The present disclosure relates to the technical field of electronic cigarettes, and in particular to a battery assembly for an electronic cigarette, an electronic cigarette and a control method thereof.
A conventional electronic cigarette mainly includes a battery assembly and an atomization assembly, and a structure thereof is shown in
With reference to
Thereby, there may be a mismatch between powers of the battery assembly in the electronic cigarette and the atomization assembly. A high resistance of the atomization assembly can result in insufficient smoke generated in operation, and a low resistance of the atomization assembly can cause the battery to be over heated or fluid leakage, which result in poor user experience and may bring about a risk to security of a user.
In view of the above, a battery assembly for an electronic cigarette, an electronic cigarette and a control method thereof are provided according to the present disclosure, to solve the problem that user experience is poor and there is a security risk in an electronic cigarette caused by a mismatch between powers of the battery assembly of the electronic cigarette and the atomization assembly in conventional technology.
To achieve the object above, following technical solutions are provided according to the present disclosure.
A battery assembly for an electronic cigarette, applied to form the electronic cigarette in combination with an atomization assembly, is provided, which includes:
Optionally, the electrical element is a resistor, and the resistor is connected in series between the second pin of the microcontroller and the low voltage end of the electric heating wire.
Optionally, the electrical element is an ammeter, the ammeter is connected in series between the third pin of the microcontroller and the low voltage end of the electric heating wire, and the second pin is connected to the ammeter.
Optionally, the battery is rechargeable battery.
Optionally, the battery assembly further includes:
Optionally, the rechargeable battery includes a charging circuit and a power supply circuit.
An electronic cigarette is provided, which includes any above-described battery assembly for an electronic cigarette.
Optionally, the electronic cigarette further includes:
A control method of an electronic cigarette, applied to an electronic cigarette including any above-described battery assembly, is provided, which includes:
Optionally, determining the resistance of the electric heating wire of the atomization assembly includes:
According to the technical solutions above, compared with conventional technology, a battery assembly for an electric cigarette, an electric cigarette and a control method thereof are provided according to the present disclosure. In the battery assembly for the electric cigarette, the microcontroller is connected to both the battery and the atomization assembly, to form a current loop with the battery and the atomization assembly, and the microcontroller is connected to the high voltage end and the low voltage end of the electric heating wire of the atomization assembly via different pins. The connection enable the microcontroller to determine the resistance of the electric heating wire by obtaining related parameters from the electric heating wire through the pins and control to open the circuit connected between the battery and the electric heating wire of the atomization assembly in a case that it is determined that the resistance of the electric heating wire of the atomization assembly is beyond the predetermined resistance range. In this way, the electronic cigarette can be controlled to stop operating in a case that there is a mismatch between powers of the battery assembly for the electronic cigarette and the atomization assembly, thereby avoiding occurrence of generating insufficient smoke and preventing the battery from being over heated and leaking fluid during use of the electronic cigarette.
The drawings to be used in the descriptions of embodiments or conventional technology are described briefly as follows, so that technical solutions according to the embodiments of the invention or according to conventional technology may become clearer. Apparently, the drawings in the following descriptions only illustrate some embodiments of the invention. For those in the art, other drawings may be obtained based on these drawings without any creative work.
11 end cover, 12 microphone controller, 13 microphone base, 14 battery, 15 battery sleeve, 16 spring electrode, 17 electrode fixture, 18 connection base, 20 connector, 21 top electrode, 22 top insulating ring, 23 atomizer base, 24 electric heating wire, 25 PVC silicone fiberglass sleeving, 26 oil storage cotton, 27 atomizer sleeve, 28 seal ring, 29 suction nozzle cover.
A battery assembly for an electronic cigarette and an electronic cigarette are provided according to the embodiments of the invention, where the electronic cigarette is provided with a function of determining a resistance of an electric heating wire in an atomization assembly, which ensures that the electronic cigarette can normally operate only in a case that a power of the battery assembly for the electronic cigarette matches that of the atomization assembly, thereby avoiding occurrence of generating insufficient smoke and preventing the battery from being over heated and leaking fluid during use of the electronic cigarette.
Technical solutions according to the embodiments of the invention are described clearly and completely hereinafter in conjunction with the drawings. Apparently, the described embodiments are only a few rather than all of the embodiments of the invention. Any other embodiments obtained by those skilled in the art based on the embodiments according to the present disclosure without any creative work fall in the scope of the present disclosure.
The battery 101 may provide a voltage for an electric heating wire of the atomization assembly 20. The microcontroller 102 is connected to the battery 101 and the electric heating wire of the atomization assembly 20. The microcontroller 102 may control to open a circuit connected between the battery 101 and the electric heating wire of the atomization assembly 20 in a case that a resistance of the electric heating wire of the atomization assembly 20 is determined to be beyond a predetermined resistance range.
The microcontroller 102 may include a first pin, a second pin and a third pin. The first pin is connected to a high voltage end of the electric heating wire, the second pin is connected to a low voltage end of the electric heating wire via an electrical element 103 and the third pin is connected to the low voltage end of the electric heating wire.
In this way, the microcontroller 102 is provided with a function of determining the resistance of the electric heating wire of the atomization assembly 20. A structure and an operating principle of the electronic cigarette according to the present disclosure are briefly described in conjunction with the above-described connections hereinafter.
The battery assembly 10 for the electronic cigarette not only includes the battery 101, but also includes the microcontroller 102 connected to the battery and the electric heating wire of the atomization assembly 20. The microcontroller 102 can obtain electrical parameters from the electric heating wire, determine the resistance of the electric heating wire by performing some basic logical calculations on the obtained electrical parameters, and compare the resistance of the electric heating wire obtained through the calculations with the predetermined resistance range to determine whether the resistance is beyond the predetermined resistance range. The predetermined resistance range is determined based on a standard of matching a power of the battery assembly 10. The resistance being beyond the predetermined resistance range indicates that a power of the electric heating wire does not match that of the battery 101, that is, a power of the atomization assembly 20 does not match that of the battery assembly 10. If continuing to operate, the atomization assembly 20 may generate insufficient smoke or the battery may be over heated or leak fluid. Thus, in this case, the microcontroller 102 needs to open the circuit connected between the battery 101 and the electric heating wire of the atomization assembly 20.
Reference can be made to
R1. The microcontroller 102 may include a first pin, a second pin and a third pin. The first pin is connected to a high voltage end of an electric heating wire L1, the second pin connected to a low voltage end of the electric heating wire L1 via the resistor R1 and the third pin is connected to the low voltage end of the electric heating wire L1. The resistor R1 is connected in series between the second pin of the microcontroller 102 and the low voltage end of the electric heating wire L1, to detect and calculate a current through the electric heating wire L1. Thus, the microcontroller 102 can obtain a resistance of the electric heating wire L1 based on the calculated current. The resistance of the resistor R1 is known accordingly. To maximally reduce influence on normal operating of the electronic cigarette, the resistor R1 may be configured to have a low resistance, for example, 0.3 Ω.
The operating principle of the electronic cigarette according to the embodiment is described hereinafter in conjunction with
Of course, the above-described method for detecting the resistance of the electric heating wire L1 of the atomization assembly 20 is not the only implementation, and reference can be made to
To be specific, an operating process of the microcontroller 102 may include:
and
A specific implementation of step S1 of determining the resistance of the electric heating wire of the atomization assembly may include determining the current through the electric heating wire and the voltage across the electric heating wire first and then calculating the resistance of the electric heating wire based on the current and the voltage of the electric heating wire according to the Ohm's law. The method may be implemented based on circuits with different connection structures, such as the connection structure as shown in
In the embodiment, the microcontroller in the battery assembly for an electronic cigarette is connected to both the battery and the atomization assembly, to form a current loop with the battery and the atomization assembly, and the microcontroller is connected to the high voltage end and the low voltage end of the electric heating wire of the atomization assembly via different pins. The connection enable the microcontroller to determine the resistance of the electric heating wire by obtaining related parameters from the electric heating wire through the pins and control to open the circuit connected between the battery and the electric heating wire of the atomization assembly in a case that it is determined that the resistance of the electric heating wire of the atomization assembly is beyond the predetermined resistance range. In this way, the electronic cigarette can be controlled to stop operating in a case that there is a mismatch between powers of the battery assembly for the electronic cigarette and the atomization assembly, thereby avoiding occurrence of generating insufficient smoke and preventing the battery from being over heated and leaking fluid during use of the electronic cigarette.
In the embodiment, the battery assembly for an electronic cigarette has more detailed functions than the battery assembly for an electronic cigarette according to the first embodiment, such as a function of reusable charging and power supply and a function of indicating the operating status of the battery assembly, better perfecting functions of an electronic cigarette and facilitate using of a user.
An electronic cigarette is further provided according to an embodiment of the invention, which may include the battery assembly 10 for an electronic cigarette according to any of the implementations in the embodiments above.
Since the electronic cigarette according to the embodiment may include the battery assembly for an electronic cigarette according to any of the implementations in the first and second embodiments, the electronic cigarette can also open the circuit connected between the battery and the electric heating wire of the atomization assembly in a case that the microcontroller determines the resistance of the electric heating wire of the atomization assembly is beyond the predetermined resistance range. In this way, the electronic cigarette can be controlled to stop operating in a case that a power of the battery assembly for an electronic cigarette does not match that of the atomization assembly, avoiding occurrence of generating insufficient smoke and preventing the battery from being over heated and leaking fluid during use of the electronic cigarette.
The embodiments in the specification are described in a progressive manner, each of which emphasizes differences from the others, and reference can be made to each other for same or similar parts.
The description of the embodiments herein enables those skilled in the art to implement or use the present disclosure. Numerous modifications to the embodiments are apparent to those skilled in the art, and the general principles defined herein can be implemented in other embodiments without deviating from the spirit or scope of the present disclosure. Therefore, the invention is not limited to the embodiments described herein, but is in accordance with the widest scope consistent with the principles and novel features disclosed herein.
Number | Date | Country | Kind |
---|---|---|---|
201420051821.3 | Jan 2014 | CN | national |
This application is a Continuation of International Application PCT/CN2014/072312, titled “BATTERY ASSEMBLY FOR ELECTRONIC CIGARETTE, ELECTRONIC CIGARETTE AND CONTROL METHOD THEREOF”, and filed on Feb. 20, 2014, which claims priority to Chinese Patent Application No. 201420051821.3 titled “BATTERY ASSEMBLY OF ELECTRONIC CIGARETTE, AND ELECTRONIC CIGARETTE” and filed with the Chinese State Intellectual Property Office on Jan. 26, 2014, both of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2014/072312 | Feb 2014 | US |
Child | 15209751 | US |