This is a national phase application filed under 35 U.S.C. 371 of PCT/JP2007/054382 filed on Feb. 28, 2007, which claims the benefit of priority from the prior Japanese Patent Application No. 2006-060688 filed on Mar. 7, 2006, the entire contents of all of which are incorporated herein by reference.
The present invention relates to a battery comprising an electrode plate assembly constituted by alternately laminating a plurality of first electrode plates of the same shape as each other and a plurality of second electrode plates different in electric potential from the first electrode plates with separators interposed therebetween, and relates to a manufacturing method thereof.
Heretofore, a number of batteries has been proposed, each of which comprises an electrode plate assembly constituted by alternately laminating a plurality of first electrode plates of the same shape as each other and a plurality of second electrode plates different in electric potential from the first electrode plates with separators interposed therebetween (for example, see Patent document 1).
Patent Document: JP2001-93505A
In the battery of Patent Document 1, a plurality of positive electrode plates constituting an electrode plate group (an electrode plate assembly) is connected to a current collector and a plurality of negative electrode plates is connected to a current collector. Accordingly, the current collector can collect positive electric charge from the positive electrode plates and collect negative electric charge from the negative electrode plates.
Meanwhile, in the battery of Patent Document 1, the negative electrode plates (the first electrode plates) include two outermost first electrode plates that are located in outmost positions in a lamination direction of the electrode plate group (the electrode plate assembly) and have a bent shape. Specifically, each outermost first electrode plate is designed to be bent at a bent portion farther from the current collector than its own lead portion (joint end) so that a near portion extending from the bent portion to the joint end is positioned inward in the lamination direction than a distant portion positioned farther from the current collector than the bent portion.
However, the first electrode plates constituting the electrode plate assembly including the outermost first electrode plates have the same shape as each other and therefore the above configured outermost first electrode plates could not reach the current collector well due to the bent shape as compared with other first electrode plates. Thus, the outermost first electrode plates could not easily be connected to the current collector. In Patent Document 1, furthermore, the joint ends of the first electrode plates and the current collector are connected to each other with a brazing material. This would cause problems in the cost of brazing material and the time for reflowing the brazing material to the current collector, resulting in an excessive manufacturing cost.
The present invention has been made to solve the above problems and has a purpose to provide a low-cost battery in which an outermost first electrode plate is designed to be bent at a bent portion farther from a current collector than its own joint end so that a near portion extending from the bent portion to the joint end is positioned inward in a lamination direction than a distant portion positioned farther from the current collector than this bent portion, and in which first electrode plates including the outermost first electrode plate are connected to a current collector joint part without use of a joining member such as a brazing material, and a manufacturing method thereof.
To achieve the above purpose, the invention provides a battery comprising: an electrode plate assembly including a plurality of first electrode plates of the same shape as each other and a plurality of second electrode plates different in electric potential from the first electrode plates, which are laminated alternately with separators interposed therebetween; and a current collector connected to each of the first electrode plates to collect electric charge from the first electrode plates, the current collector including a collector joint part connected to a joint end of each first electrode plate; wherein the plurality of first electrode plates includes: two outermost first electrode plates located in outermost places in a lamination direction of the electrode plate assembly; and at least one inside first electrode plate located between the two outermost first electrode plates; each of the outermost first electrode plates is designed to be bent at a bent portion farther from the collector joint part than the joint end of each first electrode plate so that a near portion extending from the bent portion to the joint end is positioned inward in the lamination direction than a distant portion positioned farther from the collector joint part than the bent portion, the collector joint part is connected to the joint end of the inside first electrode plate through a melted portion of the collector joint part itself and connected to the joint end of each outermost first electrode plate through a melted portion of the collector joint part itself.
In the battery of the invention, each outermost first electrode plate is designed to be bent at the bent portion farther from the collector joint part than the own joint end so that the near portion extending from the bent portion to the joint end is positioned inward in the lamination direction than the distant portion positioned farther from the collector joint part than the bent portion. With such configuration, the size of the collector joint part in the lamination direction can be made smaller than the size of the electrode plate assembly in the lamination direction. Accordingly, the current collector can be made so small in size in the lamination direction as to be equal to the electrode plate assembly, thereby achieving battery size reduction.
In the battery of the invention, furthermore, the collector joint part is melted itself and connected not only to the joint end of the inside first electrode plate but also to the joint end of each outermost electrode plate. In the battery of the invention, specifically, the outermost first electrode plates as well as the inside first electrode plate are connected to the collector joint part by metal melted from the collector joint part itself without use of a joining member such as a brazing material. This connection between the first electrode plates and the current collector using no joining member such as a brazing material can eliminate the need for the joining member such as brazing material and save the time for reflowing the brazing material and the like, resulting in a cost reduction.
It is to be noted that the first electrode plates are positive electrode plates or negative electrode plates. At least ones (first electrode plates) of the positive electrode plates and the negative electrode plates have only to be connected to the current collector as mentioned above. In other words, the battery of the invention may include a battery in which only the negative electrode plates are connected to the current collector as above, a battery in which only positive electrode plates are connected to the current collector as above, or a battery in which both the positive electrode plates and the negative electrode plates are connected to the current collectors respectively as above.
Furthermore, in the above battery, preferably, the collector joint part is connected to the joint end of the inside first electrode plate with a fillet formed of metal melted from the collector joint part itself and connected to the joint end of each outermost first electrode plate with a fillet formed of metal melted from the collector joint part itself.
In the battery of the invention, the joint end of each first electrode plate (the inside first electrode plate and the outermost first electrode plates) and the collector joint part are connected with the fillet. Accordingly, each first electrode plate and the current collector are connected firmly and therefore the battery can have higher connecting reliability between the first electrode plates and the current collector.
Furthermore, in any one of the above batteries, preferably, the current collector includes an extended part extending toward the distant portion of each outermost first electrode plate, the extended part being configured to be in contact with an outer surface of the near portion, which is included in an outer surface of each outermost first electrode plate facing outward in the lamination direction, and to hold the outermost first electrode plate so that the near portion is positioned inward in the lamination direction than the distant portion.
In the battery of the invention, the current collector includes the extended parts each extending toward the distant portion of each outermost first electrode plate. Since this extended part is placed in contact with the outer surface of the near portion, which is included in the outer surface of the outermost first electrode plate, the outermost first electrode plate can be held appropriately in a position so that the near portion is positioned on the inner side in the lamination direction than the distant portion. In addition, the extended part receive a force of the near portion of the outermost first electrode plate that attempts to move outward in the laminated direction by a restoring force of the bent portion. Accordingly, any force is unlikely to be applied to the connecting portion between the joint end of the outermost first electrode plate and the collector joint part, thus maintaining a good connecting relation.
According to another aspect, the invention provides a manufacturing method of a battery comprising: an electrode plate assembly including a plurality of first electrode plates of the same shape as each other and a plurality of second electrode plates different in electric potential from the first electrode plates, which are laminated alternately with separators interposed therebetween; and a current collector connected to each of the first electrode plates to collect electric charge from the first electrode plates, the current collector including a collector joint part connected to a joint end of each first electrode plate; wherein the plurality of first electrode plates includes: two outermost first electrode plates located in outermost places in a lamination direction of the electrode plate assembly; and at least one inside first electrode plate located between the two outermost first electrode plates; each of the outermost first electrode plates is designed to be bent at a bent portion farther from the collector joint part than the joint end of each first electrode plate so that a near portion extending from the bent portion to the joint end is positioned inward in the lamination direction than a distant portion positioned farther from the collector joint part than the bent portion, the collector joint part is connected to the joint end of the inside first electrode plate through a melted portion of the collector joint part itself and connected to the joint end of each outermost first electrode plate through a melted portion of the collector joint part itself, wherein the current collector before being connected includes: an inside part with which the joint end of the inside first electrode plate will be placed in contact, and outermost parts each of which is located outside the inside part in the lamination direction and protrudes toward the distant portion of each outermost first electrode plate than the inside part, each outermost part being to be placed in contact with the joint end of each outermost first electrode plate, the method comprises a welding step for welding the current collector and the first electrode plates, the welding step including: placing the joint end of the inside first electrode plate in contact with the inside part of the current collector and the joint ends of the outermost first electrode plates in contact with the outermost parts of the current collector, applying an energy beam to the inside part and the outermost parts of the current collector from an opposite side from the first electrode plates to melt the inside part and the outermost parts, and forming the collector joint part connected to the joint end of the inside first electrode plate and connected to the joint ends of the outermost first electrode plates.
The manufacturing method of the invention is to manufacture the battery adapted such that each of the outermost first electrode plates is designed to be bent at the bent portion farther from the collector joint part than the own joint end so that the near portion extending from the bent portion to the joint end is positioned inward in the lamination direction than the distant portion positioned farther from the collector joint part than the bent portion.
With such configuration, the collector joint part can be made smaller in size in the lamination direction than the electrode plate assembly. Accordingly, the current collector can be made so small in size in the lamination direction as to be equal to the electrode plate assembly, thereby achieving battery size reduction.
However, the plurality of first electrode plates (the inside first electrode plate and the outermost first electrode plates) constituting the electrode plate assembly have the same shape as each other and therefore the above designed outermost first electrode plates may not reach (may not be connected to) the collector joint part sufficiently due to the bent shape as compared with the inside first electrode plate. In Patent Document 1, the joining member such as a brazing material is used to connect the joint ends of the first electrode plates to the current collector and accordingly even the outermost first electrode plate designed as above could be connected to the current collector through the brazing material or the like.
In the manufacturing method of the invention, on the other hand, the current collector before being connected includes the inside part with which the joint end of the inside first electrode plate will be placed in contact, and the outermost parts each of which is located outside the inside part in the lamination direction and protrudes toward the distant portion of each outermost first electrode plate than the inside part, each outermost part being to be placed in contact with the joint end of each outermost first electrode plate. With the use of such current collector including the outermost sections each protruding toward the distant portion of each outermost first electrode plate than the inside section, the outermost first electrode plate in bent form can be placed appropriately in contact with the current collector as with the inside first electrode plate.
In the manufacturing method of the invention, furthermore, the joint end of the inside first electrode plate is placed in contact with the inside part of the current collector and the joint end of each outermost first electrode plate is placed in contact with each outermost part of the current collector, and then the inside part and the outermost parts of the current collector are externally irradiated by the energy beam from the opposite side from the first electrode plates to melt the inside part and the outermost parts. This can form the collector joint part connected to the joint end of the inside first electrode plate and to the joint end of each outermost first electrode plate.
As above, the manufacturing method of the invention, unlike the conventional manufacturing method, can connect the first electrode plates and the current collector without use of the joining member such as a brazing material. It is accordingly possible to eliminate the need for the joining member such as a brazing material and save the time for reflowing the brazing material, thereby achieving manufacturing cost reduction.
It is to be noted that the first electrode plates are the positive electrode plates or the negative electrode plates. The manufacturing method of the invention has only to be applied to at least either ones (first electrode plates) of the positive electrode plates and the negative electrode plates. In other words, the manufacturing method of the invention may include a manufacturing method of connecting only the negative electrode plates to the current collector as above, a manufacturing method of connecting only the positive electrode plates to the current collector as above, or a manufacturing method of connecting the positive electrode plates and the negative electrode plates to the current collectors respectively as above.
The energy beam to be applied may include an electron beam, a laser beam, and other. However, an electron beam is preferable.
In the above battery manufacturing method, preferably, the welding step includes forming the collector joint part connected to the joint end of the inside first electrode plate with a fillet and connected to the joint ends of the outermost first electrode plates with a fillet.
The manufacturing method of the invention includes forming the collector joint part connected not only to the joint end of the inside first electrode plate but also to the joint ends of the outermost first electrode plates with fillets respectively. Each of the first electrode plates is connected to the current collector with the fillets in this way, so that the first electrode plates and the current collector are connected firmly. Accordingly, according to the manufacturing method of the invention, a battery with high connecting reliability between the first electrode plates and the current collector can be manufactured.
In any one of the above battery manufacturing methods, preferably, the current collector includes an extended part extending toward the distant portion of each outermost electrode plate, the welding step includes: placing an outer surface of the near portion, which is included in an outer surface of each outermost first electrode plate facing outward in the lamination direction, into contact with the extended part; holding each outermost first electrode plate so that the near portion is positioned inward in the lamination direction than the distant portion; and applying the energy beam to the inside part and the outermost parts of the current collector from the opposite side from the first electrode plates.
In the manufacturing method of the invention, the current collector used therein includes the extended parts each extending toward the distant portion of each outermost electrode plate. The outer surface of the near portion of each first electrode plate is placed in contact with each extended part, and each outermost first electrode plate is held so that the near portion is positioned inward in the lamination direction than the distant portion. Then, the energy beam is irradiated to a predetermined portion of the current collector. Consequently, in the configuration where the near portion of each outermost first electrode plate is positioned inward in the lamination direction than the distant portion, the outermost first electrode plates and the current collector can be connected (welded) easily and appropriately.
After connection, furthermore, the extended part receive the force of the near portion of each outermost first electrode plate that attempts to move outward in the lamination direction due to the restoring force of the bent portion. Accordingly, any force is unlikely to be applied to the connecting portion between the joint end of each outermost first electrode plate and the collector joint part, thereby maintaining a good connecting relation.
In any one of the above battery manufacturing methods, preferably, the inside part of the current collector before being connected includes an inside recessed portion recessed when viewed from an electrode plate assembly side and first and second raised portions arranged on both sides of the inside recessed portion and raised toward the electrode plate assembly, and each of the outermost parts of the current collector before being connected includes an outermost recessed portion recessed when viewed from the electrode plate assembly side and first and second outermost raised portions arranged on both sides of the outermost recessed portion and raised toward the electrode plate assembly, the welding step includes: placing the joint end of the inside first electrode plate in contact with the first and second inside raised portions and placing the joint ends of the outermost first electrode plates in contact with the first and second outermost raised portions, and applying the energy beam to the inside part and the outermost parts from the opposite side from the first electrode plates.
In the manufacturing method of the invention, the inside part of the current collector not connected yet includes the inside recessed portion recessed when viewed from the electrode plate assembly side and the first and second raised portions arranged on both sides of the inside recessed portion and raised toward the electrode plate assembly. Each outermost part includes the outermost recessed portion recessed when viewed from the electrode plate assembly side and the first and second outermost raised portions arranged on both sides of the outermost recessed portion and raised toward the electrode plate assembly. It is therefore possible to place the joint end of the inside first electrode plate in contact with the first and second inside raised portions and to place the joint end of the outermost first electrode plate in contact with the first and second outermost raised portions.
In other words, the inside first electrode plates can be placed in contact with the inside part at two points (the first and second inside raised portions) interposing the inside recessed portion therebetween and all of outermost first electrode plates can be placed in contact with the outermost part at two points (the first and second outermost raised portions) interposing the outermost recessed portion therebetween. The inside part and the outermost parts in this state are irradiated by the energy beam from the opposite side from the first electrode plates. Accordingly, the inside part and the outermost parts can be melted appropriately to connect to the joint ends of the inside first electrode plate and the outermost first electrode plates.
The battery 100 in this embodiment is a rectangular sealed nickel-metal hydride storage battery including a battery case 110 made of metal (specifically, a nickel-plated steel plate), a safety valve 113, an electrode plate assembly 150 (see
The battery case 110 made of metal (specifically, a nickel-plated steel plate) has a rectangular box shape as shown in
The electrode plate assembly 150 is configured as shown in
Each positive electrode plate 160 has a positive electrode substrate 160k including a positive electrode filled portion 160s filled with a positive active material and a positive electrode joint end 160r unfilled with a positive active material. Each positive electrode plate 160 is arranged so that the positive electrode joint end 160r extends out in a predetermined direction (rightward in
Each negative electrode plate 170 has a negative electrode substrate 170k (such as a punching metal) including a negative electrode filled portion 170s filled with a negative active material and a negative electrode joint end 170r unfilled with a negative active material. Each negative electrode plate 170 is arranged so that the negative electrode joint end 170r extends out in an opposite direction (leftward in
Each separator 180 may be made of nonwoven fabric made of for example synthesized fiber subjected to a hydrophilic treatment.
As shown in
On the other hand, the negative electrode joint ends 170r of the negative electrode plates 170 are respectively connected, by electron beam welding or the like, to negative collector joint parts 131 of a negative current collector 130 of a rectangular plate form. Each joint part 131 is provided like a band extending in the lamination direction of the electrode plate assembly 150 (in the vertical direction in
Meanwhile, in the battery 100 in this embodiment, both the electrode plates of the electrode plate assembly 150 positioned in the outmost places (uppermost and lowermost places in
In this embodiment, on the other hand, each of the two outermost negative electrode plates 171 is bent at a bent portion 171b farther from the negative collector joint part 131 than the own negative electrode joint end 171r so that a near portion 171d extending from the bent portion 171b to the negative electrode joint end 171r is positioned inward in the lamination direction (toward the center in the vertical direction in
However, since the negative electrode plates 170 (the inside negative electrode plates 172 and the outermost negative electrode plates 171) constituting the electrode plate assembly 150 have the same shape as each other, the outermost negative electrode plates 171 having the above shape may not reach (may not be connected to) the negative collector joint part 131 well as compared with the inside negative electrode plates 172. In Patent Document 1, the joint ends of the first electrode plates (corresponding to the negative electrode plates 170 in the present embodiment) are connected to the current collector with the joining member such as a brazing material. This allows even the outermost first electrode plates of the same shape to be connected to the current collector with the brazing material or the like.
In the battery 100 of this embodiment, on the other hand, as shown in enlarged view in
When the negative electrode joint ends 170r of the negative electrode plates 170 are connected to the negative collector joint parts 131 with the fillets 131b, the negative electrode plates 170 and the negative current collector 130 are connected firmly, providing higher connecting reliability between the negative electrode plates 170 and the negative current collector 130.
Furthermore, the positive electrode plates 160 constituting the electrode plate assembly 150 are also arranged as with the negative electrode plates 170 such that the positive electrode joint ends 160r of the positive electrode plates 160 are connected to positive collector joint parts 121 with fillets 121b formed of metal melted from the positive collector joint part 121 (see
The negative current collector 130 further includes extended parts 132 as shown in
The above battery 100 of this embodiment is manufactured as follows.
Firstly, the positive electrode substrate 160k made of foamed nickel is prepared and a predetermined region thereof is filled with a positive active material containing nickel hydroxide. This is then shaped into the positive electrode plate 160 having the positive electrode filled portion 160s comprised of the positive electrode substrate 160k filled with the positive active material and the positive electrode joint end 160r comprised of the positive electrode substrate 160k unfilled with the positive active material. The negative electrode substrate 170k made of punching metal is also prepared and a predetermined region thereof is filled with a negative active material containing hydrogen absorbing alloy or the like. This is then shaped into the negative electrode plate 160 having the negative electrode filled portion 170s comprised of the negative electrode substrate 170k filled with the negative active material and the negative electrode joint end 170r comprised of the negative electrode substrate 170k unfilled with the negative active material.
Secondly, the positive electrode plates 160 and the negative electrode plates 170 are alternately laminated with the separators 180 interposed therebetween. This is shaped under pressure into the electrode plate assembly 150. Of the negative electrode plates 170, each of the outermost negative electrode plates 171 located in outmost places in the lamination direction is previously bent at the bent portion 171b as shown in
Furthermore, a rectangular flat plate-like nickel-plated steel plate is prepared and molded by press-molding into the negative current collector 130 including a flat plate-like body part 133 and the extended parts 132 each extending in bent form from both ends of the body part 133 in a short-side direction thereof as shown in
To be more specific, as shown in
In this embodiment, five sets of the inside part 136 and the outermost parts 135 are formed at equal intervals (at positions corresponding to the collector joint parts 131) in the negative current collector 130 in the longitudinal direction (in the vertical direction in
To be more concrete, as shown in
In this embodiment, as shown in
The rectangular flat plate-like nickel-plated steel plate is prepared and molded by press-molding into the positive current collector 120 including a flat plate-like body part 123 and extended parts 132 each extending in bent form from both ends of the body part 123 in a short-side direction thereof (in the vertical direction in
(Welding Process)
Next, a welding process is conducted to weld the positive electrode plates 160 of the electrode plate assembly 150 to the positive current collector 120 and also weld the negative electrode plates 170 to the negative current collector 130.
Specifically, as shown in
Meanwhile, the negative electrode plates 170 (the inside negative electrode plates 172 and the outermost negative electrode plates 171) constituting the electrode plate assembly 150 are made equal in shape to each other. Accordingly, each outermost negative electrode plate 171 bent as above may not sufficiently reach the negative current collector 130 due to such a bent form as compared with the inside negative electrode plates 172. In this embodiment, therefore, the negative current collector 130 is designed so that the outermost part 135 which receives the negative electrode joint end 171r of the outermost negative electrode plate 171 protrudes toward the distant portion 171c of the outermost negative electrode plate 171 (to the right in
In this state, an electron beam EB is applied to the inside part 136 and the outermost parts 135 of the negative current collector 130 from an opposite side (the left side in
Since all of the negative electrode plates 170 are connected to the negative current collector 130 with the fillets 131b as above, the negative electrode plates 170 and the negative current collector 130 are connected firmly. Furthermore, the negative electrode plates 170 and the negative current collector 130 can be connected without use of the joining member such as a brazing material as in the conventional method. It is therefore possible to eliminate the need for the joining member such as a brazing material and save the time for reflowing the brazing material or the like in advance to the negative current collector 130, resulting in a manufacturing cost reduction.
Furthermore, as shown in
Since all of the positive electrode plates 160 are connected to the positive current collector 120 with the fillets 121b as above, the positive electrode plates 160 and the positive current collector 120 are connected firmly. Furthermore, the positive electrode plates 160 and the positive current collector 120 can be connected without use of the joining member such as a brazing material as in the conventional method. It is therefore possible to eliminate the need for the joining member such as a brazing material and save the time for reflowing the brazing material or the like, resulting in a manufacturing cost reduction.
In separate steps from above, as shown in
Successively, the negative current collector 130 connected to the negative electrode plates 170 of the electrode plate assembly 150 is connected to an inner surface 115b of the closing member 115 by electron beam welding. This assembly is inserted from the positive current collector 120 side into the battery housing 111 through the opening 111g. At that time, the closing member 115 covers the battery housing 111. The closing member 115 and the battery housing 111 are connected by laser irradiation applied from outside, thereby sealing the battery housing 111. A laser beam is externally applied to a recess of the cylindrical portion 141 of each of the first and second positive terminals 140b and 140c to connect the compressively deformed portion 141h of each cylindrical portion 141 to the positive current collector 120. An electrolyte is poured through an inlet 111k positioned in a top part 111a of the battery housing 111 and then the safety valve 113 is attached to close the inlet 111k. Thereafter, a predetermined process such as initial charging is conducted, and the battery 100 is completed.
The present invention is explained in the embodiment, but not limited thereto, and the present invention may be embodied in other specific forms without departing from the essential characteristics thereof.
For instance, in the embodiment, the nickel-metal hydride storage battery is manufactured as the battery 100. The manufacturing method of the invention can be applied not only to the nickel-metal hydride storage battery but also to any types of batteries if only it is made by welding an electrode plate assembly including a plurality of laminated electrode plates to a current collector.
The embodiment explains the manufacturing method of the battery (the battery 100) including the metal battery case 110. The manufacturing method of the invention can be applied not only to such a battery with the metal battery case but also any batteries with battery cases made of other materials (e.g. resin).
Number | Date | Country | Kind |
---|---|---|---|
2006-060688 | Mar 2006 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2007/054382 | 2/28/2007 | WO | 00 | 8/26/2008 |