The present disclosure relates generally to reverse osmosis systems, and, more specifically, to batch-operated reverse osmosis systems.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Reverse osmosis systems are used to provide fresh water from brackish or sea water. A membrane is used that restricts the flow of dissolved solids therethrough.
A reverse osmosis system involves pressurizing a solution with an applied pressure greater than an osmotic pressure created by the dissolve salts within the solution. The osmotic pressure is generally proportional to the concentration level of the salt. The approximate osmotic pressure in pounds-per-square-inch is the ratio of the salt mass to water mass times 14,000. A one-percent solution of salt would have an osmotic pressure of about 140 psi. Ocean water typically has a 3.5 percent concentration and an osmotic pressure of 490 psi.
Water extracted from a reverse osmosis system is called permeate. As a given body of saline solution is processed by the reverse osmosis membrane, the concentration of the solution is increased. At some point, it is no longer practical to recover permeate from the solution. The rejected material is called brine or the reject. Typically, about 50% of recovery of permeate from the original volume of sea water solution reaches the practical limit.
Referring now to
The permeate stream 14 is purified fluid flow at a low pressure. The brine stream 16 is a higher pressure stream that contains dissolved materials blocked by the membrane. The pressure of the brine stream 16 is only slightly lower than the feed stream 18. The membrane array 12 requires an exact flow rate for optimal operation. A brine throttle valve 24 may be used to regulate the flow through the membrane array 12. Changes take place due to water temperature, salinity, as well as membrane characteristics, such as fowling. The membrane array 12 may also be operated at off-design conditions on an emergency basis. The feed pumping system is required to meet variable flow and pressure requirements.
In general, a higher feed pressure increases permeate production and, conversely, a reduced feed pressure reduces permeate production. The membrane array 12 is required to maintain a specific recovery which is the ratio of the permeate flow to feed flow. The feed flow or brine flow likewise requires regulation.
A pretreatment system 21 may also be provided to pre-treat the fluid into the membrane array 12. The pretreatment system 21 may be used to remove solid materials such as sand, grit and suspended materials. Each of the embodiments below including those in the detailed disclosure may include a pretreatment system 21.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
In this example, the three membrane elements 60a-60c are placed in series. Each subsequent element extracts a smaller amount of permeate than the preceding element due to an increasing osmotic pressure and decreasing applied pressure caused by frictional losses within the membrane elements. As a consequence, the final element 60c may produce very little permeate. The permeate pipe 64 collects permeate from each of the membrane elements 60a-60c.
A typical reverse osmosis system operates at a constant pressure that is developed at the feed pump 20. The result is that an excess of applied pressure at the first membrane array may result in an undesirably high rate of permeate extraction which may allow the membranes to be damaged. The final membrane element 60c may have an undesirably low rate of extraction which may result in permeate with an excessive amount of salt contamination.
The present disclosure provides a reverse osmosis system that reduces pumping energy but allows a sufficient pressure to be generated at each of the membrane elements.
In one aspect of the disclosure, a method of operating a reverse osmosis system includes filling a brine feed tank with low pressure fluid from a fluid reservoir through an input, communicating brine feed tank fluid to a pressure vessel during permeate production, pumping additional fluid under high pressure from the fluid reservoir into the pressure vessel using a high pressure pump, pumping brine fluid from the pressure vessel to the brine feed tank during permeate production and raising a pressure in the pressure vessel using the high pressure pump until an amount of permeate is produced from a permeate output of the pressure vessel.
In another aspect of the disclosure, a reverse osmosis system includes a fluid reservoir, a valve and a brine feed tank in fluid communication with the fluid reservoir through an input. The brine feed tank has brine feed fluid therein. The system also includes a high pressure pump and a pressure vessel in fluid communication with the fluid reservoir through the high pressure pump. The pressure vessel comprises a permeate outlet. The brine feed tank is in fluid communication with the pressure vessel. During a permeate production cycle, the high pressure pump pumps additional fluid under high pressure from the fluid reservoir into the pressure vessel using a high pressure pump, said pressure vessel communicating brine fluid into the brine feed tank. The high pressure pump raises a pressure in the pressure vessel until an amount of permeate is produced from a permeate output of the pressure vessel.
In a further aspect of the disclosure, a method of operating a reverse osmosis system includes filling a first brine feed tank with low pressure fluid from a fluid reservoir through a first input. The method includes performing a first permeate production cycle by communicating first brine feed tank fluid to a pressure vessel, pumping additional fluid under high pressure from the fluid reservoir into the input of the pressure vessel using a high pressure pump, pumping brine fluid from the pressure vessel to the first brine feed tank, raising a pressure in the pressure vessel using the high pressure pump until a first amount of permeate is produced from a permeate output of the pressure vessel, filling a second brine feed tank with low pressure fluid from a fluid reservoir through an input and terminating the first permeate production cycle. The method also includes performing a second permeate production cycle after the first permeate production cycle by communicating second brine feed tank fluid to the pressure vessel, pumping additional fluid under high pressure from fluid reservoir into the input of the pressure vessel using the high pressure pump, pumping brine fluid from the pressure vessel to the second brine feed tank and raising a pressure in the pressure vessel using the high pressure pump until a first amount of permeate is produced from a permeate output of the pressure vessel.
In yet another aspect of the disclosure, a reverse osmosis system includes a fluid reservoir, a first input valve, a second input valve, a first brine feed tank in fluid communication with the fluid reservoir through the first input valve and a second brine feed tank in fluid communication with the fluid reservoir through the second input valve. The first brine feed tank and the second brine feed tank having brine feed fluid therein. The system further includes a high pressure pump and a pressure vessel in fluid communication with the fluid reservoir through the high pressure pump. The pressure vessel includes a permeate outlet. The first brine feed tank and the second brine feed tank is in fluid communication with the pressure vessel. During a first permeate production cycle, the first brine tank provides brine fluid to the pressure vessel and the high pressure pump pumps additional fluid under high pressure from the fluid reservoir into the pressure vessel using a high pressure pump. The high pressure pump raises a pressure in the pressure vessel until a first amount of permeate is produced from a permeate output of the pressure vessel. During a second permeate production cycle, the second brine tank provides brine fluid to the pressure vessel and the high pressure pump pumps additional fluid under high pressure from the fluid reservoir into the pressure vessel using the high pressure pump. The high pressure pump raises a pressure in the pressure vessel until a second amount of permeate is produced from the permeate output of the pressure vessel.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements. As used herein, the phrase at least one of A, B, and C should be construed to mean a logical (A or B or C), using a non-exclusive logical OR. It should be understood that steps within a method may be executed in different order without altering the principles of the present disclosure.
In the following disclosure, a batch process in which applied pressure is varied as needed to maintain permeate production at a desired rate as the osmotic pressure increases is set forth. Various parameters and operating conditions may vary depending on various characteristics including the type of membrane. As mentioned above, operation of the system at a pressure that does not waste energy by being too high or that is too low for good quality permeate is desired.
Referring now to
A second fluid path from the fluid reservoir 114 may include a low-pressure pump 124 that is driven by a motor 126. The fluid path may also include a valve 128. In the high-pressure fluid path, the valve 120 may be located between the pump 116 and the high-pressure input 108. In the low-pressure fluid path, the valve 128 may be located between the pump 124 and the low-pressure input 110.
At the output end of the pressure vessel 102, a brine output 130 may be disposed in the end cap 106 or the outer wall of the pressure vessel 102. A brine drain valve 132 may be coupled adjacent to and within the brine flow path. The output of the brine drain valve 132 is in fluid communication with a drain 134.
The output end of the pressure vessel 102 also includes a permeate output 140 that is used to remove permeate created by the membrane 142 within the pressure vessel 102. Both the permeate output and the brine output may include pipes.
The membrane 142 may be positioned within the pressure vessel 102 proximate to the second end or the output end of the pressure vessel opposite the input end. As is illustrated, the membrane 142 is positioned near or proximate to the permeate output 140 and the brine output 130.
In operation, the pressure vessel 102 is filled with fluid from the reservoir 114. In this embodiment, sea water is used. The low-pressure pump 124 is used to provide the sea water from the reservoir 114 through control valve 128 which is open. The high-pressure valve 120 is closed and the brine drain valve 132 is open to allow air or brine from the previous cycle to escape from the pressure vessel 102. When the pressure vessel 102 is filled with sea water, the low-pressure valve 128 is closed. Operation of the high-pressure pump 116 is started and the high-pressure valve 120 is opened. Also, the brine drain valve 132 is closed. The pressure within the pressure vessel 102 rapidly increases until the pressure exceeds the osmotic pressure which causes the membrane 142 to produce permeate which exits through the permeate output 140 of the pressure vessel 102.
The feed pump 116 continues to pump more sea water from the fluid reservoir 114 through the high-pressure valve 120 and into the pressure vessel 102 through the high-pressure fluid input 108. The continual addition of sea water and pressure makes up for the permeate removed through the permeate output 140 and to overcome the increasing osmotic pressure due to the increasing concentration of the brine within the pressure vessel 102.
One example of suitable pressures includes an initial pressure to produce permeate of about 500 psi during the permeate production cycle. As the permeate production increases, the pressure is increased to maintain the permeate production. If a fifty-percent total recovery is desired, the final pressure may be about 1000 psi. Thus, the average pressure is about 750 psi. Prior known systems that use conventional flow RO processing require a constant 1000 psi. Thus, the feed pump pressure requirement has been reduced by 25%.
Referring now to
The permeate output 140 extends out of the sidewall of the pressure vessel 102. The permeate output 140 receives permeate through the membrane 144.
A motor 150 is used to drive an impeller 152 that is disposed within, near or proximate the tube 148 adjacent to or proximate the second face 145 of the membrane 142. Of course, different positions of the impeller 152 outside of the tube 148 are possible. A high pressure seal 154 is used to seal a shaft 156 extending between the motor 150 and the impeller 152. Of course, a magnetic drive may be used between the motor 150 and the impeller 152 so that the seal may be eliminated.
The motor 150 drives the impeller 152 to circulate brine fluid from the membrane 142 between an annular passage 160 between the tube 148 and the outer wall of the pressure vessel 102. The direction of flow of the brine fluid pushed by the impeller 152 is from the second end of the pressure vessel or output end of the pressure vessel 102 toward the first end or input end of the pressure vessel 14, as indicated by the arrows 162. The brine fluid enters the tube 14 through a distributor plate 170. A distributor plate is used to distribute the brine evenly across the face of the flow tube 148 and allow the flow to have a minimum turbulence. A flow diffuser 172 diffuses the high-pressure input fluid from the high-pressure input 108 evenly across the face of the flow distributor plate 170.
Choosing the proper circulation rate of brine from the impeller 152 through the annual passage and back into the tube 148 is important for the operation of the system. If the rate is too low, the axial velocity along the membrane 142 may be insufficient to prevent excessive concentration of salt along the membrane surface resulting in excessive polarization which adversely affects the permeate quality, membrane productivity and fouling resistance. By controlling the speed of the motor 150, a rate of brine circulation is controlled to permit fine tuning of the circulation rate. Rates used depend on various design considerations of the system.
A stratification of concentration in the flow tube 148 is desired. A water column within the flow tube 148 will develop a concentration gradient with the lowest concentration at the membrane face 144 and increase toward the distributor plate 170. The average concentration increases with time but the lowest concentration is present at the face of the membrane closest to the input. The distributor plate 170 and the flow diffuser 172 reduce mixing between newer, more concentrated brine and less concentrated older brine.
The flow of older, more concentrated brine products by the membrane is indicated by arrows 174 and the new sea water flow direction is indicated by arrow 176.
Referring now to
A high pressure is developed at the high-pressure pump 116 which is driven by motor 118. In this embodiment, a low pressure pump is eliminated since low pressure filling of the pressure vessel 102 is provided through the valve 212 due to gravity. After filling of the pressure vessel 102 at low pressure, high-pressure fluid from the charge reservoir 210 is created at the pump 116 and provided to the fluid input 214. The valve 212 is closed after filling and the high-pressure fluid is provided through the input 214. A diverter valve 216 is opened to allow high-pressure fluid to flow into the pressure vessel 102. The diverter valve 216 is also in fluid communication with the charge reservoir 210 when opened. A buffer pipe 220 that has a large diameter for a short length acts as a reservoir of feed water for the pressure relief process as will be described below. The large diameter buffer pipe 220 allows fluid to flow back toward the diverter valve 216 into the charge reservoir 210 as will be further described below.
After a final concentration of solution is achieved in the pressure vessel 102, the pump 116 may be turned off to prevent high-pressure fluid from continuing to flow into the pressure vessel 102. In the alternative, the diverter valve 216 may open and allow the high-pressure fluid to return back to the charge reservoir 210.
Because water is slightly compressible, pressure may be vented prior to starting the charge cycle. Pipe 222 provides a flow path to allow high pressure in the pressure vessel 102 to be vented through the diverter valve 216 toward the charge reservoir 210. The amount of fluid to be bled back to the charge reservoir 210 is preferably small since it is highly concentrated brine. The buffer pipe 220 acts as a reservoir for the pressure relief process. Therefore, little or no concentrated brine fluid may actually enter the charge reservoir 210. After the pressure has been relieved from the pressure vessel 102, the valve 212 and brine valve drain valve 132 may be opened. Concentrated brine is thus allowed to drain out of the pressure vessel 102. Sea water under low pressure is thus used to fill the pressure vessel by gravity. A flow distributor plate 170 illustrated in
A small reservoir 240 is positioned on the permeate pipe 140. The volume of the small reservoir is substantially less than the volume of the pressure vessel 102. After filling of the pressure vessel 102, valves 212 and 132 are closed and the diverter valve 216 diverts high-pressure fluid into the pressure vessel 102 to initiate another permeate production cycle. The small reservoir 240 allows for storage of a small amount of permeate to prevent permeate flow reversal. During a time period between the depressurization of the pressure vessel 102 and ending with the repressurization, osmotic pressure may draw permeate into the membrane 100 illustrated in
Referring now to
This embodiment includes a check valve 324 that replaces valve 212 of
The permeate production cycle thus allows low-pressure fluid to fill the pressure vessel 102 when the pressure vessel is at a low pressure due to the opening of the valve 132. High pressure is generated with the pump 310 and permeate is produced as described above.
The recharge cycle is initiated by a signal from the flow meter 320 that indicates that a desired amount of permeate has been produced and the permeate production cycle may be terminated. The speed of the pump 310 is reduced to zero, which allows the check valve 324 to open since the charge reservoir 210 is at a higher pressure. Gravity may be used to provide low-pressure sea water into the pressure vessel until the brine has been fully flushed as described above using the timer or concentration meter 230 and/or the flow meter 232. When the pressure vessel has been flushed, the valve 132 is closed and the variable frequency drive 314 causes the pump 310 to increase speed to raise the pressure in the input pipe 214 which allows the check valve 324 to close. The speed of the pump and pressure generated thereby continue to increase and thus the permeate production cycle again is completed.
Referring now to
A brine tank 440 having a top portion 442 and a bottom portion 444 may be fluidically coupled between the input manifold 430 and the outlet manifold 432. The top portion 442 and the bottom portion 444 are determined relative to the earth. The brine tank 440 may include an upper flow distribution plate 446 near top portion 442 and a lower flow distribution plate 448 near bottom portion 444. The upper flow distribution plate 446 and the lower flow distribution plate 448 act in a similar manner to flow distribution plate 170 of
A brine input pipe 452 that is fluidically coupled to the outlet manifold 432 and brine tank 440 receives brine from the outlet manifold 432. The brine inlet pipe 452 may be positioned between the bottom 444 of the brine tank 440 and the flow distribution plate 448. A booster pump 460 driven by motor 462 may be used to pump the concentrated brine fluid from the outlet manifold 432 into the brine tank 440. The booster pump 460 maintains a continuous loop of concentrated brine from the outlet manifold 432 through the brine tank inlet pipe 452 through brine tank 440 and through the brine fluid feed pipe 450 into the inlet manifold 430.
The high-pressure pump 310 pressurizes fluid from the fluid reservoir 114 to the desired pressure to produce a desired amount of permeate that exists the pressure vessel 410. The flow signal from the flow meter 320 provides feedback to the variable frequency device 314 which in turn adjusts the speed of the motor 312 driving the pump 310. The amount of permeate production is adjusted by controlling the motor 312 as measured by the flow signal.
The flow distribution plates 446 and 448 allow non-turbulent entry of flow into and out of the brine tank 440 to maintain a favorable concentration gradient in the brine tank 440. Relatively dense brine is positioned at the bottom of a tank and lighter, less concentrated brine is positioned at the top of the tank 440. The flow distribution plates 446, 448 prevent or reduce mixing so that stratified brine concentrations are formed with the brine tank 440.
In operation, the brine tank 440 is filled with salt water at the beginning of the charge cycle. The brine tank 440 is opened by opening check valve 324 and valve 132. Upon filling, the check valve 324 is closed and the feed pump 310 begins to circulate fluid to each of the membrane chambers 414a-3. Permeate is formed through the permeate outlet 140. Brine is collected in the outlet manifold 432 where it is re-circulated using pump 460 into the lower or bottom end of the brine tank 444. The dense brine 444 pushes the salt water which is less dense up through the outlet pipe 450 to the inlet manifold 430. The process continues until an amount of permeate or a particular concentration of brine is achieved. The system may also include a small reservoir 240 that acts in a similar manner to that described above in
During the recharge cycle, the pumps 310 and 460 are stopped which lowers the pressure in the system. Valve 132 opens and the pressure in brine tank 440 is reduced. This causes the pressure to be reduced in the brine tank 440. The check valve 324 opens and fresh seawater enters the brine tank 440. The check valve 324 and valve 132 are closed at the start of the next permeate production cycle.
Referring now to
After the loop is started using the brine from the second brine tank 400b, equalization valve 202 is closed. The drain valve 132a under the first tank is open and permits brine to pass through to the drain 134. Gravity allows feed from the reservoir 114 to flow into the brine tank 440a. Once the tank 440b reaches maximum salinity or the desired amount of permeate is produced from a tank, the process is switched to provide brine from the tank 440a.
The system then continually repeats. By using a centrifugal pump 310, the pump is always discharging at high pressure alternatively into one of the brine tanks. The membrane array is continuously pressurized which eliminates significant mechanical movement and stress during pressurization and depressurization required in
Those skilled in the art can now appreciate from the foregoing description that the broad teachings of the disclosure can be implemented in a variety of forms. Therefore, while this disclosure includes particular examples, the true scope of the disclosure should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, the specification and the following claims.
This application is a non-provisional application of provisional application 61/019,110, filed Jan. 4, 2008 and provisional application 61/024,750, filed Jan. 30, 2008, the disclosures of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
659930 | Kemble | Oct 1900 | A |
893127 | Barber | Jul 1908 | A |
1022683 | Kienast | Apr 1912 | A |
1024111 | Anderson | Apr 1912 | A |
1066581 | Brown | Jul 1913 | A |
2715367 | Kodet et al. | Aug 1955 | A |
2748714 | Henry | Jun 1956 | A |
3160108 | Sence | Dec 1964 | A |
3526320 | Kryzer | Sep 1970 | A |
3563618 | Ivanov | Feb 1971 | A |
3614259 | Neff | Oct 1971 | A |
3664758 | Sato | May 1972 | A |
3748057 | Eskeli | Jul 1973 | A |
3828610 | Swearingen | Aug 1974 | A |
3969804 | Macinnes et al. | Jul 1976 | A |
3999377 | Oklejas et al. | Dec 1976 | A |
4028885 | Ganley et al. | Jun 1977 | A |
4029431 | Bachl | Jun 1977 | A |
4070280 | Bray | Jan 1978 | A |
4165288 | Teed et al. | Aug 1979 | A |
4187173 | Keefer | Feb 1980 | A |
4230564 | Keefer | Oct 1980 | A |
4243523 | Pelmulder | Jan 1981 | A |
4255081 | Oklejas et al. | Mar 1981 | A |
4288326 | Keefer | Sep 1981 | A |
4353874 | Keller et al. | Oct 1982 | A |
4354939 | Pohl | Oct 1982 | A |
4432876 | Keefer | Feb 1984 | A |
4434056 | Keefer | Feb 1984 | A |
4472107 | Chang et al. | Sep 1984 | A |
RE32144 | Keefer | May 1986 | E |
4632756 | Coplan et al. | Dec 1986 | A |
4702842 | Lapierre | Oct 1987 | A |
4814086 | Bratt | Mar 1989 | A |
4830572 | Oklejas, Jr. et al. | May 1989 | A |
4921603 | Yen | May 1990 | A |
4966708 | Oklejas et al. | Oct 1990 | A |
4973408 | Keefer | Nov 1990 | A |
4983301 | Szucz et al. | Jan 1991 | A |
4983305 | Oklejas et al. | Jan 1991 | A |
4997357 | Eirich et al. | Mar 1991 | A |
5020969 | Mase et al. | Jun 1991 | A |
5043071 | Anselme et al. | Aug 1991 | A |
5049045 | Oklejas et al. | Sep 1991 | A |
5082428 | Oklejas et al. | Jan 1992 | A |
5106262 | Oklejas et al. | Apr 1992 | A |
5132015 | Down | Jul 1992 | A |
5132090 | Volland | Jul 1992 | A |
5133639 | Gay et al. | Jul 1992 | A |
5154572 | Toyoshima et al. | Oct 1992 | A |
5320755 | Hagqvist et al. | Jun 1994 | A |
5338151 | Kemmner et al. | Aug 1994 | A |
5340286 | Kanigowski | Aug 1994 | A |
5401395 | Hagqvist et al. | Mar 1995 | A |
5482441 | Permar | Jan 1996 | A |
5499900 | Khmara et al. | Mar 1996 | A |
5647973 | Desaulniers | Jul 1997 | A |
5702229 | Moss et al. | Dec 1997 | A |
5819524 | Bosley et al. | Oct 1998 | A |
5951169 | Oklejas et al. | Sep 1999 | A |
5980114 | Oklejas, Jr. | Nov 1999 | A |
6007723 | Ikada et al. | Dec 1999 | A |
6017200 | Childs et al. | Jan 2000 | A |
6036435 | Oklejas | Mar 2000 | A |
6110360 | Hart, Jr. | Aug 2000 | A |
6110375 | Bacchus et al. | Aug 2000 | A |
6116851 | Oklejas, Jr. | Sep 2000 | A |
6120689 | Tonelli et al. | Sep 2000 | A |
6139740 | Oklejas | Oct 2000 | A |
6139750 | Graham | Oct 2000 | A |
6187200 | Yamamura et al. | Feb 2001 | B1 |
6190556 | Uhlinger | Feb 2001 | B1 |
6299766 | Permar | Oct 2001 | B1 |
6309174 | Oklejas, Jr. et al. | Oct 2001 | B1 |
6345961 | Oklejas, Jr. | Feb 2002 | B1 |
6375842 | Graham | Apr 2002 | B1 |
6402956 | Andou et al. | Jun 2002 | B1 |
6468431 | Oklelas, Jr. | Oct 2002 | B1 |
6508937 | Kawashima et al. | Jan 2003 | B1 |
6589423 | Chancellor | Jul 2003 | B1 |
6613233 | Rusk et al. | Sep 2003 | B1 |
6709599 | Rosenberger et al. | Mar 2004 | B1 |
6713028 | Oklejas, Jr. | Mar 2004 | B1 |
6797173 | Oklejas, Jr. | Sep 2004 | B1 |
6881336 | Johnson | Apr 2005 | B2 |
6908546 | Smith | Jun 2005 | B2 |
6932907 | Haq et al. | Aug 2005 | B2 |
6936140 | Paxton et al. | Aug 2005 | B2 |
6942797 | Chancellor et al. | Sep 2005 | B1 |
7077962 | Pipes | Jul 2006 | B2 |
7150830 | Katsube et al. | Dec 2006 | B1 |
20030080058 | Kimura et al. | May 2003 | A1 |
20040104157 | Beeman et al. | Jun 2004 | A1 |
20040211729 | Sunkara et al. | Oct 2004 | A1 |
20060157409 | Hassan | Jul 2006 | A1 |
20060157410 | Hassan | Jul 2006 | A1 |
20060226077 | Stark | Oct 2006 | A1 |
20060254981 | Efraty | Nov 2006 | A1 |
20070023347 | Chabot | Feb 2007 | A1 |
20070056907 | Gordon | Mar 2007 | A1 |
20070181497 | Liberman | Aug 2007 | A1 |
20070199878 | Eisberg et al. | Aug 2007 | A1 |
20070289904 | Oklejas | Dec 2007 | A1 |
20070295650 | Yoneda et al. | Dec 2007 | A1 |
20080023410 | Efraty | Jan 2008 | A1 |
20080217222 | Efraty | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
199 41 349 | Mar 2001 | DE |
1508361 | Feb 2005 | EP |
2363741 | Jan 2002 | GB |
2 377 928 | Jan 2003 | GB |
WO0209855 | Feb 2002 | WO |
WO2005075061 | Aug 2005 | WO |
WO2006106158 | Oct 2006 | WO |
WO 2007096679 | Aug 2007 | WO |
WO2007146321 | Dec 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090173691 A1 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
61019110 | Jan 2008 | US | |
61024750 | Jan 2008 | US |