outer wall of the deformable ring.
The hollow barrel can be configured to transfer at least some of the force from the impact to the deformable ring. The deformable ring can be configured to at least partially deform from an original shape to a deformed shaped upon receiving at least some of the force from the impact, and the deformable ring can be configured to return from the deformed shape to the original shape.
The deformable ring can be configured to transfer a rebound force to the hollow barrel as the deformable ring returns from the deformed shape to the original shape.
The alignment insert can have a plurality of lobes.
The alignment insert can comprise EVA foam.
The bat can comprise a plurality of deformable rings.
The deformable ring can comprise aluminum.
The deformable ring can comprise a plurality of inner lobes. Each of the plurality of holes of the deformable ring can be at least partially disposed within a corresponding inner lobe of the plurality of inner lobes.
The deformable ring can comprise a hollow inner portion.
At least some of the plurality of rigid rods can comprise carbon.
At least some of the plurality of rigid rods can be hollow.
At least some of the plurality of rigid rods can be substantially solid.
The end cap can comprise a protrusion configured to at least partially insert into a notch of the hollow barrel. The notch can be disposed on an interior wall of the hollow barrel proximate a distal end of the hollow barrel. The protrusion and notch can be configured to interlock.
According to the disclosed technology, a method for manufacturing a bat can comprise providing a hollow barrel and assembling an internal assembly. Assembling the internal assembly can include inserting each of a plurality of rigid rods into a corresponding through-hole of a plurality of through-holes in an alignment insert having an outer diameter approximately equal to an inner diameter of the hollow barrel. Each of the plurality of through-holes can be axially extending through the alignment insert and can be offset from a central axis of the alignment insert by a common radius and positioned such that the plurality of through-holes is disposed equidistantly along a circumference corresponding to the common radius. Assembling the internal assembly can include inserting each of the plurality of rigid rods into a corresponding hole of a plurality of holes in a deformable ring comprising an outer wall that has an outer diameter smaller than the inner diameter of the hollow barrel. The plurality of holes can be disposed equidistantly about the circumference corresponding to the common radius. Assembling the internal assembly can include inserting an end of each of the plurality of rigid rods into a corresponding recess of a plurality of recesses in an end cap. The plurality of recesses in the end cap can be disposed equidistantly about the circumference corresponding to the common radius. Assembling the internal assembly can include inserting the end cap into an end of the hollow barrel.
Assembling the internal assembly can comprise positioning the plurality of rigid rods such that the plurality of rigid rods is in a predetermined configuration when the bat is at rest. The predetermined configuration can correspond to each of the plurality of rigid rods being parallel.
Assembling the internal assembly can comprise positioning the deformable ring in a predetermined suspended position within the hollow barrel such that, when the bat is at rest, each point along the outer wall of the deformable ring is disposed a predetermined gap distance from an inner surface of the hollow barrel.
These and other objects, features and advantages of the present invention will become more apparent upon reading the following specification in conjunction with the accompanying drawing figures.
Reference will now be made to the accompanying figures, which are not necessarily drawn to scale, and wherein:
Throughout this disclosure, certain example embodiments are described in relation to bats including a plurality of rods and a deformable ring. Some embodiments of the disclosed technology will be described more fully hereinafter with reference to the accompanying drawings. This disclosed technology may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. The components described hereinafter as making up various elements of the disclosed technology are intended to be illustrative and not restrictive. Many suitable components that would perform the same or similar functions as components described herein are intended to be embraced within the scope of the disclosed electronic devices and methods. Such other components not described herein may include, but are not limited to, for example, components developed after development of the disclosed technology.
In the following description, numerous specific details are set forth. But it is to be understood that embodiments of the disclosed technology may be practiced without these specific details. In other instances, well-known methods, structures, and techniques have not been shown in detail in order not to obscure an understanding of this description. References to “one embodiment,” “an embodiment,” “example embodiment,” “some embodiments,” “certain embodiments,” “various embodiments,” etc., indicate that the embodiment(s) of the disclosed technology so described may include a particular feature, structure, or characteristic, but not every embodiment necessarily includes the particular feature, structure, or characteristic. Further, repeated use of the phrase “in one embodiment” does not necessarily refer to the same embodiment, although it may.
Throughout the specification and the claims, the following terms take at least the meanings explicitly associated herein, unless the context clearly dictates otherwise. The term “or” is intended to mean an inclusive “or.” Further, the terms “a,” “an,” and “the” are intended to mean one or more unless specified otherwise or clear from the context to be directed to a singular form.
Unless otherwise specified, the use of the ordinal adjectives “first,” “second,” “third,” etc., to describe a common object, merely indicate that different instances of like objects are being referred to, and are not intended to imply that the objects so described should be in a given sequence, either temporally, spatially, in ranking, or in any other manner.
According to some embodiments, the disclosed technology relates to a bat, such as baseball bat or a softball bat. In some embodiments, the bat can include a hollow barrel and an internal assembly that is configured to resist deformation of the hollow barrel, especially deformation of the hollow barrel upon impact with a ball, for example. In certain embodiments, the internal assembly can be configured to resist, but not entirely prevent, deformation of the bat upon contact the hollow barrel's inner wall with an outer edge or surface of the deformable ring. In certain embodiments, the internal assembly can include a deformable ring that is suspended within the hollow barrel by a plurality of rods that extend longitudinally within the hollow barrel.
In some embodiments, the alignment insert 150 can have a shape that mirrors the interior shape of the hollow barrel 110. For example, the alignment insert 150 can have a substantially cylindrical shape. Alternately, the alignment insert 150 can have a frustoconical shape. The alignment insert 150 can have an exterior diameter that is substantially equal to the interior diameter of the hollow barrel 110. The alignment insert 150 can include a plurality of holes extending axially therethrough. Each hole of the alignment insert 150 can be positioned at a common radius from a center of the alignment insert 150, and in certain embodiments, the holes can be positioned equidistantly about a circumference corresponding to this common radius. Each hole of the alignment insert 150 can be dimensioned to receive a corresponding rod 140. The alignment insert 150 can include a plurality of axially extending slits, and each slit can align with a corresponding hole of the alignment insert 150. Thus, each hole of the alignment insert 150 can be configured to receive a rod 140 through the slit such that each rod 140 is passed through a slit and into a corresponding hole in a radially inward direction.
The alignment insert 150 can have other shapes. For example, the alignment insert 150 can have a plurality of lobes formed between adjacent niches, such as is shown in
Referring to
According to certain embodiments, the deformable ring 130 can include one or more holes 234 that extend entirely through the deformable ring 130. Each hole 234 can be located in a corresponding inner lobe 436 of the deformable ring 130 (e.g., as shown in
In some embodiments, the end cap 160 can include a number of holes 262 that extend partially into the end cap 160. In some embodiments, each hole 262 can correspond to a rod 140. As shown in
Similar to the holes 234 of the deformable ring 130, in some embodiments, each hole 262 of the end cap 160 can be positioned at a common radius from a center of the end cap 160, and in certain embodiments, the holes 234 can be positioned equidistantly about a circumference corresponding to this common radius. In certain embodiments, the common radius with respect to the deformable ring 130 can be substantially equal to the common radius with respect to the end cap 160 and/or the holes 234 of the deformable ring 130 such that each rod 140 is substantially parallel to one another. In some embodiments, the common radius with respect to the deformable ring 130 can be smaller than the common radius with respect to the end cap 160 such that each rod 140 increasingly extends radially outward as the rod 140 extends longitudinally from the deformable ring 130 toward the end cap 160; in some embodiments, this configuration can provide rods 140 that are substantially parallel to an outer wall of the hollow barrel 110 if the hollow barrel 110 increases in outer diameter from a proximate end to a distal end, but it should be understood that such a configuration of the rods 140 is not limited to embodiments in which the diameter of the hollow barrel 110 changes.
In certain embodiments, the end cap 160 can also include a protrusion 264, which can correspond to a notch 212 located proximate the distal end of the hollow barrel 110. In some embodiments, the end cap 160 can be permanently attached to the hollow barrel 110. In certain embodiments, the end cap can be attached to the hollow barrel with an adhesive, such as a glue or epoxy. In certain embodiments, the end cap 160 can be detachably attachable to the hollow barrel 110. Embodiments including a detachably attachable end cap 160 can permit multiple internal assemblies 120 and end caps 160 to be inserted into a single hollow barrel 110, which can enable a single bat 100 to be used in multiple leagues governed by rules requiring differing maximum performance metrics of bats. Thus, it should be appreciated that various components of the internal assembly 120, the end cap 160, and/or any combination thereof are herein contemplated as being provided separately from all other structures discussed herein. For example, it is contemplated that various embodiments of the deformable ring 130 can be provided separately from all other components discussed herein.
As shown throughout the figures, the designs disclosed herein utilize multiple rods 140 as opposed to a single tube or rod (e.g., located along the central axis of the barrel 110). Such designs can permit the deformable ring 130 to be more evenly displaced within the barrel 110 (i.e., translational movement of the deformable ring 130 within the barrel 110) at impact. Such even displacement of the deformable ring 130 can facilitate decreased performance restriction (e.g., as opposed to a rigid washer design) for all but the high-speed impacts (e.g., impacts at a sufficient force to cause the barrel 110 to flex inward at the impact location such that the interior wall of the barrel 110 near the impact location contacts the deformable ring 130 and causes the deformable ring 130 to contact the interior wall of the barrel 110 opposite the impact location). Thus, such designs can limit the flex of the barrel 110 (and COR of the bat 100) at high-speed impacts, while permitting free flexing of the barrel 110 at lower speeds and thus maximizing performance of the bat 100 at lower speeds.
Referring to
In some embodiments, the deformable ring 130 can have a thickness (e.g., height) in the range of approximately 1 mm (approximately 0.04 inch) to approximately 50 mm (approximately 2 inches). For example, in some embodiments, the deformable ring 130 can have a thickness (e.g., height) in the range of approximately 1 mm (approximately 0.04 inch) to approximately 20 mm (approximately 0.8 inch). In certain embodiments, the deformable ring 130 can have a radial thickness (e.g., the smallest thickness of a sidewall of the deformable ring) in the range of approximately 1 mm (approximately 0.04 inch) to approximately 50 mm (approximately 2 inches). For example, in some embodiments, the deformable ring 130 can have a radial thickness in the range of approximately 5 mm (approximately 0.2 inch) to approximately 30 mm (approximately 1.2 inches). In some embodiments, the deformable ring can comprise one or more metals (e.g., aluminum), resin, one or more composite materials, one or more plastics (e.g., nylon), any combination thereof, or any other appropriate material(s).
As shown in
Optionally, a compressible material 838 can be attached or affixed to the outer wall 232 of the deformable ring 130. The compressible material 838 can help to reduce or eliminate vibrations that can cause an undesirable sound (e.g., a rattling sound) that may occur when the deformable ring 130 contacts the inner surface of the barrel 110. The compressible material 838 can be or include a fabric (e.g., felt), a foam (e.g., a low-density polyurethane foam), or any other compressible material. As will be appreciated, the compressible material 838 can be highly compressible such that it can dampen, reduce, and/or remove audible rattling without inhibiting the benefits of the deformable ring 130 as described herein. The compressible material 838 can be attached or affixed to the outer wall 232 of the deformable ring 130 via adhesive (e.g., glue, epoxy, tape) or any type of attachment device. As a non-limiting example, the compressible material 838 can be a tape (e.g., a felt tape, a foam tape) and can be adhered to the outer wall 232 of the deformable ring 130. Alternatively or in addition, a compressible material 838 can be attached or affixed to the inner surface of the barrel 110. The compressible material 838 can have a thickness that is less than the gap distance Dgap such that a gap exists between the compressible material 838 and the inner surface of the barrel 110 (if the compressible material 838 is attached to the outer wall 232 of the deformable ring 130) or between the compressible material 838 and the outer wall 232 of the deformable ring 130 (if the compressible material 838 is attached to the inner surface of the barrel 110). Alternatively, the compressible material 838 can have a thickness that is approximately equal to the gap distance Dgap. Further, while the compressible material 838 has heretofore been described as being attached to the outer wall 232 of the deformable ring 130 and/or the inner surface of the barrel 110, it is contemplated that the compressible material 838 can be simply disposed between the deformable ring 130 and the barrel 110. For example, the compressible material 838 can have a thickness that approximately equal to or greater than (e.g., slightly greater than) the gap distance Dgap such that the compressible material can be retained between the deformable ring 130 and the barrel 110 via friction forces and/or slight compression of the compressible material 838. Regardless of its positioning, the compressible material 838 can be positioned such that it prevents direct contact between the deformable ring 130 and the barrel 110.
Table 1 below refers to data resulting from experiments conducted using examples of the disclosed technology, including two samples having rings of differing wall thickness and the same outer diameter (i.e., having differing inner diameters) and three samples having different outer diameters. Each sample was tested with the same hollow barrel 110, such that the difference between the inner diameter of the hollow barrel 110 and the outer diameter of each sample deformable ring 130 results in a corresponding gap distance Dgap. The barrel 110 used in testing these samples had an inner diameter of approximately 50 mm (approximately 2 inches). Thus, as an example, the gap distance Dgap for Sample A, which included a ring 130 having an outer diameter of 36 mm (approximately 1.4 inches), was approximately 7 mm (approximately 0.28 inches) (i.e., (50 mm outer diameter of barrel 110—36 mm outer diameter of deformable ring 130)÷2=7 mm Dgap for Sample A). The force values of Table 1 refer how much force was required to compress the barrel 110 of each sample a constant, predetermined amount. For the purposes of these experiments, the predetermined displacement resulting from the compression of the barrel 110 was 0.050±0.001 inch (1.3±0.025 mm). Ring wall thickness refers to the difference between the deformable ring's 130 outer diameter and largest inner diameter (see, e.g.,
Table 2 below shows the batted ball speed resulting from impacts of some of the above sample bats with balls traveling at three different speeds prior to impact: low speed (55 km/h (approximately 34 mph)), medium speed (80 km/h (approximately 50 mph)), and high speed (125 km/h (approximately 78 mph)). To determine the batted ball speed in this data, a swing robot was used for testing (not a bat cannon), and the exit velocity of ball was then measured. As can be seen from the data, there is little difference between the performances of Samples A, B, and C at the low and medium speeds. At the high speed, however, the biggest gap resulted in the best performance. This could be because contact between the barrel 110 and the deformable ring 130 is comparatively delayed, thus permitting the barrel 110 to flex farther and also spring back farther.
Table 3 below shows the batted ball speed resulting from impacts of some of the above sample bats with balls traveling at three different speeds prior to impact: low speed (55 km/h (approximately 34 mph)), medium speed (80 km/h (approximately 50 mph)), and high speed (105 km/h (approximately 65 mph)). As above, the batted ball speed in this data was determined during testing using a swing robot (not a bat cannon) and measuring the exit velocity of ball. Here, the data seems to indicate that a less stiff deformable ring 130 (e.g., having a thinner wall) provides comparatively increased performance.
While certain embodiments of the disclosed technology have been described in connection with what is presently considered to be the most practical embodiments, it is to be understood that the disclosed technology is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
This written description uses examples to disclose certain embodiments of the disclosed technology, including the best mode, and also to enable any person skilled in the art to practice certain embodiments of the disclosed technology, including making and using any devices or systems and performing any incorporated methods. The patentable scope of certain embodiments of the disclosed technology is defined in the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
This application claims priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 16/661,208, filed 23 Oct. 2019 and entitled “Bat System with Performance Limiting Structure and Methods of Making Same,” which claims priority under 35 U.S.C. § 119 to U.S. Provisional Patent Application No. 62/749,759, filed on 24 Oct. 2018 and entitled “Bat System with Performance Limiting Structure and Methods of Making Same,” the contents of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1367492 | Miles | Feb 1921 | A |
1665195 | Cohn | Apr 1928 | A |
4951948 | Peng | Aug 1990 | A |
6994641 | Hebreo et al. | Feb 2006 | B2 |
7147580 | Nutter et al. | Dec 2006 | B2 |
8062154 | Burger | Nov 2011 | B2 |
8632428 | Burger | Jan 2014 | B2 |
10967235 | Kikuchi | Apr 2021 | B2 |
20090137347 | Jenkins et al. | May 2009 | A1 |
20160129330 | Rodriguez | May 2016 | A1 |
Number | Date | Country |
---|---|---|
205460788 | Aug 2016 | CN |
2004073842 | Mar 2004 | JP |
2013514858 | May 2013 | JP |
Number | Date | Country | |
---|---|---|---|
20210220713 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
62749759 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16661208 | Oct 2019 | US |
Child | 17223126 | US |