Residential homes and other buildings with basements often have one or more built-in crocks or sump pits, which are holes designed to collect water that has accumulated around the home's foundation. A sump pump is typically installed in the sump pit to remove any accumulated water. Such sump pumps combine an electric motor with a fluid pump and are usually powered through the home's 120 VAC electrical system. Since power outages can occur for many known reasons, including as a result of heavy storms, when sump pumps are needed the most, homes can also be equipped with a secondary, battery-operated, backup sump pump. The backup sump pump is typically powered by a conventional 12 VDC battery, such as a lead-acid marine or deep cycle battery. The backup battery is often connected to a trickle-charge battery charger in order to ensure the battery is charged when it is needed.
In addition, traditional backup sump pumps operate at one speed (either on or off). One speed operation reduces efficiency and can quickly drain the battery, leaving the backup sump pump non-operational until the battery can be recharged.
Some embodiments of the invention provide an efficient battery backup sump pump system (hereinafter “BBU system”).
In other embodiments of the invention, a backup sump pump system can include a portable housing. The portable housing can include a first half and a second half, and one of the first half and the second half including a control panel. Control circuitry can be integrated into the portable housing, the control circuitry can be powered by a line power and when the line power is not available, the control circuitry can be powered by a battery power, with the control circuitry connected to the control panel, and the control circuitry including a pressure transducer. A backup sump pump can be included, the backup sump pump connected to the control circuitry. And, a fluid level sensor can be included, the fluid level sensor can be connected to the pressure transducer, with the pressure transducer measuring a pressure in the fluid level sensor, and based on the measured pressure, the control circuitry adjusting the speed of backup sump pump.
In other embodiments of the invention, a backup sump pump system can include a portable housing including a first half and a second half, and one of the first half and the second half including a control panel. Control circuitry can be integrated into the portable housing, the control circuitry can be powered by a line power and when the line power is not available, the control circuitry can be powered by a rechargeable battery. The control circuitry can be connected to the control panel, with the control circuitry including a pressure transducer. A backup sump pump can be included, the backup sump pump connected to the control circuitry. A boost circuit can be connected to the control circuitry, the boost circuit can provide a substantially consistent voltage when the line power is not available while allowing the rechargeable battery to drop to a predetermined lower voltage. And, a fluid level sensor can be included, the fluid level sensor can be connected to the pressure transducer, with the pressure transducer measuring a pressure in the fluid level sensor, and based on the measured pressure, the control circuitry adjusting the substantially constant voltage to the backup sump pump.
In some embodiments of the invention, a method for controlling a speed of a sump pump can include determining if the sump pump is running; determining if a water level is above a high setpoint if the sump pump is not running; turning the sump pump on at a predetermined speed if the water level is above the high setpoint; determining if a water level is falling if the sump pump is running; decreasing the speed of the sump pump if the water level is falling; determining if the sump pump is at maximum speed if the water level is not falling; and increasing the speed of the sump pump if the sump pump is not at maximum speed.
The embodiments will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements, and:
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
The following discussion is presented to enable a person skilled in the art to make and use embodiments of the invention. Various modifications to the illustrated embodiments will be readily apparent to those skilled in the art, and the generic principles herein can be applied to other embodiments and applications without departing from embodiments of the invention. Thus, embodiments of the invention are not intended to be limited to embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein. The following detailed description is to be read with reference to the figures, in which like elements in different figures have like reference numerals. The figures, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of embodiments of the invention. Skilled artisans will recognize the examples provided herein have many useful alternatives and fall within the scope of embodiments of the invention.
The BBU system can provide a backup sump pump system that can operate during a power outage. Typically, the peak demand for a sump pump is during a rain storm, hurricane, flooding or other severe weather. These weather conditions are also the most likely to cause loss of electrical power. An additional purpose of the BBU system is if for any reason the main (e.g., 120 VAC) primary sump pump fails, the backup sump pump can operate in place of the primary sump pump.
The BBU system can include one or more batteries fully charged and standing by for use on demand. When the sump pit water level rises above a predetermined height, the BBU system can turn on the backup sump pump and lower the water level in the pit. In some embodiments, the BBU system can continue to run or cycle on and off until there is no longer a demand from high water.
During the BBU system's time of operation, a warning light can be displayed and/or an alarm can sound alerting the user that the primary sump pump is not functioning. When AC power is available, the BBU system can be recharging and/or maintaining the battery. In some embodiments, an indication and/or an alarm can be activated if there is an issue with the battery or battery charger.
In the event of a primary sump pump failure and/or a power failure, if the sump pit fills to a preset level, determined by a device capable of providing an indication of a change in a fluid height, such as a float switch or pressure sensor, for example, the backup sump pump can be activated to lower the water level to a predetermined level. The backup sump pump can continue to run or cycle on and off until either the battery is drained or the primary sump pump is replaced, or the AC power is restored, allowing the primary sump pump to run again. In some embodiments, the backup sump pump can be capable of pumping up to 3000 GPH at 10 feet of head, for example. Other backup sump pump capacities are also considered for a variety of applications.
Similarly, in the event the primary sump pump fails to keep up with the water inflow to the sump pit so the sump pit fills to a predetermined high level, the backup sump pump can be activated to help lower the water level to a predetermined low level. The backup sump pump can continue to run or cycle on and off until either the battery is drained or the primary sump pump is able to keep up with the water inflow.
When everything is back to normal and AC power is restored, the BBU system can proceed to recharge the battery in preparation for the next occurrence. The BBU system can also allow operation of the backup sump pump while the battery charger is charging the battery.
The BBU system can be configured in a variety of arrangements to meet the needs of a variety of applications.
As shown in
The power supply 102 of the BBU system 100 can function to provide sufficient voltage and current to permit some or all operational functions of the BBU system 100 to occur without unnecessary limitations. The power supply 102 can be protected against common problems such as overcurrent. In one embodiment, the power supply can serve to convert incoming wall power (e.g., 120 VAC) to an internal supply voltage of approximately 18 VDC, at between about 2.0 A to about 2.5 A, for supplying power for internal functions. It is to be appreciated that other known voltages and currents can also be used depending on the application and available incoming wall power and hardware. This internal supply voltage can be used to supply power to the battery charger 104 and to supply power for the control system 106. In some embodiments, the power supply 102 may not be required to provide enough power to run the backup sump pump 112 without discharging the battery 114, with power to the control system 106 taking priority over the battery charger 104.
In one embodiments the power supply 102 can serve to convert incoming wall power (e.g., 120 VAC) to an internal supply voltage of about 30 VDC, at about 20 A, supplying power for internal functions. The power supply 102 can be used to power only the battery charger 104 in some embodiments, as the control system 106 and other items can be powered from supply voltages generated by an inverter 116 (as discussed below).
The battery charger 104 can function to charge a battery 114 in a supervised and controlled manner, including not overcharging the battery. In some embodiments, the battery charger 104 can charge the battery 114 in both a fast mode and a float charge mode, and can automatically switch between the charging modes. In some embodiments, the battery charger 104 can be configured to charge two or more parallel batteries at the same time. The battery charger 104 can be configured to protect itself from common problems, such as a reversed or disconnected battery.
The battery charger 104 can sense and adjust charge currents and voltages depending on the type of battery (e.g., Flooded Lead Acid, Sealed Lead Acid, GEL or AGM). Once charged, the battery charger 104 can monitor and maintain a charge to assure standby power. In some embodiments, the charger 104 can power off for energy savings until the battery 114 needs additional charge.
The control system 106 of the BBU system 100 can control BBU system 100 functions. The control system 106 can manage the operation of the system, diagnose the health and/or status of specific system functions, and can provide indications to a user of the status. The control system 106 can implement logic to properly handle situations including, but not limited to, no AC power, no AC power with water level rising, no AC power with water level rising above backup sensor, pump system self-test, pressure sensor health test, battery charger health test, control system self-test, and battery health test.
The control system 106 can perform a variety of functions. For example, the control system can monitor and activate the necessary lights and alarms. The control system 106 can also perform automatic self test sequences to verify that system components, such as the battery charger 104, inverter 116, battery(s) 114 and backup sump pump 112, are functional. The control system 106 can also include a resettable circuit breaker 120 (as shown in
The control system 106 can also perform duplex operation when two sump pumps are attached to the BBU system 100. Duplex operation can be disabled when only one sump pump is coupled to the BBU system. In some embodiments, multiple power outlets can be provided, such that an extra auxiliary outlet can be available when using the BBU system as a duplex system.
As shown in
In some embodiments, the control system 106 can also include a wireless controller 124 for transmitting and receiving data wirelessly for remote monitoring functionality, as shown in
As shown in
As shown in
As shown in
As shown in
In some embodiments, the inverter 116 can be controlled by a Silicon Laboratories C8051F360 or C8051F369 microcontroller 294. The inverter 116 can include six identical isolated flyback voltage step-up circuits, three producing a positive 160-180 VDC and three producing a negative 160-180 VDC. These can be followed by a chopper stage to turn these high DC voltages into 120 VAC at 60 Hz with a good approximation of a sine wave. Pulse-width modulators built into the microcontroller 294 provide the drive for both the flyback and chopper stages. The microcontroller's 294 built-in analog-to-digital converters can monitor the high-voltage DC, the inverter output and AC line power.
The battery 114 can be connected to the battery charger 104 via cables 272 (as shown in
As shown in
Referring to
In some embodiments, one or both of the top housing 140 and the lower housing 142 can include control circuitry 152 of the control system 106. The control circuitry 152 can include a control panel 154, and can be coupled to the battery charger 104. The battery charger 104 can be a 12 VDC, 2.0 A battery charger, for example. In other embodiments, the battery charger can be a 5.5 A or 10.0 A charger, for example. In still other embodiments, the battery charger 104 can be external to the housing 134, and may be a separate device that can be connected to the BBU system 100. The BBU system 100 and/or components of the BBU system 100 can be designed into the portable housing 134 so the BBU system 100 can meet industry standards for dust, water, RF and EMC, for example, as well as shock and vibration. These standards can include FCC-Part 15-class B (CISP 22), IEC 60335-2-29, IEC 61000-6-3, IEC 61000-6-1, IEC 60068-2-27 and IEC 60068-2-6.
As shown in
As also shown in
In some embodiments, the indicators described above can operate as follows:
Green power light 166 on—indicates DC power is available. Green Power light 166 off—indicates system is not ready—no DC power available. No alarm. If all lights are off—system is non-operational.
Yellow pump activity light 168 on—indicates the 12 V inverter has been activated (loss of AC power). Alarm can sound. Alarm can be temporarily silenced. Alarm and light may be manually reset when condition is remedied.
Red pump fault light 170 on—indicates pump failure. Light and alarm cannot be reset until situation is remedied. Reset pump breaker if tripped.
Green DC light 172 on—indicates no battery problem. Possible battery problems include, no battery, old/dead battery, low charge, broken cables, loose connections or corrosion in the terminals.
Red breaker light 174 on—indicates the breaker has been tripped and no DC power is available. Light and alarm cannot be reset until situation is remedied.
Green charge status light(s) 162—indicates a percentage of charge in the battery or estimated run time remaining.
Green charge light 176 on—battery is charging.
Red battery polarity light 178 on—battery is connected backwards. Light and alarm cannot be reset until situation is remedied.
Green test/reset light 180 on—system is going through automatic or manually initiated test sequence.
Alarm light 182 on—indicates an alarm condition.
Battery fault light 184 on—indicates system detected a battery fault condition.
As shown in
As further shown in
As shown in
For protection from power spikes, a circuit breaker 120 (e.g., 20 A) can be included in the control circuitry 152 (as shown in
Referring to
As shown in
As shown in
In some embodiments, an inner diameter 380 of the pressure cup 244 can be larger than an inner diameter 382 of the inner pressure tube 236 and/or an inner diameter 384 of the ambient pressure tube 238. For example, the diameter 380 of the pressure cup 244 can be 50 or 20 or 10 or 5 or 2 times larger than the diameter 382 of the inner pressure tube 236 and the diameter 384 of the ambient pressure tube 238. A larger diameter pressure cup 244 serves to minimize any effects of the volume, e.g., length, of the inner pressure tube 236 and/or the volume of the ambient pressure tube 238 on the accuracy of the pressure measurement from the pressure transducer 212.
The lower sensing threshold of the pressure sensor 126 is somewhat above the open bottom 248 of the pressure cup 244. In some embodiments, a timer 386 can be used to allow the backup sump pump 112 to run long enough to pump water to a level at least to or below the open bottom 248 of the pressure cup 244 before turning the pump off. If the open bottom 248 of the pressure cup 244 is not cleared, i.e., ambient air not allowed to enter the open bottom 248, over time a small amount of pressure can remain and may leak and/or there can be absorption of some air into the water. Eventually this can cause the water level to drop and can cause the system to become uncalibrated. The timer 386 can be used to keep the calibration intact by clearing the open bottom 248 of the pressure cup 244 to ambient air pressure with each or a predetermined number of backup sump pump cycles.
The signal pin conductors 234 can extend from the plug 214 or socket 216, and terminate at a pair of conductive contacts 258, as shown in
In some embodiments, as shown in
The pressure transducer 212 as shown in
The pressure cup 244 can be attached to a wall of the sump pit 52, or to a PVC pipe 58 extending into the sump pit 52, for example, using screws or tie wraps (as shown in
The pressure transducer 212 can measure the rate of water entering the sump pit 52 and then provide an output to a voltage regulator 264 (as shown in
In some embodiments, the BBU system 100 can include a variable speed drive operable to run the backup sump pump 102 at its BEP for most pumping conditions. The BBU system 100 can also run the backup sump pump 112 at other speeds, such as when extra capacity may be needed. The pressure transducer 212 can measure the rate of water rise, and can match pump output to BEP via the voltage regulator 264 (e.g., a potentiometer), unless inflow exceeds capacity. In this event, the voltage regulator 264 can speed up the backup sump pump 112 using a turbo boost function to increase output from the backup sump pump 112.
As described above, the pressure transducer 212 can measure the rate of water rise or water column level within the sump pit 52. The voltage regulator 264 can control the output voltage to the backup sump pump 112 based on the transducer reading, allowing the backup sump pump 112 to be run at variable speeds. In some embodiments, the pressure transducer 212 can be a Freescale Semiconductor MPX5010DP. In other embodiments, the pressure transducer 212 can be a Freescale Semiconductor MPX53DP coupled with an external op-amp to provide scaling and compensation that are built into the MPX5010DP.
As shown in
The control box 360 can also include a pressure transducer 366 and a switch or relay 368 to operate one or more contacts 370. The pressure transducer 366 can serve the same purpose as pressure transducer 212. The contact 370 can be used by a user to trigger an event, such as initiation of an auto dialer or turning on a light (neither are shown). Various indicator devices, such as LEDs 372, can be used to display function and/or status information to a user. A remote communication feature 374 can also be included with the control box 360.
In some embodiments, the pressure sensor 126 can be coupled to the control box 360 using a plug 214 and socket 216 configuration, as previously described. In other embodiments, one or more pressure line connectors 376 can be accessible on the control box 360. Similarly, a high water alarm connector 378 can be included for connection with the high water level contact sensor 128.
Any pump will have a best efficiency point (BEP), a speed at which it moves the most water per watt of power. At lower speeds, the amount of water moved falls off more quickly than the power used. At higher speeds, the amount of power used increases more rapidly than the amount of water moved. A pump will move the most gallons per charge of the battery if it is operated at the BEP. However, a storm may pour water into the sump faster than the pump, operated at BEP, can remove it. The following method describes how the control circuitry 152 adjusts the pump speed in such cases. The objective is to increase the speed above BEP no more than necessary to stay ahead of the in-flow. In some embodiments, the method can be run about once per second, although faster or slower is within the capability of the control circuitry 152.
The method can start at step 300. At step 302, the control circuitry 152 (as shown in
If the overflow contacts 258 are not closed, the control circuitry 152 determines if the overflow counter 268 is at zero or another value (step 312). If the overflow counter 268 is not at zero, the overflow counter 268 can be decremented by a predetermined value, such as one (step 314). The method can end at step 316.
If the overflow counter 268 is at zero, the control circuitry 152 determines if the water is above the low set point (step 318). If the water is not above the low set point, the backup sump pump 112 can be stopped (step 320). The method can end at step 322.
If the water is above the low set point, the control circuitry 152 can determine if the backup sump pump 112 is running (step 324) by monitoring a current to the backup sump pump 112, for example. If the backup sump pump 112 is not running, the control circuitry 152 can determine if the water is above the high set point (step 326). If the water is not above the high set point, the method can end at step 328. If the water is above the high set point, the backup sump pump can be started (step 330). The method can then end at step 328.
If the backup sump pump 112 is running, the control circuitry 152 can determine if the water level is falling (step 332). If the water level is falling, the control circuitry 152 can determine if the speed of the backup sump pump 112 is at the BEP (step 334). If the speed of the backup sump pump 112 is at the BEP, the method can end at step 336. If the speed of the backup sump pump 112 is not at the BEP, the speed of the backup sump pump 112 can be decreased (step 338). The speed of the backup sump pump 112 can be decreased by decreasing the voltage to the backup sump pump 112, thereby reducing the speed of the backup sump pump 112. In some embodiments, the voltage can be decreased by about 0.5V each time the method is run, although higher and lower voltage changes are within the capability of the control circuitry 152. The method can then end at step 336.
If the water level is not falling, the control circuitry 152 can determine if the speed of the backup sump pump 112 is at the maximum (step 340). If the speed of the backup sump pump 112 is not at the maximum, the speed of the backup sump pump 112 can be increased (step 342). Similarly to decreasing the speed of the backup sump pump 112, the speed of the backup sump pump 112 can be increased by increasing the voltage to the backup sump pump 112, thereby increasing the speed of the backup sump pump 112. In some embodiments, the voltage can be increased by about 0.5V each time the method is run, although higher and lower voltage changes are within the capability of the control circuitry 152. The method can end at step 344.
If the water level is not falling, and the speed of the backup sump pump 112 is at the maximum, the overflow alarm 182 can be energized (step 346). The method can end at step 348.
In some embodiments, the BBU system 100 can include a local monitoring and/or test feature. In some embodiments, the control panel 154 can include a test/reset button 180, as shown in
In some embodiments, the BBU system 100 can include a remote monitoring and/or test feature including the wireless controller 124. The relative current draw of the backup sump pump 112 can be monitored by the control circuitry 152 for the purpose of remotely determining if the backup sump pump 112 is functional or not. The pulse width of a PWM (pulse width modulator) 270 (as shown in
The pulse width range feedback can also be used to provide feedback for a remote software application test function. The software application can be operable with a smartphone, for example, or other smart device, to access the BBU system 100 to provide an indication of the BBU system's operational status. The software application can be used to provide remote monitoring of the BBU system 100 including weekly test cycles and/or alerts, for example. In some embodiments, the wireless controller 124 can be programmed to transmit a response to a wireless remote device only if the wireless controller 124 is first queried by the remote device. In this way, the wireless controller 124 does not transmit wireless communications unless it is first asked to transmit a wireless communication.
It will be appreciated by those skilled in the art that while the invention has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited, and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and uses are intended to be encompassed by the claims attached hereto. The entire disclosure of each patent and publication cited herein is incorporated by reference, as if each such patent or publication were individually incorporated by reference herein. Various features and advantages of the invention are set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
981213 | Mollitor | Jan 1911 | A |
1993267 | Ferguson | Mar 1935 | A |
2238597 | Page | Apr 1941 | A |
2458006 | Kilgore | Jan 1949 | A |
2488365 | Abbott et al. | Nov 1949 | A |
2494200 | Ramqvist | Jan 1950 | A |
2615937 | Ludwig | Oct 1952 | A |
2716195 | Anderson | Aug 1955 | A |
2767277 | Wirth | Oct 1956 | A |
2778958 | Hamm et al. | Jan 1957 | A |
2881337 | Wall | Apr 1959 | A |
3116445 | Wright | Dec 1963 | A |
3191935 | Uecker | Jun 1965 | A |
3204423 | Resh, Jr. | Oct 1965 | A |
3213304 | Landerg et al. | Oct 1965 | A |
3226620 | Elliott et al. | Dec 1965 | A |
3227808 | Morris | Jan 1966 | A |
3291058 | McFarlin | Dec 1966 | A |
3316843 | Vaughan | May 1967 | A |
3481973 | Wygant | Dec 1969 | A |
3530348 | Connor | Sep 1970 | A |
3558910 | Dale et al. | Jan 1971 | A |
3559731 | Stafford | Feb 1971 | A |
3562614 | Gramkow | Feb 1971 | A |
3566225 | Paulson | Feb 1971 | A |
3573579 | Lewus | Apr 1971 | A |
3581895 | Howard et al. | Jun 1971 | A |
3593081 | Forst | Jul 1971 | A |
3594623 | LaMaster | Jul 1971 | A |
3596158 | Watrous | Jul 1971 | A |
3613805 | Lindstad | Oct 1971 | A |
3624470 | Johnson | Nov 1971 | A |
3634842 | Niedermeyer | Jan 1972 | A |
3652912 | Bordonaro | Mar 1972 | A |
3671830 | Kruger | Jun 1972 | A |
3726606 | Peters | Apr 1973 | A |
1061919 | Miller | May 1973 | A |
3735233 | Ringle | May 1973 | A |
3737749 | Schmit | Jun 1973 | A |
3753072 | Jurgens | Aug 1973 | A |
3761750 | Green | Sep 1973 | A |
3761792 | Whitney | Sep 1973 | A |
3777232 | Woods et al. | Dec 1973 | A |
3778804 | Adair | Dec 1973 | A |
3780759 | Yahle et al. | Dec 1973 | A |
3781925 | Curtis | Jan 1974 | A |
3787882 | Fillmore | Jan 1974 | A |
3792324 | Suarez | Feb 1974 | A |
3800205 | Zalar | Mar 1974 | A |
3814544 | Roberts et al. | Jun 1974 | A |
3838597 | Montgomery et al. | Oct 1974 | A |
3867071 | Hartley | Feb 1975 | A |
3882364 | Wright | May 1975 | A |
3902369 | Metz | Sep 1975 | A |
3910725 | Rule | Oct 1975 | A |
3913342 | Barry | Oct 1975 | A |
3916274 | Lewus | Oct 1975 | A |
3941507 | Niedermeyer | Mar 1976 | A |
3949782 | Athey et al. | Apr 1976 | A |
3953777 | McKee | Apr 1976 | A |
3956760 | Edwards | May 1976 | A |
3963375 | Curtis | Jun 1976 | A |
3972647 | Niedermeyer | Aug 1976 | A |
3976919 | Vandevier | Aug 1976 | A |
3987240 | Schultz | Oct 1976 | A |
4000446 | Vandevier | Dec 1976 | A |
4021700 | Ellis-Anwyl | May 1977 | A |
4041470 | Slane et al. | Aug 1977 | A |
4061442 | Clark et al. | Dec 1977 | A |
4087204 | Niedermeyer | May 1978 | A |
4108574 | Bartley et al. | Aug 1978 | A |
4123792 | Gephart et al. | Oct 1978 | A |
4133058 | Baker | Jan 1979 | A |
4142415 | Jung | Mar 1979 | A |
4151080 | Zuckerman et al. | Apr 1979 | A |
4168413 | Halpine | Sep 1979 | A |
4169377 | Scheib | Oct 1979 | A |
4182363 | Fuller et al. | Jan 1980 | A |
4185187 | Rogers | Jan 1980 | A |
4187503 | Walton | Feb 1980 | A |
4206634 | Taylor | Jun 1980 | A |
4215975 | Niedermeyer | Aug 1980 | A |
4222711 | Mayer | Sep 1980 | A |
4225290 | Allington | Sep 1980 | A |
4228427 | Niedermeyer | Oct 1980 | A |
4233553 | Prince | Nov 1980 | A |
4241299 | Bertone | Dec 1980 | A |
4255747 | Bunia | Mar 1981 | A |
4263535 | Jones | Apr 1981 | A |
4276454 | Zathan | Jun 1981 | A |
4286303 | Genheimer et al. | Aug 1981 | A |
4303203 | Avery | Dec 1981 | A |
4307327 | Streater et al. | Dec 1981 | A |
4309157 | Niedermeyer | Jan 1982 | A |
4314478 | Beaman | Feb 1982 | A |
4319712 | Bar | Mar 1982 | A |
4322297 | Bajka | Mar 1982 | A |
4330412 | Frederick | May 1982 | A |
4353220 | Curwein | Oct 1982 | A |
4366426 | Turlej | Dec 1982 | A |
4369438 | Wilhelmi | Jan 1983 | A |
4370098 | McClain et al. | Jan 1983 | A |
4370690 | Baker | Jan 1983 | A |
4371315 | Shikasho | Feb 1983 | A |
4375613 | Fuller et al. | Mar 1983 | A |
4384825 | Thomas et al. | May 1983 | A |
4399394 | Ballman | Aug 1983 | A |
4402094 | Sanders | Sep 1983 | A |
4409532 | Hollenbeck | Oct 1983 | A |
4419625 | Bejot et al. | Dec 1983 | A |
4420787 | Tibbits et al. | Dec 1983 | A |
4421643 | Frederick | Dec 1983 | A |
4425836 | Pickrell | Jan 1984 | A |
4427545 | Arguilez | Jan 1984 | A |
4428434 | Gelaude | Jan 1984 | A |
4429343 | Freud | Jan 1984 | A |
4437133 | Rueckert | Mar 1984 | A |
4448072 | Tward | May 1984 | A |
4449260 | Whitaker | May 1984 | A |
4453118 | Phillips | Jun 1984 | A |
4456432 | Mannino | Jun 1984 | A |
4462758 | Speed | Jul 1984 | A |
4463304 | Miller | Jul 1984 | A |
4468604 | Zaderej | Aug 1984 | A |
4470092 | Lombardi | Sep 1984 | A |
4473338 | Garmong | Sep 1984 | A |
4494180 | Streater | Jan 1985 | A |
4496895 | Kawate et al. | Jan 1985 | A |
4504773 | Suzuki et al. | Mar 1985 | A |
4505643 | Millis et al. | Mar 1985 | A |
D278529 | Hoogner | Apr 1985 | S |
4514989 | Mount | May 1985 | A |
4520303 | Ward | May 1985 | A |
4529359 | Sloan | Jul 1985 | A |
4541029 | Ohyama | Sep 1985 | A |
4545906 | Frederick | Oct 1985 | A |
4552512 | Gallup et al. | Nov 1985 | A |
4564041 | Kramer | Jan 1986 | A |
4564882 | Baxter | Jan 1986 | A |
4581900 | Lowe | Apr 1986 | A |
4604563 | Min | Aug 1986 | A |
4605888 | Kim | Aug 1986 | A |
4610605 | Hartley | Sep 1986 | A |
4620835 | Bell | Nov 1986 | A |
4622506 | Shemanske | Nov 1986 | A |
4635441 | Ebbing et al. | Jan 1987 | A |
4647825 | Profio et al. | Mar 1987 | A |
4651077 | Woyski | Mar 1987 | A |
4652802 | Johnston | Mar 1987 | A |
4658195 | Min | Apr 1987 | A |
4658203 | Freymuth | Apr 1987 | A |
4668902 | Zeller, Jr. | May 1987 | A |
4670697 | Wrege | Jun 1987 | A |
4676914 | Mills et al. | Jun 1987 | A |
4678404 | Lorett et al. | Jul 1987 | A |
4678409 | Kurokawa | Jul 1987 | A |
4686439 | Cunningham | Aug 1987 | A |
4695779 | Yates | Sep 1987 | A |
4697464 | Martin | Oct 1987 | A |
4703387 | Mller | Oct 1987 | A |
4705629 | Weir | Nov 1987 | A |
4716605 | Shepherd | Jan 1988 | A |
4719399 | Wrege | Jan 1988 | A |
4728882 | Stanbro | Mar 1988 | A |
4751449 | Chmiel | Jun 1988 | A |
4751450 | Lorenz | Jun 1988 | A |
4758697 | Jeuneu | Jul 1988 | A |
4761601 | Zaderej | Aug 1988 | A |
4764417 | Gulya | Aug 1988 | A |
4764714 | Alley | Aug 1988 | A |
4766329 | Santiago | Aug 1988 | A |
4767280 | Markuson | Aug 1988 | A |
4780050 | Caine et al. | Oct 1988 | A |
4781525 | Hubbard | Nov 1988 | A |
4782278 | Bossi | Nov 1988 | A |
4786850 | Chmiel | Nov 1988 | A |
4789307 | Sloan | Dec 1988 | A |
4795314 | Prybella et al. | Jan 1989 | A |
4801858 | Min | Jan 1989 | A |
4804901 | Pertessis | Feb 1989 | A |
4806457 | Yanagisawa | Feb 1989 | A |
4820964 | Kadah | Apr 1989 | A |
4827197 | Giebler | May 1989 | A |
4834624 | Jensen | May 1989 | A |
4837656 | Barnes | Jun 1989 | A |
4839571 | Farnham | Jun 1989 | A |
4841404 | Marshall et al. | Jun 1989 | A |
4843295 | Thompson | Jun 1989 | A |
4862053 | Jordan | Aug 1989 | A |
4864287 | Kierstead | Sep 1989 | A |
4885655 | Springer et al. | Dec 1989 | A |
4891569 | Light | Jan 1990 | A |
4896101 | Cobb | Jan 1990 | A |
4907610 | Meincke | Mar 1990 | A |
4912936 | Denpou | Apr 1990 | A |
4913625 | Gerlowski | Apr 1990 | A |
4949748 | Chatrathi | Aug 1990 | A |
4958118 | Pottebaum | Sep 1990 | A |
4963778 | Jensen | Oct 1990 | A |
4967131 | Kim | Oct 1990 | A |
4971522 | Butlin | Nov 1990 | A |
4975798 | Edwards et al. | Dec 1990 | A |
4977394 | Manson et al. | Dec 1990 | A |
4985181 | Strada et al. | Jan 1991 | A |
4986919 | Allington | Jan 1991 | A |
4996646 | Farrington | Feb 1991 | A |
D315315 | Stairs, Jr. | Mar 1991 | S |
4998097 | Noth et al. | Mar 1991 | A |
5015151 | Snyder, Jr. et al. | May 1991 | A |
5015152 | Greene | May 1991 | A |
5017853 | Chmiel | May 1991 | A |
5026256 | Kuwabara | Jun 1991 | A |
5028854 | Moline | Jul 1991 | A |
5041771 | Min | Aug 1991 | A |
5051068 | Wong | Sep 1991 | A |
5051681 | Schwarz | Sep 1991 | A |
5076761 | Krohn | Dec 1991 | A |
5076763 | Anastos et al. | Dec 1991 | A |
5079784 | Rist et al. | Jan 1992 | A |
5091817 | Alley | Feb 1992 | A |
5098023 | Burke | Mar 1992 | A |
5099181 | Canon | Mar 1992 | A |
5100298 | Shibata | Mar 1992 | A |
RE33874 | Miller | Apr 1992 | E |
5103154 | Dropps | Apr 1992 | A |
5117233 | Hamos et al. | May 1992 | A |
5123080 | Gillett | Jun 1992 | A |
5129264 | Lorenc | Jul 1992 | A |
5135359 | Dufresne | Aug 1992 | A |
5145323 | Farr | Sep 1992 | A |
5151017 | Sears et al. | Sep 1992 | A |
5154821 | Reid | Oct 1992 | A |
5156535 | Budris | Oct 1992 | A |
5158436 | Jensen | Oct 1992 | A |
5159713 | Gaskell | Oct 1992 | A |
5164651 | Hu | Nov 1992 | A |
5166595 | Leverich | Nov 1992 | A |
5167041 | Burkitt | Dec 1992 | A |
5172089 | Wright et al. | Dec 1992 | A |
D334542 | Lowe | Apr 1993 | S |
5206573 | McCleer et al. | Apr 1993 | A |
5222867 | Walker, Sr. et al. | Jun 1993 | A |
5234286 | Wagner | Aug 1993 | A |
5234319 | Wilder | Aug 1993 | A |
5235235 | Martin | Aug 1993 | A |
5238369 | Far | Aug 1993 | A |
5240380 | Mabe | Aug 1993 | A |
5245272 | Herbert | Sep 1993 | A |
5247236 | Schroeder | Sep 1993 | A |
5255148 | Yeh | Oct 1993 | A |
5272933 | Collier | Dec 1993 | A |
5295790 | Bossart et al. | Mar 1994 | A |
5295857 | Toly | Mar 1994 | A |
5296795 | Dropps | Mar 1994 | A |
5302885 | Schwarz | Apr 1994 | A |
5319298 | Wanzong et al. | Jun 1994 | A |
5324170 | Anastos et al. | Jun 1994 | A |
5327036 | Carey | Jul 1994 | A |
5342176 | Redlich | Aug 1994 | A |
5347664 | Hamza et al. | Sep 1994 | A |
5349281 | Bugaj | Sep 1994 | A |
5351709 | Vos | Oct 1994 | A |
5351714 | Bamowski | Oct 1994 | A |
5352969 | Gilmore et al. | Oct 1994 | A |
5361215 | Tompkins | Nov 1994 | A |
5363912 | Wolcott | Nov 1994 | A |
5394748 | McCarthy | Mar 1995 | A |
5418984 | Livingston, Jr. | May 1995 | A |
D359458 | Pierret | Jun 1995 | S |
5422014 | Allen et al. | Jun 1995 | A |
5423214 | Lee | Jun 1995 | A |
5425624 | Williams | Jun 1995 | A |
5443368 | Weeks et al. | Aug 1995 | A |
5444354 | Takahashi | Aug 1995 | A |
5449274 | Kochan, Jr. | Sep 1995 | A |
5449997 | Gilmore et al. | Sep 1995 | A |
5450316 | Gaudet et al. | Sep 1995 | A |
D363060 | Hunger | Oct 1995 | S |
5457373 | Heppe et al. | Oct 1995 | A |
5471125 | Wu | Nov 1995 | A |
5473497 | Beatty | Dec 1995 | A |
5483229 | Tamura et al. | Jan 1996 | A |
5495161 | Hunter | Feb 1996 | A |
5499902 | Rockwood | Mar 1996 | A |
5511397 | Makino et al. | Apr 1996 | A |
5512809 | Banks et al. | Apr 1996 | A |
5512883 | Lane | Apr 1996 | A |
5518371 | Wellstein | May 1996 | A |
5519848 | Wloka | May 1996 | A |
5520517 | Sipin | May 1996 | A |
5522707 | Potter | Jun 1996 | A |
5528120 | Brodetsky | Jun 1996 | A |
5529462 | Hawes | Jun 1996 | A |
5532635 | Watrous | Jul 1996 | A |
5540555 | Corso et al. | Jul 1996 | A |
D372719 | Jensen | Aug 1996 | S |
5545012 | Anastos et al. | Aug 1996 | A |
5548854 | Bloemer et al. | Aug 1996 | A |
5549456 | Burrill | Aug 1996 | A |
5550497 | Carobolante | Aug 1996 | A |
5550753 | Tompkins et al. | Aug 1996 | A |
5559418 | Burkhart | Sep 1996 | A |
5559720 | Tompkins | Sep 1996 | A |
5559762 | Sakamoto | Sep 1996 | A |
5561357 | Schroeder | Oct 1996 | A |
5562422 | Ganzon et al. | Oct 1996 | A |
5563759 | Nadd | Oct 1996 | A |
D375908 | Schumaker | Nov 1996 | S |
5570481 | Mathis et al. | Nov 1996 | A |
5571000 | Zimmerman | Nov 1996 | A |
5577890 | Nielson et al. | Nov 1996 | A |
5580221 | Triezenberg | Dec 1996 | A |
5582017 | Noji et al. | Dec 1996 | A |
5589753 | Kadah | Dec 1996 | A |
5592062 | Bach | Jan 1997 | A |
5598080 | Jensen | Jan 1997 | A |
5601413 | Langley | Feb 1997 | A |
5604491 | Coonley et al. | Feb 1997 | A |
5614812 | Wagoner | Mar 1997 | A |
5616239 | Wandell et al. | Apr 1997 | A |
5618460 | Fowler | Apr 1997 | A |
5622223 | Vasquez | Apr 1997 | A |
5624237 | Prescott et al. | Apr 1997 | A |
5626464 | Schoenmeyr | May 1997 | A |
5628896 | Klingenberger | May 1997 | A |
5629601 | Feldstein | May 1997 | A |
5632468 | Schoenmeyr | May 1997 | A |
5633540 | Moan | May 1997 | A |
5640078 | Kou et al. | Jun 1997 | A |
5654504 | Smith et al. | Aug 1997 | A |
5654620 | Langhorst | Aug 1997 | A |
5669323 | Pritchard | Sep 1997 | A |
5672050 | Webber et al. | Sep 1997 | A |
5682624 | Ciochetti | Nov 1997 | A |
5690476 | Miller | Nov 1997 | A |
5708348 | Frey et al. | Jan 1998 | A |
5711483 | Hays | Jan 1998 | A |
5712795 | Layman et al. | Jan 1998 | A |
5713320 | Pfaff et al. | Feb 1998 | A |
5727933 | Laskaris et al. | Mar 1998 | A |
5730861 | Sterghos | Mar 1998 | A |
5731673 | Gilmore | Mar 1998 | A |
5736884 | Ettes | Apr 1998 | A |
5739648 | Ellis et al. | Apr 1998 | A |
5744921 | Makaran | Apr 1998 | A |
5754036 | Walker | May 1998 | A |
5754421 | Nystrom | May 1998 | A |
5767606 | Bresolin | Jun 1998 | A |
5777833 | Romillon | Jul 1998 | A |
5780992 | Beard | Jul 1998 | A |
5791882 | Stucker | Aug 1998 | A |
5796234 | Vrionis | Aug 1998 | A |
5802910 | Krahn et al. | Sep 1998 | A |
5804080 | Klingenberger | Sep 1998 | A |
5808441 | Nehring | Sep 1998 | A |
5814966 | Williamson | Sep 1998 | A |
5818708 | Wong | Oct 1998 | A |
5818714 | Zou | Oct 1998 | A |
5819848 | Ramusson | Oct 1998 | A |
5820350 | Mantey et al. | Oct 1998 | A |
5828200 | Ligman et al. | Oct 1998 | A |
5833437 | Kurth et al. | Nov 1998 | A |
5836271 | Saski | Nov 1998 | A |
5845225 | Mosher | Dec 1998 | A |
5856783 | Gibb | Jan 1999 | A |
5863185 | Cochimin et al. | Jan 1999 | A |
5883489 | Konrad | Mar 1999 | A |
5892349 | Bogwicz | Apr 1999 | A |
5894609 | Bamett | Apr 1999 | A |
5898958 | Hall | May 1999 | A |
5906479 | Hawes | May 1999 | A |
5907281 | Miller, Jr. et al. | May 1999 | A |
5909352 | Klabunde et al. | Jun 1999 | A |
5909372 | Thybo | Jun 1999 | A |
5914881 | Trachier | Jun 1999 | A |
5920264 | Kim et al. | Jul 1999 | A |
5930092 | Nystrom | Jul 1999 | A |
5941690 | Lin | Aug 1999 | A |
5944444 | Motz et al. | Aug 1999 | A |
5945802 | Konrad | Aug 1999 | A |
5946469 | Chidester | Aug 1999 | A |
5947689 | Schick | Sep 1999 | A |
5947700 | McKain et al. | Sep 1999 | A |
5959534 | Campbell | Sep 1999 | A |
5961291 | Sakagami et al. | Oct 1999 | A |
5969958 | Nielsen | Oct 1999 | A |
5973465 | Rayner | Oct 1999 | A |
5973473 | Anderson | Oct 1999 | A |
5977732 | Matsumoto | Nov 1999 | A |
5983146 | Sarbach | Nov 1999 | A |
5986433 | Peele et al. | Nov 1999 | A |
5987105 | Jenkins et al. | Nov 1999 | A |
5991939 | Mulvey | Nov 1999 | A |
6030180 | Clarey et al. | Feb 2000 | A |
6037742 | Rasmussen | Mar 2000 | A |
6043461 | Holling et al. | Mar 2000 | A |
6045331 | Gehm et al. | Apr 2000 | A |
6045333 | Breit | Apr 2000 | A |
6046492 | Machida | Apr 2000 | A |
6048183 | Meza | Apr 2000 | A |
6056008 | Adams et al. | May 2000 | A |
6059536 | Stingl | May 2000 | A |
6065946 | Lathrop | May 2000 | A |
6072291 | Pedersen | Jun 2000 | A |
6081751 | Luo | Jun 2000 | A |
6091604 | Plougsgaard | Jul 2000 | A |
6092992 | Imblum | Jul 2000 | A |
6094026 | Cameron | Jul 2000 | A |
D429699 | Davis | Aug 2000 | S |
D429700 | Liebig | Aug 2000 | S |
6094764 | Veloskey et al. | Aug 2000 | A |
6098654 | Cohen et al. | Aug 2000 | A |
6102665 | Centers et al. | Aug 2000 | A |
6110322 | Teoh et al. | Aug 2000 | A |
6116040 | Stark | Sep 2000 | A |
6121746 | Fisher | Sep 2000 | A |
6121749 | Wills et al. | Sep 2000 | A |
6125481 | Sicilano | Oct 2000 | A |
6125883 | Creps et al. | Oct 2000 | A |
6142741 | Nishihata | Nov 2000 | A |
6146108 | Mullendore | Nov 2000 | A |
6150776 | Potter et al. | Nov 2000 | A |
6157304 | Bennett et al. | Dec 2000 | A |
6164132 | Matulek | Dec 2000 | A |
6171073 | McKain et al. | Jan 2001 | B1 |
6178393 | Irvin | Jan 2001 | B1 |
6184650 | Gelbman | Feb 2001 | B1 |
6188200 | Maiorano | Feb 2001 | B1 |
6198257 | Belehradek et al. | Mar 2001 | B1 |
6199224 | Versland | Mar 2001 | B1 |
6203282 | Morin | Mar 2001 | B1 |
6208112 | Jensen et al. | Mar 2001 | B1 |
6212956 | Donald | Apr 2001 | B1 |
6213724 | Haugen | Apr 2001 | B1 |
6216814 | Fujita et al. | Apr 2001 | B1 |
6222355 | Ohshima | Apr 2001 | B1 |
6227808 | McDonough | May 2001 | B1 |
6232742 | Wachnov | May 2001 | B1 |
6236177 | Zick | May 2001 | B1 |
6238188 | McDonough | May 2001 | B1 |
6247429 | Hara | Jun 2001 | B1 |
6249435 | Lifson | Jun 2001 | B1 |
6251285 | Clochetti | Jun 2001 | B1 |
6253227 | Vicente et al. | Jun 2001 | B1 |
D445405 | Schneider | Jul 2001 | S |
6254353 | Polo | Jul 2001 | B1 |
6257304 | Jacobs et al. | Jul 2001 | B1 |
6257833 | Bates | Jul 2001 | B1 |
6259617 | Wu | Jul 2001 | B1 |
6264431 | Trizenberg | Jul 2001 | B1 |
6264432 | Kilayko et al. | Jul 2001 | B1 |
6280611 | Henkin et al. | Aug 2001 | B1 |
6282370 | Cline et al. | Aug 2001 | B1 |
6298721 | Schuppe et al. | Oct 2001 | B1 |
6299414 | Schoenmeyr | Oct 2001 | B1 |
6299699 | Porat et al. | Oct 2001 | B1 |
6318093 | Gaudet et al. | Nov 2001 | B2 |
6320348 | Kadah | Nov 2001 | B1 |
6326752 | Jensen et al. | Dec 2001 | B1 |
6329784 | Puppin | Dec 2001 | B1 |
6330525 | Hays | Dec 2001 | B1 |
6342841 | Stingl | Jan 2002 | B1 |
6349268 | Ketonen et al. | Feb 2002 | B1 |
6350105 | Kobayashi et al. | Feb 2002 | B1 |
6351359 | Jager | Feb 2002 | B1 |
6354805 | Moeller | Mar 2002 | B1 |
6356464 | Balakrishnan | Mar 2002 | B1 |
6356853 | Sullivan | Mar 2002 | B1 |
6362591 | Moberg | Mar 2002 | B1 |
6364620 | Fletcher et al. | Apr 2002 | B1 |
6364621 | Yamauchi | Apr 2002 | B1 |
6366053 | Belehradek | Apr 2002 | B1 |
6366481 | Balakrishnan | Apr 2002 | B1 |
6369463 | Maiorano | Apr 2002 | B1 |
6373204 | Peterson | Apr 2002 | B1 |
6373728 | Aarestrup | Apr 2002 | B1 |
6374854 | Acosta | Apr 2002 | B1 |
6375430 | Eckert et al. | Apr 2002 | B1 |
6380707 | Rosholm | Apr 2002 | B1 |
6388642 | Cotis | May 2002 | B1 |
6390781 | McDonough | May 2002 | B1 |
6406265 | Hahn | Jun 2002 | B1 |
6411481 | Seubert | Jun 2002 | B1 |
6415808 | Joshi | Jul 2002 | B2 |
6416295 | Nagai | Jul 2002 | B1 |
6426633 | Thybo | Jul 2002 | B1 |
6443715 | Mayleben et al. | Sep 2002 | B1 |
6445565 | Toyoda et al. | Sep 2002 | B1 |
6447446 | Smith et al. | Sep 2002 | B1 |
6448713 | Farkas et al. | Sep 2002 | B1 |
6450771 | Centers | Sep 2002 | B1 |
6462971 | Balakrishnan et al. | Oct 2002 | B1 |
6464464 | Sabini | Oct 2002 | B2 |
6468042 | Moller | Oct 2002 | B2 |
6468052 | McKain et al. | Oct 2002 | B2 |
6474949 | Arai | Nov 2002 | B1 |
6481973 | Struthers | Nov 2002 | B1 |
6483278 | Harvest | Nov 2002 | B2 |
6483378 | Blodgett | Nov 2002 | B2 |
6490920 | Netzer | Dec 2002 | B1 |
6493227 | Nielson et al. | Dec 2002 | B2 |
6496392 | Odel | Dec 2002 | B2 |
6499961 | Wyatt | Dec 2002 | B1 |
6501629 | Mariott | Dec 2002 | B1 |
6503063 | Brunsell | Jan 2003 | B1 |
6504338 | Eichorn | Jan 2003 | B1 |
6520010 | Bergveld | Feb 2003 | B1 |
6522034 | Nakayama | Feb 2003 | B1 |
6523091 | Tirumala | Feb 2003 | B2 |
6527518 | Ostrowski | Mar 2003 | B2 |
6534940 | Bell et al. | Mar 2003 | B2 |
6534947 | Johnson | Mar 2003 | B2 |
6537032 | Horiuchi | Mar 2003 | B1 |
6538908 | Balakrishnan et al. | Mar 2003 | B2 |
6539797 | Livingston | Apr 2003 | B2 |
6543940 | Chu | Apr 2003 | B2 |
6548976 | Jensen | Apr 2003 | B2 |
6564627 | Sabini | May 2003 | B1 |
6570778 | Lipo et al. | May 2003 | B2 |
6571807 | Jones | Jun 2003 | B2 |
6590188 | Cline | Jul 2003 | B2 |
6591697 | Henyan | Jul 2003 | B2 |
6591863 | Ruschell | Jul 2003 | B2 |
6595051 | Chandler, Jr. | Jul 2003 | B1 |
6595762 | Khanwilkar et al. | Jul 2003 | B2 |
6604909 | Schoenmeyr | Aug 2003 | B2 |
6607360 | Fong | Aug 2003 | B2 |
6616413 | Humpheries | Sep 2003 | B2 |
6623245 | Meza et al. | Sep 2003 | B2 |
6626840 | Drzewiecki | Sep 2003 | B2 |
6628501 | Toyoda | Sep 2003 | B2 |
6632072 | Lipscomb et al. | Oct 2003 | B2 |
6636135 | Vetter | Oct 2003 | B1 |
6638023 | Scott | Oct 2003 | B2 |
D482664 | Hunt | Nov 2003 | S |
6643153 | Balakrishnan | Nov 2003 | B2 |
6651900 | Yoshida | Nov 2003 | B1 |
6663349 | Discenzo et al. | Dec 2003 | B1 |
6665200 | Goto | Dec 2003 | B2 |
6672147 | Mazet | Jan 2004 | B1 |
6675912 | Carrier | Jan 2004 | B2 |
6676382 | Leighton et al. | Jan 2004 | B2 |
6676831 | Wolfe | Jan 2004 | B2 |
6687141 | Odell | Feb 2004 | B2 |
6687923 | Dick | Feb 2004 | B2 |
6690250 | Moller | Feb 2004 | B2 |
6696676 | Graves et al. | Feb 2004 | B1 |
6700333 | Hirshi et al. | Mar 2004 | B1 |
6709240 | Schmalz | Mar 2004 | B1 |
6709241 | Sabini | Mar 2004 | B2 |
6709575 | Verdegan | Mar 2004 | B1 |
6715996 | Moeller | Apr 2004 | B2 |
6717318 | Mathiasssen | Apr 2004 | B1 |
6732387 | Waldron | May 2004 | B1 |
6737905 | Noda | May 2004 | B1 |
D490726 | Eungprabhanth | Jun 2004 | S |
6742387 | Hamamoto | Jun 2004 | B2 |
6747367 | Cline et al. | Jun 2004 | B2 |
6758655 | Sacher | Jul 2004 | B2 |
6761067 | Capano | Jul 2004 | B1 |
6768279 | Skinner | Jul 2004 | B1 |
6770043 | Kahn | Aug 2004 | B1 |
6774664 | Godbersen | Aug 2004 | B2 |
6776038 | Horton et al. | Aug 2004 | B1 |
6776584 | Sabini et al. | Aug 2004 | B2 |
6778868 | Imamura et al. | Aug 2004 | B2 |
6779205 | Mulvey | Aug 2004 | B2 |
6779950 | Meier et al. | Aug 2004 | B1 |
6782309 | Laflamme | Aug 2004 | B2 |
6783328 | Lucke | Aug 2004 | B2 |
6789024 | Kochan, Jr. et al. | Sep 2004 | B1 |
6794921 | Abe | Sep 2004 | B2 |
6797164 | Leaverton | Sep 2004 | B2 |
6798271 | Swize | Sep 2004 | B2 |
6799950 | Meier et al. | Oct 2004 | B2 |
6806677 | Kelly et al. | Oct 2004 | B2 |
6837688 | Kimberlin et al. | Jan 2005 | B2 |
6842117 | Keown | Jan 2005 | B2 |
6847130 | Belehradek et al. | Jan 2005 | B1 |
6847854 | Discenzo | Jan 2005 | B2 |
6854479 | Harwood | Feb 2005 | B2 |
6863502 | Bishop et al. | Mar 2005 | B2 |
6867383 | Currier | Mar 2005 | B1 |
6875961 | Collins | Apr 2005 | B1 |
6882165 | Ogura | Apr 2005 | B2 |
6884022 | Albright | Apr 2005 | B2 |
D504900 | Wang | May 2005 | S |
D505429 | Wang | May 2005 | S |
6888537 | Albright | May 2005 | B2 |
6895608 | Goettl | May 2005 | B2 |
6900736 | Crumb | May 2005 | B2 |
6906482 | Shimizu | Jun 2005 | B2 |
D507243 | Miller | Jul 2005 | S |
6914793 | Balakrishnan | Jul 2005 | B2 |
6922348 | Nakajima | Jul 2005 | B2 |
6925823 | Lifson | Aug 2005 | B2 |
6933693 | Schuchmann | Aug 2005 | B2 |
6941785 | Haynes et al. | Sep 2005 | B2 |
6943325 | Pittman | Sep 2005 | B2 |
6973794 | Street | Sep 2005 | B2 |
D511530 | Wang | Nov 2005 | S |
D512026 | Nurmi | Nov 2005 | S |
6965815 | Tompkins et al. | Nov 2005 | B1 |
6966967 | Curry | Nov 2005 | B2 |
D512440 | Wang | Dec 2005 | S |
6973974 | McLoughlin et al. | Dec 2005 | B2 |
6976052 | Tompkins et al. | Dec 2005 | B2 |
D513737 | Riley | Jan 2006 | S |
6981399 | Nubp et al. | Jan 2006 | B1 |
6981402 | Bristol | Jan 2006 | B2 |
6984158 | Satoh | Jan 2006 | B2 |
6989649 | Melhorn | Jan 2006 | B2 |
6993414 | Shah | Jan 2006 | B2 |
6998807 | Phillips | Feb 2006 | B2 |
6998977 | Gregori et al. | Feb 2006 | B2 |
7005818 | Jensen | Feb 2006 | B2 |
7012394 | Moore et al. | Mar 2006 | B2 |
7015599 | Gull et al. | Mar 2006 | B2 |
7040107 | Lee et al. | May 2006 | B2 |
7042192 | Mehlhorn | May 2006 | B2 |
7050278 | Poulsen | May 2006 | B2 |
7055189 | Goettl | Jun 2006 | B2 |
7070134 | Hoyer | Jul 2006 | B1 |
7077781 | Ishikawa | Jul 2006 | B2 |
7080508 | Stavale | Jul 2006 | B2 |
7081728 | Kemp | Jul 2006 | B2 |
7083392 | Meza | Aug 2006 | B2 |
7089607 | Bames et al. | Aug 2006 | B2 |
7100632 | Harwood | Sep 2006 | B2 |
7102505 | Kates | Sep 2006 | B2 |
7112037 | Sabini et al. | Sep 2006 | B2 |
7114926 | Oshita | Oct 2006 | B2 |
7117120 | Beck et al. | Oct 2006 | B2 |
7141210 | Bell | Nov 2006 | B2 |
7142932 | Spria et al. | Nov 2006 | B2 |
D533512 | Nakashima | Dec 2006 | S |
7163380 | Jones | Jan 2007 | B2 |
7172366 | Bishop, Jr. | Feb 2007 | B1 |
7178179 | Barnes | Feb 2007 | B2 |
7183741 | Mehlhorn | Feb 2007 | B2 |
7195462 | Nybo et al. | Mar 2007 | B2 |
7201563 | Studebaker | Apr 2007 | B2 |
7221121 | Skaug | May 2007 | B2 |
7244106 | Kallaman | Jul 2007 | B2 |
7245105 | Joo | Jul 2007 | B2 |
7259533 | Yang et al. | Aug 2007 | B2 |
7264449 | Harned et al. | Sep 2007 | B1 |
7281958 | Schuttler et al. | Oct 2007 | B2 |
7292898 | Clark et al. | Nov 2007 | B2 |
7307538 | Kochan, Jr. | Dec 2007 | B2 |
7309216 | Spadola et al. | Dec 2007 | B1 |
7318344 | Heger | Jan 2008 | B2 |
D562349 | Bulter | Feb 2008 | S |
7327275 | Brochu | Feb 2008 | B2 |
7339126 | Niedermeyer | Mar 2008 | B1 |
D567189 | Stiles, Jr. | Apr 2008 | S |
7352550 | Mladenik | Apr 2008 | B2 |
7375940 | Bertrand | May 2008 | B1 |
7388348 | Mattichak | Jun 2008 | B2 |
7407371 | Leone | Aug 2008 | B2 |
7427844 | Mehlhorn | Sep 2008 | B2 |
7429842 | Schulman et al. | Sep 2008 | B2 |
7437215 | Anderson et al. | Oct 2008 | B2 |
D582797 | Fraser | Dec 2008 | S |
D583828 | Li | Dec 2008 | S |
7458782 | Spadola et al. | Dec 2008 | B1 |
7459886 | Potanin et al. | Dec 2008 | B1 |
7484938 | Allen | Feb 2009 | B2 |
7516106 | Ehlers | Apr 2009 | B2 |
7525280 | Fagan et al. | Apr 2009 | B2 |
7528579 | Pacholok et al. | May 2009 | B2 |
7542251 | Ivankovic | Jun 2009 | B2 |
7542252 | Chan et al. | Jun 2009 | B2 |
7572108 | Koehl | Aug 2009 | B2 |
7612510 | Koehl | Nov 2009 | B2 |
7612529 | Kochan, Jr. | Nov 2009 | B2 |
7623986 | Miller | Nov 2009 | B2 |
7641449 | Iimura et al. | Jan 2010 | B2 |
7652441 | Ho | Jan 2010 | B2 |
7686587 | Koehl | Mar 2010 | B2 |
7686589 | Stiles et al. | Mar 2010 | B2 |
7690897 | Branecky | Apr 2010 | B2 |
7700887 | Niedermeyer | Apr 2010 | B2 |
7704051 | Koehl | Apr 2010 | B2 |
7727181 | Rush | Jun 2010 | B2 |
7739733 | Szydlo | Jun 2010 | B2 |
7746063 | Sabini et al. | Jun 2010 | B2 |
7751159 | Koehl | Jul 2010 | B2 |
7755318 | Panosh | Jul 2010 | B1 |
7775327 | Abraham | Aug 2010 | B2 |
7777435 | Aguilar | Aug 2010 | B2 |
7788877 | Andras | Sep 2010 | B2 |
7795824 | Shen et al. | Sep 2010 | B2 |
7808211 | Pacholok et al. | Oct 2010 | B2 |
7815420 | Koehl | Oct 2010 | B2 |
7821215 | Koehl | Oct 2010 | B2 |
7845913 | Stiles et al. | Dec 2010 | B2 |
7854597 | Stiles et al. | Dec 2010 | B2 |
7857600 | Koehl | Dec 2010 | B2 |
7874808 | Stiles | Jan 2011 | B2 |
7878766 | Meza | Feb 2011 | B2 |
7900308 | Erlich | Mar 2011 | B2 |
7925385 | Stavale et al. | Apr 2011 | B2 |
7931447 | Levin et al. | Apr 2011 | B2 |
7945411 | Keman et al. | May 2011 | B2 |
7976284 | Koehl | Jul 2011 | B2 |
7983877 | Koehl | Jul 2011 | B2 |
7990091 | Koehl | Aug 2011 | B2 |
8011895 | Ruffo | Sep 2011 | B2 |
8019479 | Stiles | Sep 2011 | B2 |
8032256 | Wolf et al. | Oct 2011 | B1 |
8043070 | Stiles | Oct 2011 | B2 |
8049464 | Muntermann | Nov 2011 | B2 |
8098048 | Hoff | Jan 2012 | B2 |
8104110 | Caudill et al. | Jan 2012 | B2 |
8126574 | Discenzo et al. | Feb 2012 | B2 |
8133034 | Mehlhorn et al. | Mar 2012 | B2 |
8134336 | Michalske et al. | Mar 2012 | B2 |
8177520 | Mehlhorn | May 2012 | B2 |
8281425 | Cohen | Oct 2012 | B2 |
8303260 | Stavale et al. | Nov 2012 | B2 |
8313306 | Stiles et al. | Nov 2012 | B2 |
8316152 | Geltner et al. | Nov 2012 | B2 |
8317485 | Meza et al. | Nov 2012 | B2 |
8337166 | Meza et al. | Dec 2012 | B2 |
8380355 | Mayleben et al. | Feb 2013 | B2 |
8405346 | Trigiani | Mar 2013 | B2 |
8405361 | Richards et al. | Mar 2013 | B2 |
8444394 | Koehl | May 2013 | B2 |
8465262 | Stiles et al. | Jun 2013 | B2 |
8469675 | Stiles et al. | Jun 2013 | B2 |
8480373 | Stiles et al. | Jul 2013 | B2 |
8500413 | Stiles et al. | Aug 2013 | B2 |
8540493 | Koehl | Sep 2013 | B2 |
8547065 | Trigiani | Oct 2013 | B2 |
8573952 | Stiles et al. | Nov 2013 | B2 |
8579600 | Vijayakumar | Nov 2013 | B2 |
8602745 | Stiles | Dec 2013 | B2 |
8641383 | Meza | Feb 2014 | B2 |
8641385 | Koehl | Feb 2014 | B2 |
8669494 | Tran | Mar 2014 | B2 |
8756991 | Edwards | Jun 2014 | B2 |
8763315 | Hartman | Jul 2014 | B2 |
8774972 | Rusnak | Jul 2014 | B2 |
8801389 | Stiles, Jr. et al. | Aug 2014 | B2 |
20010002238 | McKain | May 2001 | A1 |
20010029407 | Tompkins | Oct 2001 | A1 |
20010041139 | Sabini et al. | Nov 2001 | A1 |
20020000789 | Haba | Jan 2002 | A1 |
20020002989 | Jones | Jan 2002 | A1 |
20020010839 | Tirumalal et al. | Jan 2002 | A1 |
20020018721 | Kobayashi | Feb 2002 | A1 |
20020032491 | Imamura et al. | Mar 2002 | A1 |
20020035403 | Clark et al. | Mar 2002 | A1 |
20020050490 | Pittman et al. | May 2002 | A1 |
20020070611 | Cline et al. | Jun 2002 | A1 |
20020070875 | Crumb | Jun 2002 | A1 |
20020082727 | Laflamme et al. | Jun 2002 | A1 |
20020089236 | Cline | Jul 2002 | A1 |
20020093306 | Johnson | Jul 2002 | A1 |
20020101193 | Farkas | Aug 2002 | A1 |
20020111554 | Drzewiecki | Aug 2002 | A1 |
20020131866 | Phillips | Sep 2002 | A1 |
20020136642 | Moller | Sep 2002 | A1 |
20020150476 | Lucke | Oct 2002 | A1 |
20020163821 | Odell | Nov 2002 | A1 |
20020172055 | Balakrishnan | Nov 2002 | A1 |
20020176783 | Moeller | Nov 2002 | A1 |
20020190687 | Bell et al. | Dec 2002 | A1 |
20030000303 | Livingston | Jan 2003 | A1 |
20030017055 | Fong | Jan 2003 | A1 |
20030030954 | Bax et al. | Feb 2003 | A1 |
20030034284 | Wolfe | Feb 2003 | A1 |
20030034761 | Goto | Feb 2003 | A1 |
20030048646 | Odell | Mar 2003 | A1 |
20030063900 | Wang et al. | Apr 2003 | A1 |
20030099548 | Meza | May 2003 | A1 |
20030106147 | Cohen et al. | Jun 2003 | A1 |
20030061004 | Discenzo | Jul 2003 | A1 |
20030174450 | Nakajima et al. | Sep 2003 | A1 |
20030186453 | Bell | Oct 2003 | A1 |
20030196942 | Jones | Oct 2003 | A1 |
20040000525 | Hornsby | Jan 2004 | A1 |
20040006486 | Schmidt et al. | Jan 2004 | A1 |
20040009075 | Meza | Jan 2004 | A1 |
20040013531 | Curry et al. | Jan 2004 | A1 |
20040016241 | Street et al. | Jan 2004 | A1 |
20040025244 | Lloyd et al. | Feb 2004 | A1 |
20040055363 | Bristol | Mar 2004 | A1 |
20040062658 | Beck et al. | Apr 2004 | A1 |
20040064292 | Beck | Apr 2004 | A1 |
20040071001 | Balakrishnan | Apr 2004 | A1 |
20040080325 | Ogura | Apr 2004 | A1 |
20040080352 | Noda | Apr 2004 | A1 |
20040090197 | Schuchmann | May 2004 | A1 |
20040095183 | Swize | May 2004 | A1 |
20040116241 | Ishikawa | Jun 2004 | A1 |
20040117330 | Ehlers | Jun 2004 | A1 |
20040118203 | Heger | Jun 2004 | A1 |
20040149666 | Ehlers et al. | Aug 2004 | A1 |
20040205886 | Goettel | Oct 2004 | A1 |
20040213676 | Phillips | Oct 2004 | A1 |
20040265134 | Iimura et al. | Dec 2004 | A1 |
20050050908 | Lee et al. | Mar 2005 | A1 |
20050086957 | Lifson | Apr 2005 | A1 |
20050095150 | Leone et al. | May 2005 | A1 |
20050097665 | Goettel | May 2005 | A1 |
20050123408 | Koehl | Jun 2005 | A1 |
20050133088 | Bologeorges | Jun 2005 | A1 |
20050137720 | Spira et al. | Jun 2005 | A1 |
20050156568 | Yueh | Jul 2005 | A1 |
20050158177 | Mehlhorn | Jul 2005 | A1 |
20050167345 | De Wet et al. | Aug 2005 | A1 |
20050170936 | Quinn | Aug 2005 | A1 |
20050180868 | Miller | Aug 2005 | A1 |
20050190094 | Andersen | Sep 2005 | A1 |
20050193485 | Wolfe | Sep 2005 | A1 |
20050195545 | Mladenik | Sep 2005 | A1 |
20050226731 | Mehlhorn | Oct 2005 | A1 |
20050235732 | Rush | Oct 2005 | A1 |
20050248310 | Fagan et al. | Nov 2005 | A1 |
20050260079 | Allen | Nov 2005 | A1 |
20050281679 | Niedermeyer | Dec 2005 | A1 |
20050281681 | Anderson | Dec 2005 | A1 |
20060045750 | Stiles | Mar 2006 | A1 |
20060045751 | Beckman et al. | Mar 2006 | A1 |
20060078435 | Burza | Apr 2006 | A1 |
20060078444 | Sacher | Apr 2006 | A1 |
20060090255 | Cohen | May 2006 | A1 |
20060093492 | Janesky | May 2006 | A1 |
20060127227 | Mehlhorn | Jun 2006 | A1 |
20060138033 | Hoal et al. | Jun 2006 | A1 |
20060146462 | McMillian et al. | Jul 2006 | A1 |
20060169322 | Torkelson | Aug 2006 | A1 |
20060204367 | Meza | Sep 2006 | A1 |
20060226997 | Kochan, Jr. | Oct 2006 | A1 |
20060235573 | Guion | Oct 2006 | A1 |
20060269426 | Llewellyn | Nov 2006 | A1 |
20070001635 | Ho | Jan 2007 | A1 |
20070041845 | Freudenberger | Feb 2007 | A1 |
20070061051 | Maddox | Mar 2007 | A1 |
20070080660 | Fagan et al. | Apr 2007 | A1 |
20070113647 | Mehlhorn | May 2007 | A1 |
20070114162 | Stiles et al. | May 2007 | A1 |
20070124321 | Szydlo | May 2007 | A1 |
20070154319 | Stiles | Jul 2007 | A1 |
20070154320 | Stiles | Jul 2007 | A1 |
20070154321 | Stiles | Jul 2007 | A1 |
20070154322 | Stiles | Jul 2007 | A1 |
20070154323 | Stiles | Jul 2007 | A1 |
20070160480 | Ruffo | Jul 2007 | A1 |
20070163929 | Stiles | Jul 2007 | A1 |
20070183902 | Stiles | Aug 2007 | A1 |
20070187185 | Abraham et al. | Aug 2007 | A1 |
20070188129 | Kochan, Jr. | Aug 2007 | A1 |
20070212210 | Keman et al. | Sep 2007 | A1 |
20070212229 | Stavale et al. | Sep 2007 | A1 |
20070212230 | Stavale et al. | Sep 2007 | A1 |
20070219652 | McMillan | Sep 2007 | A1 |
20070258827 | Gierke | Nov 2007 | A1 |
20080003114 | Levin et al. | Jan 2008 | A1 |
20080031751 | Littwin et al. | Feb 2008 | A1 |
20080031752 | Littwin et al. | Feb 2008 | A1 |
20080039977 | Clark et al. | Feb 2008 | A1 |
20080041839 | Tran | Feb 2008 | A1 |
20080044293 | Hanke et al. | Feb 2008 | A1 |
20080063535 | Koehl | Mar 2008 | A1 |
20080095638 | Branecky | Apr 2008 | A1 |
20080095639 | Bartos | Apr 2008 | A1 |
20080131286 | Ota | Jun 2008 | A1 |
20080131289 | Koehl | Jun 2008 | A1 |
20080131291 | Koehl | Jun 2008 | A1 |
20080131294 | Koehl | Jun 2008 | A1 |
20080131295 | Koehl | Jun 2008 | A1 |
20080131296 | Koehl | Jun 2008 | A1 |
20080140353 | Koehl | Jun 2008 | A1 |
20080152508 | Meza | Jun 2008 | A1 |
20080168599 | Caudill | Jul 2008 | A1 |
20080181785 | Koehl | Jul 2008 | A1 |
20080181786 | Meza | Jul 2008 | A1 |
20080181787 | Koehl | Jul 2008 | A1 |
20080181788 | Meza | Jul 2008 | A1 |
20080181789 | Koehl | Jul 2008 | A1 |
20080181790 | Meza | Jul 2008 | A1 |
20080189885 | Erlich | Aug 2008 | A1 |
20080229819 | Mayleben et al. | Sep 2008 | A1 |
20080260540 | Koehl | Oct 2008 | A1 |
20080288115 | Rusnak et al. | Nov 2008 | A1 |
20080298978 | Schulman et al. | Dec 2008 | A1 |
20090014044 | Hartman | Jan 2009 | A1 |
20090038696 | Levin et al. | Feb 2009 | A1 |
20090052281 | Nybo | Feb 2009 | A1 |
20090104044 | Koehl | Apr 2009 | A1 |
20090143917 | Uy et al. | Jun 2009 | A1 |
20090204237 | Sustaeta et al. | Aug 2009 | A1 |
20090204267 | Sustaeta et al. | Aug 2009 | A1 |
20090208345 | Moore et al. | Aug 2009 | A1 |
20090210081 | Sustaeta et al. | Aug 2009 | A1 |
20090269217 | Vijayakumar | Oct 2009 | A1 |
20100154534 | Hampton | Jun 2010 | A1 |
20100166570 | Hampton | Jul 2010 | A1 |
20100197364 | Lee | Aug 2010 | A1 |
20100303654 | Petersen et al. | Dec 2010 | A1 |
20100306001 | Discenzo | Dec 2010 | A1 |
20100312398 | Kidd et al. | Dec 2010 | A1 |
20110036164 | Burdi | Feb 2011 | A1 |
20110044823 | Stiles | Feb 2011 | A1 |
20110052416 | Stiles | Mar 2011 | A1 |
20110066256 | Sesay et al. | Mar 2011 | A1 |
20110077875 | Tran | Mar 2011 | A1 |
20110084650 | Kaiser et al. | Apr 2011 | A1 |
20110110794 | Mayleben et al. | May 2011 | A1 |
20110280744 | Ortiz et al. | Nov 2011 | A1 |
20110311370 | Sloss et al. | Dec 2011 | A1 |
20120020810 | Stiles, Jr. et al. | Jan 2012 | A1 |
20120100010 | Stiles et al. | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
3940997 | Feb 1998 | AU |
2005204246 | Mar 2006 | AU |
2007332716 | Jun 2008 | AU |
2007332769 | Jun 2008 | AU |
2548437 | Jun 2005 | CA |
2731482 | Jun 2005 | CA |
2517040 | Feb 2006 | CA |
2528580 | May 2007 | CA |
2672410 | Jun 2008 | CA |
2672459 | Jun 2008 | CA |
1821574 | Aug 2006 | CN |
101165352 | Apr 2008 | CN |
3023463 | Feb 1981 | DE |
2946049 | May 1981 | DE |
29612980 | Oct 1996 | DE |
19736079 | Aug 1997 | DE |
19645129 | May 1998 | DE |
29724347 | Nov 2000 | DE |
10231773 | Feb 2004 | DE |
19938490 | Apr 2005 | DE |
0150068 | Jul 1985 | EP |
0226858 | Jul 1987 | EP |
0246769 | Nov 1987 | EP |
0306814 | Mar 1989 | EP |
0314249 | Mar 1989 | EP |
0709575 | May 1996 | EP |
3735273 | Oct 1996 | EP |
0833436 | Apr 1998 | EP |
0831188 | Feb 1999 | EP |
0978657 | Feb 2000 | EP |
1112680 | Apr 2001 | EP |
1134421 | Sep 2001 | EP |
0916026 | May 2002 | EP |
1315929 | Jun 2003 | EP |
1585205 | Oct 2005 | EP |
1630422 | Mar 2006 | EP |
1698815 | Sep 2006 | EP |
1790858 | May 2007 | EP |
1995462 | Nov 2008 | EP |
2102503 | Sep 2009 | EP |
2122171 | Nov 2009 | EP |
2122172 | Nov 2009 | EP |
2273125 | Jan 2011 | EP |
2529965 | Jan 1984 | FR |
2703409 | Oct 1994 | FR |
2124304 | Feb 1984 | GB |
55072678 | May 1980 | JP |
5010270 | Jan 1993 | JP |
2009006258 | Dec 2009 | MX |
9804835 | Feb 1998 | WO |
0042339 | Jul 2000 | WO |
0127508 | Apr 2001 | WO |
0147099 | Jun 2001 | WO |
02018826 | Mar 2002 | WO |
03025442 | Mar 2003 | WO |
03099705 | Dec 2003 | WO |
2004006416 | Jan 2004 | WO |
2004073772 | Sep 2004 | WO |
2004088694 | Oct 2004 | WO |
05011473 | Feb 2005 | WO |
2005011473 | Feb 2005 | WO |
2005055694 | Jun 2005 | WO |
2005111473 | Nov 2005 | WO |
2006069568 | Jul 2006 | WO |
2008073329 | Jun 2008 | WO |
2008073330 | Jun 2008 | WO |
2008073386 | Jun 2008 | WO |
2008073413 | Jun 2008 | WO |
2008073418 | Jun 2008 | WO |
2008073433 | Jun 2008 | WO |
2008073436 | Jun 2008 | WO |
2011100067 | Aug 2011 | WO |
2014152926 | Sep 2014 | WO |
200506869 | May 2006 | ZA |
200509691 | Nov 2006 | ZA |
200904747 | Jul 2010 | ZA |
200904849 | Jul 2010 | ZA |
200904850 | Jul 2010 | ZA |
Entry |
---|
Flotec Owner's Manual, dated 2004. 44 pages. |
Glentronics Home Page, dated 2007. 2 pages. |
Goulds Pumps SPBB Battery Back-Up Pump Brochure, dated 2008. 2 pages. |
Goulds Pumps SPBB/SPBB2 Battery Backup Sump Pumps, dated 2007. |
ITT Red Jacket Water Products Installation, Operation and Parts Manual, dated 2009. 8 pages. |
Liberty Pumps PC-Series Brochure, dated 2010. 2 pages. |
“Lift Station Level Control” by Joe Evans PhD, www.pumped101.com, dated Sep. 2007. 5 pages. |
The Basement Watchdog A/C-D/C Battery Backup Sump Pump System Instruction Manual and Safety Warnings, dated 2010. 20 pages. |
The Basement Watchdog Computer Controlled A/C-D/C Sump Pump System Instruction Manual, dated 2010. 17 pages. |
Pentair Water Ace Pump Catalog, dated 2007, 44 pages. |
ITT Red Jacket Water Products RJBB/RJBB2 Battery Backup Sump Pumps; May 2007, 2 pages. |
Allen-Bradley; “1336 Plus II Adjustable Frequency AC Drive with Sensorless Vector User Manual;” Sep. 2005; pp. 1-212. |
U.S. Appl. No. 12/869,570 Appeal Decision dated May 24, 2016. |
51—Response by Defendants in Opposition to Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Dec. 2, 2011. |
Amended Complaint Filed by Pentair Water Pool & Spa, Inc. and Danfoss Drives A/S with respect to Civil Action No. 5:11-cv-00459, adding U.S. Pat. No. 8,043,070. |
53—Declaration of Douglas C. Hopkins & Exhibits re Response Opposing Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Dec. 2, 2011. |
89—Reply to Response to Motion for Preliminary Injunction Filed by Danfoss Drives A/S & Pentair Water Pool & Spa, Inc. for Civil Action 5:11-cv-004590; Jan. 3, 2012. |
105—Declaration re Memorandum in Opposition, Declaration of Lars Hoffmann Berthelsen for Civil Action 5:11-cv-00459D; Jan. 11, 2012. |
112—Amended Complaint Against All Defendants, with Exhibits for Civil Action 5:11-cv-00459D; Jan. 17, 2012. |
119—Order Denying Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Jan. 23, 2012. |
123—Answer to Amended Complaint, Counterclaim Against Danfoss Drives A/S, Pentair Water Pool & Spa, Inc. for Civil Action 5:11-cv-00459D; Jan. 27, 2012. |
152—Order Denying Motion for Reconsideration for Civil Action 5:11-cv-00459D; Apr. 4, 2012. |
168—Amended Motion to Stay Action Pending Reexamination of Asserted Patents by Defendants for Civil Action 5:11-cv-004590; Jun. 13, 2012. |
174—Notice and Attachments re Joint Claim Construction Statement for Civil Action 5:11-cv-00459D; Jun. 5, 2012. |
186—Order Setting Hearings—Notice of Markman Hearing Set for Oct. 17, 2012 for Civil Action 5:11-cv-00459D; Jul. 12, 2012. |
204—Response by Plaintiffs Opposing Amended Motion to Stay Action Pending Reexamination of Asserted Patents for Civil Action 5:11-cv-004590; Jul. 2012. |
210—Order Granting Joint Motion for Leave to Enlarge Page Limit for Civil Action 5:11-cv-004590; Jul. 2012. |
218—Notice re Plaintiffs re Order on Motion for Leave to File Excess Pages re Amended Joint Claim Construction Statement for Civil Action 5:11-cv-004590; Aug. 2012. |
54DX16—Hayward EcoStar Technical Guide (Version2); 2011; pp. 1-51; cited in Civil Action 5:11-cv-004590. |
54DX17—Hayward ProLogic Automation & Chlorination Operation Manual (Rev. F); pp. 1-27; Elizabeth, NJ; cited in Civil Action 5:11-cv-004590; Dec. 2, 2011. |
54DX18—STMicroelectronics; “AN1946—Sensorless BLOC Motor Control & BEMF Sampling Methods with ST7MC;” 2007; pp. 1-35; Civil Action 5:11-cv-004590. |
54DX19—STMicroelectronics; “AN1276 BLOC Motor Start Routine for ST72141 Microcontroller;” 2000; pp. 1-18; cited in Civil Action 5:11-cv-004590. |
54DX21—Danfoss; “VLT 8000 Aqua Instruction Manual;” Apr. 2004; 1-210; Cited in Civil Action 5:11-cv-004590. |
54DX22—Dan Foss; “VLT 8000 Aqua Instruction Manual;” pp. 1-35; cited in Civil Action 5:11-cv-004590; Dec. 2, 2011. |
54DX23—Commander; “Commander SE Advanced User Guide;” Nov. 2002; pp. 1-190; cited in Civil Action 5:11-cv-004590. |
540X30—Sabbagh et al.; “A Model for OptimaL.Control of Pumping Stations in Irrigation Systems;” Jul. 1988; NL pp. 119-133; Civil Action 5:11-cv-004590. |
540X31—0anfoss; “VLT 5000 FLUX Aqua OeviceNet Instruction Manual;” Apr. 28, 2003; pp. 1-39; cited in Civil Action 5:11-cv-004590. |
540X32—0anfoss; “VLT 5000 FLUX Aqua Profibus Operating Instructions;” May 22, 2003; 1-64; cited in Civil Action 5:11-cv-004590. |
540X33—Pentair; “IntelliTouch Owner's Manual Set-Up & Programming;” May 22, 2003; Sanford, NC; pp. 1-61; cited in Civil Action 5:11-cv-004590. |
540X34—Pentair; “Compool3800 Pool-Spa Control System Installation & Operating Instructions;” Nov. 7, 1997; pp. 1-45; cited in Civil Action 5:11-cv-004590. |
540X35—Pentair Advertisement in “Pool & Spa News;” Mar. 22, 2002; pp. 1-3; cited in Civil Action 5:11-cv-004590. |
5540X36—Hayward; “Pro-Series High-Rate Sand Filter Owner's Guide;” 2002; Elizabeth, NJ; pp. 1-5; cited in Civil Action 5:11-cv-00459D. |
540X37—Danfoss; “VLT 8000 Aqua Fact Sheet;” Jan. 2002; pp. 1-3; cited in Civil Action 5:11-cv-004590. |
540X38—0anfoss; “VLT 6000 Series Installation, Operation & Maintenance Manual;” Mar. 2000; pp. 1-118; cited in civil Action 5:11-cv-004590. |
540X45—Hopkins; “Synthesis of New Class of Converters that Utilize Energy Recirculation;” pp. 1-7; cited in Civil Action 5:11-cv-004590; 1994. |
540X46—Hopkins; “High-Temperature, High-Oensity . . . Embedded Operation;” pp. 1-8; cited in Civil Action 5:11-cv-004590; Mar. 2006. |
540X47—Hopkins; “Optimally Selecting Packaging Technologies . . . Cost & Performance;” pp. 1-9; cited in Civil Action 5:11-cv-004590; Jun. 1999. |
9PX5—Pentair; Selected Website Pages; pp. 1-29; cited in Civil Action 5:11-cv-004590; Sep. 2011. |
9PX6—Pentair; “IntelliFio Variable Speed Pump” Brochure; 2011; pp. 1-9; cited in Civil Action 5:11-cv-004590. |
9PX7—Pentair; “IntelliFio VF Intelligent Variable Flow Pump;” 2011; pp. 1-9; cited in Civil Action 5:11-cv-004590. |
9PX8—Pentair; “IntelliFio VS+SVRS Intelligent Variable Speed Pump;” 2011; pp. 1-9; cited in Civil Action 5:11-cv-004590. |
9PX9—STA-RITE; “IntelliPro Variable Speed Pump;” 2011; pp. 1-9; cited in Civil Action 5:11-cv-004590. |
9PX14—Pentair; “IntelliFio Installation and User's Guide;” pp. 1-53; Jul. 26, 2011; Sanford, NC; cited in Civil Action 5:11-cv-004590. |
9PX16—Hayward Pool Products; “EcoStar Owner's Manual (Rev. B);” pp. 1-32; Elizabeth, NJ; cited in civil Action 5:11-cv-00459D; 2010. |
9PX17—Hayward Pool Products; “EcoStar & EcoStar SVRS Brochure;” pp. 1-7; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Sep. 30, 2011. |
9PX19—Hayward Pool Products;“Hayward Energy Solutions Brochure;” pp. 1-3; www.haywardnet.com; cited in Civil Action 5:11-cv-00459D; Sep. 2011. |
9PX20—Hayward Pool Products; “ProLogic Installation Manual (Rev. G);” pp. 1-25; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Sep. 2011. |
9PX21—Hayward Pool Products; “ProLogic Operation Manual (Rev. F);” pp. 1-27; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Sep. 2011. |
9PX22—Hayward Pool Products; “Wireless & Wired Remote Controls Brochure;” pp. 1-5; 2010; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D. |
9PX23—Hayward Pool Products; Selected Pages from Hayward's Website:/www.hayward-pool.com; pp. 1-27; cited in Civil Action 5:11-cv-004590; Sep. 2011. |
9PX28—Hayward Pool Products; “Selected Page from Hayward's Website Relating to EcoStar Pumps;” p. 1; cited in Civil Action 5:11-cv-00459D; Sep. 2011. |
9PX29—Hayward Pool Products; “Selected Page from Hayward's Website Relating to EcoStar SVRS Pumps;” cited in Civil Action 5:11-cv-00459; Sep. 2011. |
9PX30—Hayward Pool Systems; “Selected Pages from Hayward's Website Relating to ProLogic Controllers;” pp. 1-5; Civil Action 5:11-cv-00459D; Sep. 2011. |
9PX-42—Hayward Pool Systems; “Hayward EcoStar & EcoStar SVRS Variable Speed Pumps Brochure;” Civil Action 5:11-cv-00459D; 2010. |
205-24-Exh23—Piaintiff's Preliminary Disclosure of Asserted Claims and Preliminary Infringement Contentions; cited in Civil Action 5:11-cv-00459; Feb. 21, 2012. |
PX-34—Pentair; “IntelliTouch Pool & Spa Control System User's Guide”; pp. 1-129; 2011; cited in Civil Action 5:11-cv-00459; 2011. |
PX-138—Deposition of Dr. Douglas C. Hopkins; pp. 1-391; 2011; taken in Civil Action 10-cv-1662. |
PX-141—Danfoss; “Whitepaper Automatic Energy Optimization;” pp. 1-4; 2011; cited in Civil Action 5:11-cv-00459. |
9PX10—Pentair; “IntelliPro VS+SVRS Intelligent Variable Speed Pump;” 2011; pp. 1-6; cited in Civil Action 5:11-cv-00459D. |
9PX11—Pentair; “IntelliTouch Pool & Spa Control Control Systems;” 2011; pp. 1-5; cited in Civil Action 5:11-cv-004590. |
Robert S. Carrow; “Electrician's Technical Reference—Variable Frequency Drives;” 2001; pp. 1-194. |
Baldor; “Balder Motors and Drives Series 14 Vector Drive Control Operating & Technical Manual;” Mar. 22, 1992; pp. 1-92. |
Commander; “Commander SE Advanced User Guide;” Nov. 2002; pp. 1-118. |
Baldor; “Baldor Series 10 Inverter Control: Installation and Operating Manual”; Feb. 2000; pp. 1-74. |
Dinverter; “Dinverter 28 User Guide;” Nov. 1998; pp. 1-94. |
Pentair Pool Products, “IntelliFlo 4×160 a Breakthrough Energy-Efficiency and Service Life;” pp. 1-4; Nov. 2005; www.pentairpool.com. |
Pentair Water and Spa, Inc. “The Pool Pro's guide to Breakthrough Efficiency, Convenience & Profitability,” pp. 1-8, Mar. 2006; www.pentairpool.com. |
Danfoss; “VLT8000 Aqua Instruction Manual;” Apr. 16, 2004; pp. 1-71. |
“Product Focus—New AC Drive Series Target Water, Wastewater Applications;” WaterWorld Articles; Jul. 2002; pp. 1-2. |
Pentair, “Pentair RS-485 Pool Controller Adapter” Published Advertisement; Mar. 22, 2002; pp. 1-2. |
Compool; “Compool CP3800 Pool—Spa Control System Installation and Operating Instructions;” Nov. 7, 1997; pp. 1-45. |
Hayward; “Hayward Pro-Series High-Rate Sand Filter Owner's Guide,” 2002; pp. 1-4. |
Danfoss; “Danfoss VLT 6000 Series Adjustable Frequency Drive Installation, Operation and Maintenance Manual;” Mar. 2000; pp. 1-118. |
Brochure entitled “Constant Pressure Water for Private Well Systems,” for Myers Pentair Pump Group, Jun. 28, 2000. |
Brochure for AMTROL, Inc. entitled “AMTROL unearths the facts about variable speed pumps and constant pressure valves,” Mar. 2002. |
Undated Goulds Pumps “Balanced Flow Systems” Installation Record. |
Texas Instruments, Digital Signal Processing Solution for AC Induction Motor, Application Note, BPRA043 (1996). |
Texas Instruments, Zhenyu Yu and David Figoli, DSP Digital Control System Applications—AC Induction Motor Control Using Constant V/Hz Principle and Space Vector PWM Technique with TMS320C240, Application Report No. SPRA284A (Apr. 1998). |
Texas Instruments, TMS320F/C240 DSP Controllers Reference Guide Peripheral Library and Specific Devices, Literature No. SPRU 161D (Nov. 2002). |
Texas Instruments, MSP430x33x—Mixed Signal Microcontrollers, SLAS 163 (Feb. 1998). |
Microchip Technology, Inc., PICMicro Mid-Range MCU Family Reference Manual (Dec. 1997). |
7—Motion for Preliminary Injunction by Danfoss Drives A/S & Pentair Water Pool & Spa, Inc. with respect to Civil Action No. 5:11-cv-00459D. |
540X48—Hopkins; “Partitioning Oigitally . . . Applications to Ballasts;” pp. 1-6; cited in Civil Action 5:11-cv-00459D. |
Load Controls Incorporated, product web pages including Affidavit of Christopher Butler of Internet Archive attesting to the authenticity of the web pages, dated Apr. 17, 2013, 19 pages. |
Cliff Wyatt, “Monitoring Pumps,” World Pumps, vol. 2004, Issue 459, Dec. 2004, pp. 17-21. |
Wen Technology, Inc., Unipower® HPL110 Digital Power Monitor Installation and Operation, copyright 1999, pp. 1-20, Raleigh, North Carolina. |
Wen Technology, Inc., Unipower® HPL110, HPL420 Programming Suggestions for Centrifugal Pumps, copyright 1999, 4 pages, Raleigh, North Carolina. |
Danfoss, VLT® AQUA Drive, “The ultimate solution for Water, Wastewater, & Irrigation”, May 2007, pp. 1-16. |
Danfoss, Salt Drive Systems, “Increase oil & gas production, Minimize energy consumption”, copyright 2011, pp. 1-16. |
Schlumberger Limited, Oilfield Glossary, website Search Results for “pump-off”, copyright 2014, 1 page. |
45—Plaintiffs' Reply to Defendants' Answer to Complaint & Counterclaim for Civil Action 5:11-cv-00459D. |
50—Amended Answer to Complaint & Counterclaim by Defendants for Civil Action 5:11-cv-00459D. |
54DX32—Hopkins; “High-Temperature, High-Density . . . Embedded Operation;” pp. 1-8; cited in Civil Action 5:11-cv-00459D. |
Pent Air; “Pentair IntelliTouch Operating Manual;” May 22, 2003; pp. 1-60. |
Decision on Appeal issued in Appeal No. 2015-007909, regarding Hayward Industries, Inc. v. Pentair Ltd., mailed Apr. 1, 2016, 19 pages. |
USPTO Patent Trial and Appeal Board, Paper 43—Final Written Decision, Case IPR2013-00287, U.S. Pat. No. 7,704,051 B2, Nov. 19, 2014, 28 pages. |
Danfoss, VLT 8000 AQUA Operating Instructions, coded MG.80.A2.02 in the footer, 181 pages. |
Per Brath—Danfoss Drives A/S, Towards Autonomous Control of HVAC Systems, thesis with translation of Introduction, Sep. 1999, 216 pages. |
Karl Johan Åström and Björn Wittenmark—Lund Institute of Technology, Adaptive Control—Second Edition, book, Copyright 1995, 589 pages, Addison-Wesley Publishing Company, United States and Canada. |
Bimal K. Bose—The University of Tennessee, Knoxville, Modem Power Electronics and AC Drives, book, Copyright 2002, 728 pages, Prentice-Hall, Inc., Upper Saddle River, New Jersey. |
Waterworld, New AC Drive Series Targets Water, Wastewater Applications, magazine, Jul. 2002, 5 pages, vol. 18, Issue 7. |
Texas Instruments, TMS320F/C240 DSP Controllers Peripheral Library and Specific Devices, Reference Guide, Nov. 2002, 485 pages, printed in U.S.A. |
Microchip Technology Inc., PICmicro® Advanced Analog Microcontrollers for 12-Bit ADC on 8-Bit MCUs, Convert to Microchip, brochure, Dec. 2000, 6 pages, Chandler, Arizona. |
W.K. Ho, S.K. Panda, K.W. Lim, F.S. Huang—Department of Electrical Engineering, National University of Singapore, Gain-scheduling control of the Switched Reluctance Motor, Control Engineering Practice 6, copyright 1998, pp. 181-189, Elsevier Science Ltd. |
Jan Eric Thorsen—Danfoss, Technical Paper—Dynamic simulation of DH House Stations, presented by 7. Dresdner Femwärme-Kolloquium Sep. 2002, 10 pages, published in Euro Heat & Power Jun. 2003. |
Texas Instruments, TMS320F/C240 DSP Controllers Reference Guide, Peripheral Library and Specific Devices, Jun. 1999, 474 pages. |
Rajwardhan Patil, et al., A Multi-Disciplinary Mechatronics Course with Assessment—Integrating Theory and Application through Laboratory Activities, International Journal of Engineering Education, copyright 2012, pp. 1141-1149, vol. 28, No. 5, Tempus Publications, Great Britain. |
James Shirley, et al., A mechatronics and material handling systems laboratory: experiments and case studies, International Journal of Electrical Engineering Education 48/1, pp. 92-103. |
Bibliographic Data Sheet—U.S. Appl. No. 10/730,747 Applicant: Robert M. Koehl Reasons for Inclusion: Printed publication US 2005/0123408 A1 for U.S. Appl. No. 10/730,747 has incorrect filing date. |
Shabnam Moghanrabi; “Better, Stronger, Faster;” Pool & Spa News, Sep. 3, 2004; pp. 1-5; www/poolspanews.com. |
Grundfos Pumps Corporation; “The New Standard in Submersible Pumps;” Brochure; pp. 1-8; Jun. 1999; Fresno, CA USA. |
Grundfos Pumps Corporation; “Grundfos SQ/SQE Data Book;” pp. 1-39; Jun. 1999; Fresno, CA USA. |
Goulds Pumps; “Balanced Flow System Brochure;” pp. 1-4; 2001. |
Goulds Pumps; “Balanced Flow Submersible System Installation, Operation & Trouble-Shooting Manual;” pp. 1-9; 2000; USA. |
Goulds Pumps; “Balanced Flow Submersible System Informational Seminar;” pp. 1-22; Undated. |
Goulds Pumps; “Balanced Flow System Variable Speed Submersible Pump” Specification Sheet; pp. 1-2; Jan. 2000; USA. |
Goulds Pumps; Advertisement from “Pumps & Systems Magazine;” entitled “Cost Effective Pump Protection+Energy Savings,” Jan. 2002; Seneca Falls, NY. |
Goulds Pumps; “Hydro-Pro Water System Tank Installation, Operation & Maintenance Instructions;” pp. 1-30; Mar. 31, 2001; Seneca Falls, NY USA. |
Goulds Pumps; “Pumpsmart Control Solutions” Advertisement from Industrial Equipment News; Aug. 2002; New York, NY USA. |
Goulds Pumps; “Model BFSS List Price Sheet;” Feb. 5, 2001. |
Goulds Pumps; “Balanced Flow System Model BFSS Variable Speed Submersible Pump System” Brochure; pp. 1-4; Jan. 2001; USA. |
Goulds Pumps; “Balanced Flow System Model BFSS Variable Speed Submersible Pump” Brochure; pp. 1-3; Jan. 2000; USA. |
Goulds Pumps; “Balanced Flow System . . . The Future of Constant Pressure Has Arrived;” Undated Advertisement. |
AMTROL Inc.; “AMTROL Unearths the Facts About Variable Speed Pumps and Constant Pressure Valves;” pp. 1-5; Mar. 2002; West Warwick, RI USA. |
Franklin Electric; “CP Water-Subdrive 75 Constant Pressure Controller” Product Data Sheet; May 2001; Bluffton, IN USA. |
Franklin Electric; “Franklin Aid, Subdrive 75: You Made it Better;” vol. 20, No. 1; pp. 1-2; Jan./Feb. 2002; www.franklin-electric.com |
Grundfos; “SQ/SQE—A New Standard in Submersible Pumps;” Undated Brochure; pp. 1-14; Denmark. |
Grundfos; “JetPaq—The Complete Pumping System;” Undated Brochure; pp. 1-4; Clovis, CA USA. |
Email Regarding Grundfos' Price lncreases/SQ/SQE Curves; pp. 1-7; Dec 19, 2001. |
F.E. Myers; “Featured Product: F.E. Myers Introducts Revolutionary Constant Pressure Water System;” pp. 1-8; Jun. 28, 2000; Ashland, OH USA. |
“Water Pressure Problems” Published Article; The American Well Owner; No. 2, Jul. 2000. |
Bjarke Soerensen; “Have You Chatted With Your Pump Today?” Undated Article Reprinted with Permission of Grundfos Pump University; pp. 1-2; USA. |
“Understanding Constant Pressure Control;” pp. 1-3; Nov. 1, 1999. |
“Constant Pressure is the Name of the Game;” Published Article from National Driller; Mar. 2001. |
SJE-Rhombus; “Variable Frequency Drives for Constant Pressure Control;” Aug. 2008; pp. 1-4; Detroit Lakes, MN USA. |
SJE-Rhombus; “Constant Pressure Controller for Submersible Well Pumps;” Jan. 2009; pp. 1-4; Detroit Lakes, MN USA. |
SJE-Rhombus; “SubCon Variable Frequency Drive;” Dec. 2008; pp. 1-2; Detroit Lakes, MN USA. |
Grundfos; “SmartFio SQE Constant Pressure System;” Mar. 2002; pp. 1-4; Olathe, KS USA. |
Grundfos; “Grundfos SmartFio SQE Constant Pressure System;” Mar. 2003; pp. 1-2; USA. |
Grundfos; “Uncomplicated Electronics . . . Advanced Design;” pp. 1-10; Undated. |
Grundfos; “CU301 Installation & Operation Manual;” Apr. 2009; pp. 1-2; Undated; www.grundfos.com. |
Grundfos; “CU301 Installation & Operating Instructions;” Sep. 2005; pp. 1-30; Olathe, KS USA. |
ITT Corporation; “Goulds Pumps Balanced Flow Submersible Pump Controller;” Jul. 2007; pp. 1-12. |
ITT Corporation; “Goulds Pumps Balanced Flow;” Jul. 2006; pp. 1-8. |
ITT Corporation; “Goulds Pumps Balanced Flow Constant Pressure Controller for 2 HP Submersible Pumps;” Jun. 2005; pp. 1-4 USA. |
ITT Corporation; “Goulds Pumps Balanced Flow Constant Pressure Controller for 3 HP Submersible Pumps;” Jun. 2005; pp. 1-4; USA. |
Franklin Electric; Constant Pressure in Just the Right Size; Aug. 2006; pp. 1-4; Bluffton, IN USA. |
Franklin Electric; “Franklin Application Installation Data;” vol. 21, No. 5, Sep./Oct. 2003; pp. 1-2; www.franklin-electric.com. |
Franklin Electric; “Monodrive MonodriveXT Single-Phase Constant Pressure;” Sep. 2008; pp. 1-2; Bluffton, IN USA. |
Docket Report for Case No. 5:11-cv-00459-D; Nov. 2012. |
1—Complaint Filed by Pentair Water Pool & Spa, Inc. and Danfoss Drives A/S with respect to Civil Action No. 5:11-cv-00459-D; Aug. 31, 2011. |
7—Motion for Preliminary Injunction by Danfoss Drives AIS & Pentair Water Pool & Spa, Inc. with respect to Civil Action No. 5:11-cv-00459-D; Sep. 30, 2011. |
22—Memorandum in Support of Motion for Preliminary Injunction by Plaintiffs with respect to Civil Action 5:11-cv-00459-D; Sep. 2, 2011. |
23—Declaration of E. Randolph Collins, Jr. in Support of Motion for Preliminary Injunction with respect to Civil Action 5:11-cv-00459-D; Sep. 30, 2011. |
24—Declaration of Zack Picard in Support of Motion for Preliminary Injunction with respect to Civil Action 5:11-cv-00459-D; Sep. 30, 2011. |
32—Answer to Complaint with Jury Demand & Counterclaim Against Plaintiffs by Hayward Pool Products & Hayward Industries for Civil Action 5:11-cv-004590; Oct. 12, 2011. |
USPTO Patent Trial and Appeal Board, Paper 47—Final Written Decision, Case IPR2013-00285, U.S. Pat. No. 8,019,479 B2, Nov. 19, 2014, 39 pages. |
Pentair Pool Products, WhisperFlo Pump Owner's Manual, Jun. 5, 2001, 10 pages. |
USPTO Patent Board Decision—Examiner Reversed; Appeal No. 2015-007909 re: U.S. Pat. No. 7,686,587B2; dated Apr. 1, 2016. |
USPTO Patent Board Decision—Examiner Affirmed in Part; Appeal No. 2016-002780 re: U.S. Pat. No. 7,854,597B2; dated Aug. 30, 2016. |
USPTO Patent Board Decision—Decision on Reconsideration, Denied; Appeal No. 2015-007909 re: U.S. Pat. No. 7,686,587B2; dated Aug. 30, 2016. |
Board Decision for Appeal 2016-002726, Reexamination Control 95/002,005, U.S. Pat. No. 7,857,600B2 dated Jul. 1, 2016. |
Number | Date | Country | |
---|---|---|---|
20140119946 A1 | May 2014 | US |