This application claims priority to Japanese Patent Application No. 2021-092396 filed on Jun. 1, 2021, incorporated herein by reference in its entirety.
The present disclosure relates to a battery case and a manufacturing method of the battery case.
Japanese Unexamined Patent Application Publication No. 2020-129474 (JP 2020-129474 A) discloses a battery case for accommodating stacked battery cells. The battery case includes a metal case member and a resin case member provided covering the metal case member from the outside. The metal case member is formed in a box shape by bending a single metal plate. The resin case member is formed by injection molding with resin, and is fixed to and integrated with the metal case member.
In a battery case formed by combining a metal plate and a resin member, as in the battery case described in JP 2020-129474 A, it is conceivable to employ a configuration including a metal plate portion made of a plurality of metal plates, and a resin portion for connecting the metal plates, in order to increase the degree of freedom in shape. Now, the battery case installed in a vehicle needs to be grounded so that a battery pack and a vehicle body have the same potential. However, a configuration in which each of the metal plates is grounded, requires a plurality of ground lines. This leads to an increase in costs and wasteful structure.
The present disclosure provides a battery case capable of being grounded without providing a ground line for each metal plate, and a method for manufacturing the battery case.
A battery case according to one aspect of the present disclosure is configured to accommodate one or a plurality of battery cells, and includes a metal plate portion and a resin portion. The metal plate portion is made up of a plurality of metal plates that is part of the battery case. The resin portion is another part of the battery case connects the metal plates by being interposed between the metal plates. The metal plates include a first metal plate, and a second metal plate. The first metal plate includes a first overlapping portion and the second metal plate includes a second overlapping portion, the first overlapping portion and the second overlapping portion being overlapped with each other across the resin portion. The first overlapping portion includes one or more contact protrusions protruding toward the second overlapping portion. The second overlapping portion is in direct contact with the one or more contact protrusions.
The second overlapping portion may be a portion provided by bending part of the second metal plate such that the second overlapping portion is in contact with the one or more contact protrusions. A height of each of the one or more contact protrusions may be larger than a gap between the first overlapping portion and the second overlapping portion, such that the second overlapping portion rides up on the one or more contact protrusions.
The battery case may include an engaged structure in which the first metal plate and the resin portion are mechanically engaged, the engaged structure being configured to strengthen joining between the first metal plate and the resin portion. The engaged structure may include one or more protrusions provided on the first metal plate, and the one or more protrusions may be the one or more contact protrusions.
Each of the one or more contact protrusions may be a portion in which part of the first overlapping portion is raised.
Each of the one or more contact protrusions may be a portion provided by folding back part of the first overlapping portion.
The first metal plate and the second metal plate may be disposed away from each other, except for one or more positions of the one or more contact protrusions.
Each of the one or more protrusions may include an opening, and the resin portion may be filled inside of each of the one or more protrusions.
A manufacturing method of a battery case according to one aspect of the present disclosure is a manufacturing method of the battery case configured to accommodate one or a plurality of battery cells. The battery case includes a metal plate portion made up of a plurality of metal plates that is part of the battery case, and a resin portion that is another part of the battery case, and connects the metal plates by being interposed between the metal plates. The metal plates include a first metal plate, and a second metal plate. The first metal plate includes a first overlapping portion and the second metal plate includes a second overlapping portion, the first overlapping portion and the second overlapping portion being overlapped with each other across the resin portion. The first overlapping portion includes one or more contact protrusions protruding toward the second overlapping portion. The second overlapping portion is in direct contact with the one or more contact protrusions. The manufacturing method includes a press molding step of molding the metal plates by press molding, a protrusion forming step of molding the one or more contact protrusions by press molding, a setting step of setting the metal plates in a mold following the press molding step and the protrusion forming step, and an injection molding step of fabricating the battery case by filling in between the metal plates set in the mold with resin to mold the resin portion.
In the manufacturing method of the battery case, the first metal plate and the second metal plate may be disposed away from each other, except for one or more positions of the one or more contact protrusions.
In the battery case according to one aspect of the present disclosure, the first metal plate and the second metal plate included in the metal plates connected across the resin portion respectively include the first overlapping portion and the second overlapping portion. The second overlapping portion is in direct contact with the one or more contact protrusions of the first overlapping portion. This enables electrical conduction to be formed between the first metal plate and the second metal plate. Accordingly, when each pair of adjacent metal plates among the metal plates satisfies the relation between the first metal plate and the second metal plate, electrical conduction can be formed between the metal plates. Thus, grounding can be performed without providing a ground line for each metal plate.
Also, in the manufacturing method of the battery case according to one aspect of the present disclosure, the one or more contact protrusions are formed by press molding. Accordingly, the one or more contact protrusions can be formed simply by adding the protrusion forming step by press molding to the first metal plate formed by the press molding. Accordingly, a battery case in which contact between the metal plates can be secured can be manufactured, while suppressing addition of manufacturing steps.
Features, advantages, and technical and industrial significance of exemplary embodiments of the present disclosure will be described below with reference to the accompanying drawings, in which like signs denote like elements, and wherein:
In embodiments described below, elements that are common in the drawings are denoted by the same reference signs, and repetitive description will be omitted or simplified. Also, when a count, a quantity, an amount, a range, or the like, of each element, is stated in the following embodiments, the technical idea of the present disclosure is not limited to the stated number unless otherwise specified in particular, or when obviously limited to the stated number in principle. Also, configurations and the like described in the following embodiments are not necessarily essential to the technical idea of the present disclosure, unless otherwise specified in particular or when obviously limited thereto in principle.
More specifically, in the example illustrated in
The configuration of the battery case 10 (lower case) will be described with reference to
As illustrated in
As illustrated in
As illustrated in
The metal plate 40 includes a side wall portion 41 making up a side face 10e, facing the side face 10d made up of the side wall portion 31 of the metal plate 30 in the battery case 10. As an example, the metal plate 40 has the same shape as the metal plate 30. That is to say, the metal plate 40 has a flange portion 41a with the same shape as the flange portion 31a. Also, the metal plate 40 has through holes 42, an overlapping portion 41b, and protrusions 43, which have the same shapes as later-described through holes 32, an overlapping portion 31b, and protrusions 33 of the metal plate 30.
As can be seen from the cross-sectional view in
The metal plates 20, 30, and 40 are joined by the resin portion 14. Examples of the material of the resin portion 14 include a thermoplastic resin such as polyamide, a thermosetting resin such as epoxy, and a fiber reinforced plastic such as glass fiber reinforced polyamide, although not limited in particular thereto. As illustrated in
More specifically, the resin portion 14 is formed as follows in order to hold the three metal plates 20, 30, and 40. That is to say, as illustrated in
Further, as illustrated in
As described above, the resin portion 14 not only has a function of connecting the metal plate portion 12 (metal plates 20, 30, and 40) forming the basic framework of the battery case 10, but also functions as a part of the battery case 10, contributing to securing the rigidity and strength of the battery case 10. In the examples illustrated in
The battery case 10 is provided with the following “engaged structure” in order to ensure fixing (joining) between each of the metal plates 20, 30, and 40 and the resin portion 14. The engaged structure as used here is a structure for strengthening the joining of the metal plate 20 and so forth and the resin portion 14 by mechanically engaging these members without using adhesive.
Specifically, the engaged structure is realized by, for example, a combination of protrusions 24 formed on the metal plate 20 and the through holes 32 and 42 formed in the metal plates 30 and 40, respectively. As illustrated in
The engaged structure is also realized by, for example, arch-shaped protrusions 27, 33, and 43. As illustrated in
According to the battery case 10 formed by combining the metal plates 20 and so forth and the resin portion 14 as described above, the degree of freedom in the form of the case can be increased as compared with an example in which a battery case is made up of a combination of a metal case member formed in a box shape by bending one metal plate, and a holding member.
Now, grounding the battery case and the vehicle body so as to have the same potential is necessary, in order to guarantee electromagnetic compatibility (EMC) of the battery pack. However, in the basic configuration in which a metal plate portion made up of the metal plates is joined across the resin portion, contact and conductivity between the metal plates is not secured, and a ground line may be required for each of the metal plates. This leads to an increase in the number of parts and manufacturing man-hours of the battery case, which leads to increase in costs and structural waste.
In view of the above problems, the battery case 10 according to the present embodiment has the following contact structure.
The side wall portion 22 of the metal plate 20 and the side wall portion 31 of the metal plate 30 are provided with overlapping portions 22b and 31b, respectively, which are overlapped with each other across the resin portion 14. The overlapping portions 22b include “contact protrusions” that project toward the overlapping portion 31b. As an example, in the present embodiment, part of multiple arch-shaped protrusions 27 provided on the side wall portion 22 of the metal plate 20 for the above-described engaged structure serve as contact protrusions in the contact structure, as illustrated in
The overlapping portion 31b on the metal plate 30 side is in direct contact with the contact protrusions 27C (i.e., not across the resin portion 14). Thus, the metal plate 20 and the metal plate 30 are in direct contact with each other via the contact protrusions 27C (i.e., only at portions in which the contact protrusions 27C are provided).
More specifically, in the example illustrated in
In the example illustrated in
A similar contact structure is applied between the metal plate 20 and the metal plate 40 as well, although description is simplified here. That is to say, the side wall portion 22 of the metal plate 20 and the side wall portion 41 of the metal plate 40 are provided with the overlapping portions 22b and 41b, respectively, which are overlapped with each other across the resin portion 14, as illustrated in
In addition, the contact protrusions 27C are portions in which part of the overlapping portions 22b are raised by utilizing the arch shapes. However, when raising part of the overlapping portions 22b to form the contact protrusions, embossed forms without openings (see
Also, although the above-described contact structure is provided on the side of the side wall portion 22 of the metal plate 20, the contact structure may alternatively be provided on the side of the other side wall portion 23, or on both side wall portions 22 and 23. Further, the “contact protrusions” according to the present disclosure may be provided on the sides of the overlapping portions 31b and 41b which are the portions extending to be overlapped with the overlapping portions 22b, instead of on the side of the metal plate 20.
Next, a method of manufacturing the battery case 10 according to the present embodiment will be described with reference to
First, in a punching step 51, a metal plate to serve as the source for each of the metal plates 20, 30, and 40 (i.e., a flat metal plate in which the metal plate 20 and so forth are unfolded) is formed from a hoop-shaped metal plate, by punching with a press machine. Note that the through holes 32 and 42 of the metal plates 30 and 40 may be formed at the same time in this punching step 51, or may be formed in another step thereafter.
Next, in a bending step S2, the metal plates 20, 30, and 40 are individually press molded by bending the parts of each metal plate obtained in the punching step 51 with a press machine. Note that in the example shown in
Next, in a protrusion forming step S3, the protrusions 24, 27, 33, and 43, including the contact protrusions 27C are press molded. Now, supplementary description will be made regarding the formation of the contact protrusions 27C, with reference to
Next, in a setting step S4, the metal plates 20, 30, and 40 formed in the state illustrated in
Next, in an injection molding step S5, the resin is injected (filled in) between the metal plates 20, 30, and 40 set in the setting step S4, and the resin portion 14 fixed to the metal plates 20, 30, and 40 is molded. As a result, the battery case 10 of the present embodiment is formed (manufactured).
As described above, in the battery case 10 according to the present embodiment, the metal plate 20 and the metal plate 30 connected across the resin portion 14 include the overlapping portions 22b and the overlapping portion 31b, respectively. The overlapping portion 31b is in direct contact with the contact protrusions 27C of the overlapping portion 22b. This also applies to the relation between the metal plate 20 and the metal plate 40. Such contact structures enable electrical conduction to be formed between the metal plates. Thus, grounding can be performed without providing a ground line for each metal plate. That is to say, only one ground line is needed.
Further, in the battery case 10, the overlapping portion 31b (second overlapping portion) is the portion provided by bending part of the metal plate 30 (second metal plate) for contact with the contact protrusions 27C. The height of the contact protrusions 27C is greater than the gap between the overlapping portion 22b (first overlapping portion) and the overlapping portion 31b, such that the overlapping portion 31b rides up on the contact protrusions 27C, as illustrated in
Further, in the battery case 10, the protrusions 27 that are provided on the metal plate 20 (first metal plate) and included in the above-mentioned engaged structure are the contact protrusions 27C. This enables securing contact between the metal plates without providing dedicated protrusions for the contact structure.
Also, in the manufacturing method of the battery case 10 according to the present embodiment, the contact protrusions 27C are formed by press molding. Instead of such a technique, the contact protrusions may be formed by joining a metal member to the metal plate 20 by another technique, such as welding, for example. Conversely, in the manufacturing method according to the present embodiment, the contact protrusions 27C can be formed simply by adding by adding the protrusion forming step S3 by press molding to the metal plate 20 formed by press molding. Accordingly, the battery case 10 in which contact between the metal plates is secured can be manufactured, while suppressing addition of manufacturing steps.
The second embodiment differs from the first embodiment with respect to the technique of forming the “contact protrusions”.
The contact protrusions 27C′ having a folded structure are formed by press molding in the protrusion forming step S3. More specifically, the contact protrusions 27C′ are formed by cutting and bending part of the overlapping portion 22b of the metal plate 20. Also, in the examples illustrated in
Also, the three metal plates 20, 30, and 40 are not in direct contact with each other even in the completed state of the battery case 10 (lower case), and are disposed apart from each other (except for the positions of the contact protrusions 27C′, which is a feature structure of the battery case 10 according to the present embodiment) in the second embodiment as well.
In the above-described first and second embodiments, the metal plate portion 12 made up of the three metal plates 20, 30, and 40 is exemplified. However, the “metal plate portion” according to the present disclosure may be made up of two, or four or more metal plates. Further, it is sufficient for the metal plates to be configured such that the relation between the “first metal plate” and the “second metal plate” according to the present disclosure is satisfied between each pair of adjacent metal plates out of the metal plates, in order to secure electrical conduction between the metal plates.
Number | Date | Country | Kind |
---|---|---|---|
2021-092396 | Jun 2021 | JP | national |