This is a method and apparatus for batch-continuous operation of chemical, physical-chemical, and biological processes involving liquids and suspended particulate materials, the method can be applied in water and wastewater treatment, chemical manufacturing, pharmaceutical industries, petrochemical processing, and other like industries.
Continuous and batch processes involving liquids and suspended particles that need to be separated from liquids are well known. For example, the original biological wastewater treatment processes were batch operations including steps of filling wastewater into a tank containing active biomass (activated sludge), treating the wastewater by mixing the fed batch of wastewater with the biomass in the tank, settling the biomass under quiescent conditions and forming a clear layer of the treated wastewater on the top of the tank, decanting at least a portion of the clear layer, and repeating the sequence of these steps. Periodically, a step of evacuating the excess growth of biomass is also performed. Later, continuous operations of wastewater treatment had been developed, wherein the step of continuous feeding of wastewater influent in a biological treatment tank is provided, the fed wastewater is mixed and treated with biomass in this tank forming mixed liquor, the mixed liquor is continuously displaced by the continuously incoming influent into a separation means, usually a clarifier, wherein the treated and clarified wastewater effluent is separated from the biomass and evacuated from the biological treatment, whereas at least a portion of the separated biomass (biological sludge) is returned back into the biological treatment tank, the balance of the sludge is wasted from the system. Many modifications of these systems have been developed. Treatment steps may involve processes from strongly aerobic treatment to strongly anaerobic treatment and anything in between, with various combinations of oxidation-reduction conditions. Various biological process steps can be arranged in sequence, parallel flows, and counterflow. Biological processes can be combined with abiotic processes. various filters, including membranes, can be used for the continuous solid-liquid separation.
The main advantage of the batch process is simplicity of the apparatus. Ultimately, only one reaction tank is needed and clarification is performed in the same reaction tank. In reality, at least two parallel reactors, or a reactor and a storage tank are needed. A complex operation is the main disadvantage of the batch processes: the end of each process step needs to be determined and the change from one step to another needs to be executed. In other words, the efficiency of treatment needs to be determined to proceed from step to step. Probes for measuring efficiency are either non-existent or very expensive. Accordingly, less reliable time dependent controls are used. Present day automation systems alleviate the operation problems but do not eliminate them.
The main advantage of the continuous process is simplicity of operations. Ultimately, no time dependent controls are needed and operations may be steady-state. In reality, at least slow changes occur in the process and some process corrections are required. Automated controls are usually aimed at saving energy and at improving performance. A more complex reactor-and-clarifier design is the main disadvantage of the continuous processes as compared to batch processes. Present day membrane systems apparently simplify the biological treatment system, however, these filtration systems are very expensive and difficult to operate.
The main objective of the present invention is to provide a method and apparatus that combine the advantages of batch and continuous processing and eliminate the disadvantages of these operations. Other objectives will become apparent from the ensuing specification.
This is a method of batch-continuous operation for treatment and separation of liquid-solid mixtures in a reactor with reactive solids comprising steps of continuously feeding the liquid in the reactor, contacting (possibly, mixing) liquid with the solids in at least a portion of the reactor, periodically separating the liquid from the solids in unmixed, or predominantly unmixed, portion of the reactor, discharging at least a portion of the separated liquid from the reactor, and retaining the separated solids in the unmixed portion of the reactor, and periodically resuspending the solids in the unmixed portion of the reactor and transferring the resuspended soilds into the portion of the reactor for contacting liquid with the solids. The contacting and/or mixing of the liquid with the solids in the mixed portion of the reactor can be continuous or periodic mixing. The unmixed zone is not a quiescent zone as in conventional clarifiers. It is a flow-through zone with a noticeably high velocity of flow as in aeration tanks of biological treatment systems. The retention time in unmixed zones is much shorter than in clarifiers.
The liquid to be treated can be water, process water, wastewater, water solutions, biological growth media, water with dissolved organics, water with particulate organics, organic liquid, petroleum, petroleum products, and combinations thereof. The active solids can be represented by biomass, activated sludge, flocculent sludge, granular sludge, attached biological growth to the fixed media, attached biological growth to moving media, organic particles, inorganic particles, mineral particles, activated carbon, ion exchange resins, metal particles, iron particles, aluminum particles, zinc particles, sand, composite metal particles, crushed glass, crushed nut shells, and combinations thereof.
The resuspended solids in the predominantly unmixed portion of the reactor can be retained in the reactor or at least a portion of the resuspended solids can be wasted from the reactor together with ther treated liquid. The retention of the resuspended solids can be done by temporarily closing a manual mechanical valve on a discharge line for the treated water, closing a motorized mechanical valve, closing a manual pinch valve, closing a pinch valve with a drive, interrupting the flow with a float-up conduit, producing a counterflow of a treated or clean liquid with a mechanical pump, producing a counterflow of a treated or clean liquid with an airlift, and combinations thereof. Discharging at least a portion of the treated liquid during the step of periodically resuspending said solids in said unmixed portion of the reactor can also be provided. The interrupting of the flow can be done with automatic interrupting means, manual interrupting means, and combinations thereof. It is understood that this portion of the treated water may be not completely separated from the resuspended solids.
The gravity separated solid-liquid mixture in the predominantly unmixed portion of the reactor can be additionally filtered. The filtration can be done using membrane filtration, ultrafiltration, hollow fiber membrane filtration, filtration through granular media, filtration through sacrificial metal media, filtration through fibrous media, filtration through plastic media, filtration through floating media, filtration through fixed bed media, filtration through moving bed media, downflow filtration, upflow filtration, crossflow filtration, and combinations thereof. The sacrificial metal media can be made of iron, nickel, cobalt, aluminum, zinc, and other metals capable of eliminating admixtures to the liquid. The plastic media can be represented by flat plastic sheets, corrugated plastic sheets, blocks made of plastic sheets, plastic netting, tubes of plastic netting, screw-shaped plastic rods, plastic saddles, gothic structures, plastic beads, scored plastic beads, and combinations thereof. At least intermittent aeration during the filtration step can be provided. Recirculating of at least a portion of the clarified and filtered liquid during filtration can be provided. The filtration media is periodically regenerated. the regeneration can be done by liquid, air, and combinations of both. A step of interrupting discharging at least a portion of the separated and filtered liquid during the regeneration of the filtration media can be provided. The methods of interrupting are the same as those for the gravity separated liquid: closing a manual mechanical valve, closing a motorized mechanical valve, closing a manual pinch valve, closing a motorized pinch valve, actuating a float-up conduit, producing a counterflow of a treated or clean liquid using a pump, producing a counterflow of a treated or clean liquid using an airlift, and combinations thereof The interrupting can be by using automatic interrupting means, manual interrupting means, and combinations thereof
In the predominantly mixed (contact) portion of the reactor, functional zones can be provided comprising at least one strongly aerobic zone, at least one air-based aerobic zone, at least one nitrification zone, at least one zone of oxidation of ferrous iron, at least one microaerophylic zone, at least one denitrification zone, at least one zone of ferric ion reduction, at least one fermentation zone, at least one acidification zone, at least one zone of hydrolysis of particulate organic, at least one zones of reduction of sulfate, at least one zone of reduction of carbonates, at least one zone of formation of methane, at least one zone with continous aeration, at least one zone with continuous mixing, at least one zone with intermittent aeration, at least one zone with intermittent mixing, at least one quiescent biological treatment zone, at least one zone of treatment with a sacrificial metal, and combinations thereof.
The process can be performed in an apparatus comprising a reactor with at least one reaction zone and at least one solids separation zone, said zones can be without distinct borders. The reaction zone is predominantly mixed zone, while the separation zone is predominantly unmixed zone. The liquid influent is fed in the predominantly mixed zone while the treated and clarified effluent is discharged from the predominantly unmixed zone. Preferably, the treated liquid is discharged during the unmixed period in the unmixed portion of the rector. If the treated liquid is discharged during the resuspension period, an elevated concentration of suspended solids may result and the treated liquid may meed additional separation of solids.
The apparatus can be provided with a means for interrupting the discharge of the liquid and the solids. The apparatus can be further provided with means for recirculating the liquid and the solids. The means for recirculating can be pumps, airlifts, mixers, mechanical aerators, diffused air aerators, flow ejectors, and combinations thereof. The floating apparatus can be provided with support floats and with landing gear for proper positioning of the filtration and biofiltration equipment (tertiary treatment equipment) in a drained or partially drained reactor.
As an example of the process, a biological wastewater treatment process is considered herein.
Referring now to
The embodiment of
Referring now to
The filter is operated as follows. The gravity clarified effluent enters the filter from the bottom, passes the net 21, filters through the media 23, is collected in the pipe 24, and discharged via line 30 in the box 4. While the gravity clarified water passes through the media 23, additional amount of suspended particles is removed. Biological processes on the media provide additional removal of organics. When the filter media accumulates significant amount of biomass, the break through of the solids may occur: The media should be regenerated, cleaned from the excess biomass, preferably some time before the break through occurs. The time for the backwash can be determined from the experience and set as a reliable (not too short and not too long) period between backwash. Alternatively, indication of headloss or other parameters for starting backwash may be provided. During the backwash, air is fed via lines 14 in the air distribution pipes 25 thus forming multiple bubbles in the filter media. Bubbles in water reduce the density of the contents of the filter and the filter media sinks against the flow of air bubbles. When the media reaches the unaerated layer at the bottom it turns around and goes upward in the area of less intensive aeration. Accordingly, rotation of the media occurs and the media is subjected to mechanical shaking and scouring, thus the accumulated biomass largely (but not completely) sloughs off from the filter media and drops down through the open bottom (or Imhoff bottom) of the filter into the reactor (zone 1d). During the backwash, air is fed in the airlift 13 and a counterflow of liquid is induced. A reasonably small amount of the clean liquid (a small fraction of the filtrate flow) is fed back in the pipe 24 and further in the filter body 20 and out in the reactor 10. Accordingly, the transfer of suspended solids with the stirred flow from the filter into the box 4 during its backwash is prevented. The air feed for the backwash and the flow interruption can be provided from the same line and turned on and off simultaneously by manual or automatic means (not shown).
Referring now to
The biofilter is operated as follows. The gravity clarified effluent enters the biofilter from the top of the intake channel 40, goes to the bottom of the body 20, passes the net 21 filters through the media 23, is collected in the pipe (or pipes) 24, and is discharged via line 30 in the box 4. At the same time, the flow of the gravity clarified liquid is circulating in the biofiltration media with the use of airlift 40 (see
Referring now to
It will therefore be understood by those skilled in the art that particular embodiments of the invention here presented are by way of illustration only, and are meant to be in no way restrictive; therefore, numerous changes and modifications may be made, and the full use of equivalents resorted to, without departing from the spirit and the scope of the invention as outlined in the appended claims.