Bathtub/shower tray support

Information

  • Patent Grant
  • 10130220
  • Patent Number
    10,130,220
  • Date Filed
    Wednesday, February 17, 2016
    8 years ago
  • Date Issued
    Tuesday, November 20, 2018
    6 years ago
Abstract
A floor support structure for a bathtub or a shower tray floor, taking the form of a separate element to be used in conjunction with a traditional bathtub or shower tray floor, or as a unitary shower tray floor formed with the support structure integrated therein. The supports include a hollow plastic shell having a lower surface for lying on a planar subfloor, an upper surface contoured to the desired shape and a peripheral sidewall extending there between. Preferably, a drain hole is formed in the plastic shell which also interconnects the upper and lower surfaces thereby defining a hollow interior cavity. The cavity is filled with expandable thermoplastic foam beads which are expanded in place with steam in order to substantially fill the interior cavity thermally bonding the beads together and to the shell interior wall. The expanded foam bead is capable of being compressed without substantial permanent set.
Description
TECHNICAL FIELD

The disclosed embodiments relate to supports for bathtub and shower tray floors.


BACKGROUND

Bathtubs and shower trays, particularly those made of fiber reinforced thermoset plastic or acrylic laminate are susceptible to significant floor flexing making it necessary to provide some sort of support between the underside of the bathtub or shower tray floor and the building subfloor. Various approaches have been tried including a mortar bed, foamed in place expandable polyurethane foam and various types of filler blocks including blocks of polystyrene foam.


SUMMARY

A floor support structure is disclosed for a bathtub or a shower tray floor. The floor support structure can take the form of a separate element to be used in conjunction with a traditional bathtub or shower tray floor or a unitary shower tray floor can be formed with the support structure integrated therein. Both embodiments include a hollow plastic shell having a lower surface for lying on a planar subfloor, an upper surface contoured to the desired bathtub or shower long tray shape and a peripheral sidewall extending therebetween. Preferably, a drain hole is formed in the plastic shell which also interconnects the upper and lower surfaces thereby defining a hollow interior cavity. The cavity is filled with expandable thermoplastic foam beads which are steam expanded in place in with steam order to substantially fill the interior cavity thermally bonding the beads together and to the shell interior wall. The expanded foam bead is capable of being compressed up to 75% and recover without substantial permanent set.


Preferably the shell and bead materials are compatible polymers enabling the support member to be reground and recycled without separating the bead and shell materials. The embodiments of the invention are disclosed using both polypropylene and polyethylene materials. In an embodiment which forms a unitary shower tray floor support, the plastic shell material is polypropylene filled with talc and calcium carbonate providing a hard durable wear resistant surface. Preferably, talc makes up 15%-25% by weight of the skin composition while the calcium carbonate makes up 15%-25% of the skin composition with the balance being polypropylene and a coloring agent.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an exploded view of a bathtub, a support member and a subfloor;



FIG. 2 is a cross-section of the support member taken along line 2-2 of FIG. 1;



FIG. 3 is a bottom plan view of the support member;



FIG. 4 is an enlarged cross-section of one end of the support member show in FIG. 2;



FIG. 5 is an alternative embodiment illustrating a unitary shower floor tray;



FIG. 6 is a bottom perspective view of the shower floor tray of FIG. 5;



FIG. 7a is a cross-section taken along line 7-7 of the shower floor tray of FIG. 5; and



FIG. 7b is an enlarged portion of shower floor tray of FIG. 7a illustrating the drain hole and drain cover recess.





DETAILED DESCRIPTION

As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.



FIG. 1 illustrates floor support member 10 interposed between a subfloor 12 and the underside of bathtub 14. Floor support member 10 is shown in cross-section view in FIG. 2 and includes a hollow plastic shell 16 and an expanded thermoplastic foam bead core 18 which substantially fills an interior cavity of shell 16. The shell has a contoured upper surface 20 which conforms to the bottom surface of bathtub 14. A lower surface 22 is adapted to cooperate with a generally flat subfloor 12 and an outer peripheral wall 24 interconnecting the upper and lower surfaces 20 and 22. In the embodiment illustrated, a drain hole in the form of a cylindrical hole 26 (or a key-hole shaped slot, not shown) is formed in the support member as illustrated in FIGS. 1-3. Cylindrical drain hole 26 is aligned with the drain in the bathtub 14 to provide space for the installation of a drain pipe of a plumbing system. Recess 25 shown in FIGS. 2 and 3 provides space for the drain valve actuator mechanism.


The lower surface 22 of support member 10, as shown in FIG. 3, is provided with a fill port 28 in the shell through which the plastic bead is introduced into the interior cavity and a series of steam ports 30 enabling steam pins to be introduced into the interior cavity to steam the bead during the heating process and to subsequently cool and dry the bead. Preferably, the steam pins and fill port are located on lower surface 22 of support member 10. The remaining surfaces, the upper surface 20, peripheral surface 24 and the interior surface of key-hole slot 26 are preferably a continuous uninterrupted skin surface which prevents any water which leaks onto the support member from being exposed to the bead core. An illustration of the steam ports 30 and the fill port 28 is best seen in FIG. 4 in a large cross-sectional view. Upper surface 20 of the support member, supports the flat underside of the tub as well as the curved region of the tub immediately surrounding the flat floor. Accordingly, the support member upper surface 20 likewise upwardly curves about its periphery to conform to the tub contour.


The bathtub floor support member 10 can be made using a blow-molding and in situ foam process as described in detail in PCT Publication WO 2012/058447, published May 3, 2012, and in co-pending U.S. patent application Ser. No. 13/840,827 filed Mar. 15, 2013, both of which are incorporated by reference herein.


Preferably, the bead and shell material are of both compatible polymers which enable floor support member 10 to be recycled by regrinding and reusing the plastic material without separating the bead and shell material. Preferable plastics are polypropylene and polyethylene because of their good elastic properties. Preferably the polymer bead material selected is capable of being deformed 60% and fully recovered without the substantial permanent set and most preferably, being capable of being compressed 75% and fully recovered without any substantial permanent set. The preferred bead density is 1.2 to 5.6 pounds per cubic foot and more preferably, 1.8 to 2.5 pounds per cubic foot.


Polyolefin beads and methods of manufacture of pre-expanded polyolefin beads suitable for making the illustrated embodiments are described in Japanese patents JP60090744, JP59210954, JP59155443, JP58213028, and U.S. Pat. No. 4,840,973 all of which are incorporated herein by reference. Non-limiting examples of expanded polyolefins are ARPLANK® and ARPRO® available from JSP, Inc. (Madison Heights, Mich.).


In the bathtub/shower tray floor support member application where the support member fits under a pre-existing bathtub or shower tray, the skin thickness of the hollow plastic shell 16 can be relatively thin, namely 1.5 to 3.0 mm nominal wall thickness as the structure is provided by the foam bead and the hollow shell forms a conformal wrap of the bead. The minimum shell wall thickness will be dictated overall maximum length of the part which is formed in a vertical extruder with a hanging parison.


A second embodiment in the form of a unitary shower tray 40 is illustrated in FIGS. 5-7b. Shower tray 40 has a hollow plastic shell 42 and an expanded foam bead core 44. Unlike support member 10, shower tray floor 40 is not utilized with a separate bathtub or shower floor tray, but, rather, the upper surface 46 of the plastic shell 42 forms the shower floor tray upon which the user stands. Shell 42 has an upper surface 46, a lower surface 48, peripheral wall 50 and a central drain hole 52. Drain hole 52 is sized to mate with the standard shower drain plumbing. Central drain hole 52 and the outer peripheral wall 50 interconnect the upper and lower surfaces 46 and 48 to define an annular hollow space extending about the drain hole 52. Preferably, the outer peripheral wall 50 and the outer peripheral edge of the upper surface 46 join together and provide a raised curb 54 and wall 56 standing up from three sides of the curb 54 as illustrated in FIG. 5. Upper surface 46 which slopes from the raised curb 54 to centrally located drain hole 52.


As illustrated in FIG. 6, lower surface 48 can be provided with one or more recessed open trough-like channels 53 to accommodate an over the subfloor horizontally extending drain pipe. As previously described with reference to the FIG. 1 embodiment, the underside of the shell is provided with a fill opening 58 and a plurality of steam ports 60. The upper surface 46 immediately surrounding the drain forms an annular recess 62 shown in the FIG. 7b enlargement. Recess 62 is sized to receive a drain cover plate (not shown) of the conventional design. The drain cover plate is affixed to the shower floor tray by screws (also not shown) which fit into blind holes 64 formed in the recessed region. This blind hole design prevents water from leaking into the shell interior while the preferred bead material absorbs very little water, preferably, only 2%-3%. It is desired to keep the bead core as dry as possible to avoid any damage which may occur in the event of a freeze-thaw cycle which might occur in use in a seasonal home and cold climates,


In the unitary shower tray floor embodiment 40, the bead density is preferably 1.2 to 5.6 pounds per cubic foot and more preferably, 1.8 to 3.0 pounds per cubic foot. The preferred plastic shell material is one that has good hardness and wear characteristics in order to withstand daily use. A preferred composition for the shell is a polypropylene resin filled with talc and calcium carbonate. Preferably, talc will make up 10% to 30% by weight; more preferably, 15% to 25% by weight and most preferably, about 20%±2% by weight of the skin material. Similarly, the calcium carbonate will make up 10% to 30% by weight, preferably, 15% to 25% by weight and most preferably, about 20%±2% by weight of the skin material. The balance of the skin material will be primarily polypropylene along with a desired coloring agent. Preferably, the bead and shell material are of both compatible polymers. Preferably a polypropylene bead material selected is capable of being deformed 60% and fully recovered without the substantial permanent set and most preferably, being capable of being compressed 75% and fully recovered without any substantial permanent set. The preferred bead density is 1.2 to 5.6 pounds per cubic foot and more preferably, 1.8 to 2.5 pounds per cubic foot.


While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.

Claims
  • 1. A shower floor tray comprising: a one piece annular plastic shell having a hollow interior cavity surrounding a central drain tube, a lower wall having a lower surface for lying on a planar floor, an upper wall having an upper surface downwardly sloping toward the central drain tube upon which a user of a shower may directly stand, and a peripheral side wall, which collectively define the hollow interior cavity, wherein the central drain tube, the upper wall, the lower wall and the peripheral side wall are all formed of a common plastic material with a peripheral edge of the upper wall upper surface forming a raised curb about at least a portion of a perimeter of the tray; anda foam core comprising expanded thermoplastic polymer beads which fill the hollow interior cavity, wherein the lower wall is provided with a plurality of steam port apertures sized to receive steam pins for heating the polymer beads forming the foam core, wherein the polymer beads are thermally bonded together, to interior surfaces of the upper wall, the lower wall, and the peripheral side wall and to a surface of the central drain tube.
  • 2. The shower floor tray of claim 1 wherein the plastic shell comprises polypropylene blended with talc and calcium carbonate with the talc making up 10%-30% by weight and the calcium carbonate making up 10%-30% by weight of the shell.
  • 3. The shower floor tray of claim 1 wherein the plastic shell comprises polypropylene blended with talc and calcium carbonate with the talc making up 15% -25% by weight and the calcium carbonate making up 15%-25% by weight of the shell.
  • 4. The shower floor tray of claim 1 wherein the plastic shell comprises polypropylene blended with talc and calcium carbonate, with the talc making up 20%±2% by weight and the calcium carbonate making up 20%±2% by weight of the shell.
  • 5. The shower floor tray of claim 1 wherein the upper surface of the upper wall of the plastic shell is provided with a region of abrasive filler particles thermally bonded to the upper surface of the shell upper wall to improve a user's footing.
  • 6. The tray of claim 1 wherein the upper surface of the upper wall of the plastic shell is provided with a recessed pocket surrounding the central drain tube for receiving a drain cover, the upper wall surface having a plurality of blind holes formed in the shell for receiving drain cover screws.
  • 7. The tray of claim 1, wherein the upper surface of the upper wall of the plastic shell is provided with a recessed pocket surrounding the central drain tube for receiving a drain cover.
  • 8. A shower floor tray comprising: a plastic shell having an interior cavity surrounding a central drain tube, a lower wall having a lower surface for lying on a planar floor, an upper wall having an upper surface downwardly sloping toward the central drain tube upon which a user of a shower may directly stand, and a peripheral side wall, wherein the central drain tube, the upper wall, the lower wall and the peripheral wall are all formed of a common plastic material and securely are joined together; anda foam core comprising expanded thermoplastic polymer beads thermally bonded to one another, the foam core being thermally bonded to the shell interior cavity;wherein the lower wall is provided with a plurality of steam port apertures sized to receive steam pins for heating the polymer beads forming the foam core within the hollow interior cavity.
  • 9. The tray of claim 8 wherein the upper surface of the upper wall of the plastic shell is provided with a recessed pocket surrounding the central drain tube for receiving a drain cover.
  • 10. The tray of claim 9 wherein the recessed pocket is provided with a plurality of blind holes formed therein for receiving drain cover screws.
  • 11. The tray of claim 9 wherein the plastic shell comprises polypropylene blended with talc and calcium carbonate.
  • 12. The tray of claim 8 wherein a peripheral edge of the upper wall upper surface forms a raised curb about at least a portion of a perimeter of the tray.
CROSS-REFERENCE RELAIED APPLICATIONS

This application is a division of U.S. application Ser. No. 13/862,018 filed Apr. 12, 2013, now U.S. Pat. No. 9,271,610, the disclosure of which is hereby incorporated by reference.

US Referenced Citations (122)
Number Name Date Kind
776342 McCormick Nov 1904 A
1588778 Sorensen Jun 1926 A
2292369 Gordon Aug 1942 A
2784417 Strand Mar 1957 A
2983963 Jodell et al. May 1961 A
3062337 Zittle Nov 1962 A
3111787 Chamberlain Nov 1963 A
3132417 Irwin May 1964 A
3277220 Plymale et al. Oct 1966 A
3389195 Gianakos et al. Jun 1968 A
3400429 Ludwig Sep 1968 A
3466700 Harrison Sep 1969 A
3468097 Mack Sep 1969 A
3563845 Stevens Feb 1971 A
3598312 Hamilton Aug 1971 A
3745998 Rose Jul 1973 A
3774968 Fenton Nov 1973 A
3813040 Heinemeyer May 1974 A
3935044 Daly Jan 1976 A
4361656 Mostafa Nov 1982 A
4492663 Reinfeld et al. Jan 1985 A
4546899 Williams Oct 1985 A
4573741 Kirchner-Carl Mar 1986 A
4621002 Kuhlmann et al. Nov 1986 A
4651494 Van Wagoner Mar 1987 A
4680909 Stewart Jul 1987 A
4762438 Dewing Aug 1988 A
4825089 Lindsay Apr 1989 A
4840973 Kuwabara et al. Jun 1989 A
5018329 Hasan et al. May 1991 A
5023042 Efferding Jun 1991 A
5028377 Hendry Jul 1991 A
5055350 Neefe Oct 1991 A
5093053 Eckardt et al. Mar 1992 A
5252270 Haardt et al. Oct 1993 A
5275860 D'Luzansky et al. Jan 1994 A
5306266 Freeland Apr 1994 A
5345814 Cur et al. Sep 1994 A
5366674 Hattori et al. Nov 1994 A
5505810 Kirby et al. Apr 1996 A
5532034 Kirby et al. Jul 1996 A
5580621 Kuszaj Dec 1996 A
5624517 Giesen Apr 1997 A
5665285 Hattori et al. Sep 1997 A
5711073 Tippmann et al. Jan 1998 A
5713518 Fox et al. Feb 1998 A
5759459 Eckardt et al. Jun 1998 A
5786394 Slaven Jul 1998 A
5824261 Berdan Oct 1998 A
5858159 Holbrook et al. Jan 1999 A
5866224 Ang et al. Feb 1999 A
5956905 Weidrich Sep 1999 A
6179215 Shea Jan 2001 B1
6196760 Sinclair Mar 2001 B1
6230981 Hill et al. May 2001 B1
6241926 Cutler Jun 2001 B1
6375892 Thomas Apr 2002 B2
6605343 Motoi et al. Aug 2003 B1
6607680 Moitzheim Aug 2003 B1
6685333 Bieberdorf Feb 2004 B1
6692183 Godfrey Feb 2004 B2
6931809 Brown et al. Aug 2005 B1
6938968 Tanimoto et al. Sep 2005 B2
6955576 Yeh Oct 2005 B2
6972144 Roth et al. Dec 2005 B2
7201112 Jolley Apr 2007 B2
7201625 Yen Apr 2007 B2
7219479 Durning et al. May 2007 B2
7358280 Berghmans et al. Apr 2008 B2
7377828 Cheung May 2008 B2
7401998 Wilson et al. Jul 2008 B2
7485352 Yuasa et al. Feb 2009 B2
7537413 Brugos May 2009 B1
7931210 Pike et al. Apr 2011 B1
7950592 Yuan May 2011 B2
7976749 Volkel et al. Jul 2011 B2
8181288 Davis, Jr. May 2012 B1
20010035658 Anderson et al. Nov 2001 A1
20020124531 Mossbeck et al. Sep 2002 A1
20030081999 Godfrey May 2003 A1
20030181536 Roth Sep 2003 A1
20030224675 Yeh Dec 2003 A1
20040172964 Brachert et al. Sep 2004 A1
20040176001 Yeh Sep 2004 A1
20040232254 Kowalski Nov 2004 A1
20050001048 Skoblenick et al. Jan 2005 A1
20050101201 Yeh May 2005 A1
20050188637 Yeh Sep 2005 A1
20050215138 Yeh Sep 2005 A1
20050272323 Yeh Dec 2005 A1
20060003044 Dinello et al. Jan 2006 A1
20060030467 Mellott Feb 2006 A1
20060078382 Wilson et al. Apr 2006 A1
20060105650 Yeh May 2006 A1
20060110993 Yeh May 2006 A1
20060131437 Thiagarajan et al. Jun 2006 A1
20060134401 Yeh Jun 2006 A1
20060223897 Sasaki Oct 2006 A1
20070015421 Yeh Jan 2007 A1
20070040293 Lane et al. Feb 2007 A1
20070160798 Yeh Jul 2007 A1
20080018161 Evans Jan 2008 A1
20080081153 Yeh Apr 2008 A1
20080083835 Girardi et al. Apr 2008 A1
20080125502 Reichman et al. May 2008 A1
20080142611 Scobie Jun 2008 A1
20080166539 Yeh Jul 2008 A1
20080242169 Yeh Oct 2008 A1
20080305304 Yeh Dec 2008 A1
20090011667 Hayward et al. Jan 2009 A1
20090100780 Mathis et al. Apr 2009 A1
20090133354 Spear et al. May 2009 A1
20100028654 Takase et al. Feb 2010 A1
20100116180 Roth et al. May 2010 A1
20110115120 Hattori et al. May 2011 A1
20120031912 Wang Feb 2012 A1
20120102884 Roberts, Jr. May 2012 A1
20120104110 Roberts, Jr. May 2012 A1
20120240451 Ricks Sep 2012 A1
20120328889 Hayashi Dec 2012 A1
20130140860 Naughton et al. Jun 2013 A1
20140075666 Campbell Mar 2014 A1
Foreign Referenced Citations (14)
Number Date Country
0542302 May 1993 EP
0583542 Feb 1994 EP
0535147 Sep 1996 EP
1987934 Nov 2008 EP
58213028 Dec 1983 JP
S59145125 Aug 1984 JP
59155443 Sep 1984 JP
59210954 Nov 1984 JP
60090744 May 1985 JP
06166112 Jun 1994 JP
07195536 Aug 1995 JP
2010046920 Mar 2010 JP
9119867 Dec 1991 WO
2011103284 Aug 2011 WO
Non-Patent Literature Citations (7)
Entry
GB Examination Report for GB 1308511.3, Completed by the GB Patent Office, dated Aug. 10, 2016, 5 Pages.
Website www.jsp.com, 2006, “Arplank, Expanded bead foam packaging materials, Material Properties, Auto/Mil Specs” 21 Pages.
Website, Manning, www.mmh.com Oct. 2008, Retrived on Jan. 4, 2011, “Modern Materials Handling, Choosing Plastic.” 2 Pages.
Website, Specter, www.mmh.com Sep. 2009, “Modern Materials Handling, The Rise of the Plastic Pallet.” 4 Pages.
Vehicle Certification Agency Oct. 25, 2007, pp. 1-6, Test Report No. ESH178571, “Test Report: Seat Strength.”
ECE Agreement Jul. 31, 2002, Regulation No. 17, “Concerning the adoption of uniform technical prescriptions for wheeled vehicles, equipment and parts which can be fitted and / or used on wheeled vehicles and the conditions for reciprocal recognition of approvals granted on the basis of these prescriptions.”
Partial Supplementary European Search Report for European Application No. 137698791, Completed by the European Patent Office, dated Nov. 11, 2015, 9 Pages.
Related Publications (1)
Number Date Country
20160157681 A1 Jun 2016 US
Divisions (1)
Number Date Country
Parent 13862018 Apr 2013 US
Child 15045472 US