The present application is a national stage entry under 35 U.S.C. § 371 of International Application No. PCT/KR2022/000494, filed on Jan. 11, 2022, which claims priority to Korean Patent Application No. 10-2021-0003184, filed on Jan. 11, 2021, the entire disclosures of which are hereby incorporated by reference herein in their entireties.
The present disclosure relates to a battery cell and a battery module including the same, and more particularly, to a battery cell with improved external emission of gas generated inside the battery cell, and a battery module including the same.
As technology development and demand for mobile devices increase, the demand for secondary batteries as an energy source is rapidly increasing. In particular, secondary batteries are of great interest as energy sources not only for mobile devices such as mobile phones, digital cameras, notebooks and wearable devices, but also for power devices such as electric bicycles, electric vehicles and hybrid electric vehicles.
Depending on the shape of a battery case, these secondary batteries are classified into a cylindrical battery and a prismatic battery in which a battery assembly is included in a cylindrical or prismatic metal can, and a pouch-type battery in which the battery assembly is included in a pouch-type case of an aluminum laminate sheet. Here, the battery assembly included in the battery case is a power element including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, and capable of charging and discharging, and is classified into a jelly-roll type in which long sheet-type positive and negative electrodes coated with an active material are wound with a separator being interposed therebetween, and a stack type in which a plurality of positive and negative electrodes are sequentially stacked with a separator being interposed therebetween.
Among them, in particular, a pouch-type battery in which a stack-type or stack/folding-type battery assembly is included in a pouch-type battery case made of an aluminum laminate sheet is being used more and more due to low manufacturing cost, small weight, and easy modification.
However, as the energy density of the battery cell increases in recent years, there is a problem that the amount of gas generated inside the battery cell also increases. In the case of the conventional battery cell 10, a component capable of discharging the gas generated inside the battery cell is not included, so a venting may occur in the battery cell due to gas generation. In addition, moisture may penetrate into the battery cell damaged by the venting, which may cause side reactions, and there is a problem that battery performance deteriorates and additional gas is generated. Accordingly, there is an increasing need to develop a battery cell with improved external emission of gas generated inside the battery cell.
The present disclosure is designed to solve the problems of the related art, and therefore the present disclosure is directed to providing a battery cell with improved external emission of gas generated inside the battery cell, and a battery module including the same.
These and other objects and advantages of the present disclosure may be understood from the following detailed description and will become more fully apparent from the exemplary embodiments of the present disclosure. Also, it will be easily understood that the objects and advantages of the present disclosure may be realized by the means shown in the appended claims and combinations thereof.
In one aspect of the present disclosure, there is provided a battery cell, comprising: a battery case having an accommodation portion in which an electrode assembly is mounted, and a sealing portion formed by sealing an outer periphery thereof by heat fusion; an electrode lead electrically connected to an electrode tab included in the electrode assembly and protruding out of the battery case via the sealing portion; and a lead film located at a portion corresponding to the sealing portion in at least one of an upper portion and a lower portion of the electrode lead, wherein the lead film has a dented portion recessed toward an inside of the battery case, and the dented portion is opened toward an outside of the battery case.
Inner surfaces of the dented portion may be closed based on a protruding direction of the electrode lead.
The battery cell may further comprise an inner layer configured to cover at least one surface of inner surfaces of the dented portion of the lead film.
A material of the inner layer may have a higher melting point compared to a material of the lead film and may not react with an electrolytic solution.
The lead film may contain a polyolefin-based material.
The inner layer may contain at least one of polyolefin-based materials, fluorine-based materials and porous ceramic-based materials.
The dented portion may be located over the electrode lead.
The lead film may have a length greater than a width of the electrode lead.
The dented portion may be located between an end of the electrode lead and an end of the lead film.
The dented portion may include a first dented portion and a second dented portion, the first dented portion may extend along a protruding direction of the electrode lead, and the second dented portion may extend along a longitudinal direction of the sealing portion.
The lead film may have a width greater than a width of the sealing portion and smaller than a length of the electrode lead.
The second dented portion may be located between an end of the sealing portion and an end of the lead film.
The lead film may include a first lead film and a second lead film, the first lead film may be located at an upper portion of the electrode lead, and the second lead film may be located at a lower portion of the electrode lead.
The electrode lead may be located between the first lead film and the second lead film, and the first lead film and the second lead film may be connected to each other.
The dented portion may be located in at least one of the first lead film and the second lead film.
An end of the dented portion recessed into the lead film may be located inner than an inner surface of the battery case.
An end of the dented portion opened toward the outside of the battery case may be located outer than an outer surface of the battery case.
Based on a protruding direction of the electrode lead, a width of the lead film surrounding a rear surface of the dented portion may be 2 mm or more.
A thickness of the lead film surrounding an upper surface of the dented portion may be 100 μm to 300 μm.
The lead film may have gas permeability of 20 Barrer to 60 Barrer at 60° C.
The lead film may have a moisture penetration amount of 0.02 g to 0.2 g for 10 years at 25° C., 50% RH.
In another aspect of the present disclosure, there is also provided a battery module, comprising the battery cell described above.
According to the embodiments, the present disclosure provides a battery cell including an electrode lead to which a lead film having a dented portion recessed toward the inside of the battery case and opened toward the outside of the battery case is attached, and a battery module including the same, so it is possible to improve the external emission of gas generated inside the battery cell.
The effect of the present disclosure is not limited to the above effects, and the effects not mentioned here will be clearly understood by those skilled in the art from this specification and the accompanying drawings.
Hereinafter, with reference to the accompanying drawings, various embodiments of the present disclosure will be described in detail so as to be easily implemented by those skilled in the art. The present disclosure may be implemented in various different forms and is not limited to the embodiments described herein.
In order to clearly explain the present disclosure, parts irrelevant to the description are omitted, and identical or similar components are endowed with the same reference signs throughout the specification.
In addition, since the size and thickness of each component shown in the drawings are arbitrarily expressed for convenience of description, the present disclosure is not necessarily limited to the drawings. In order to clearly express various layers and regions in the drawings, the thicknesses are enlarged. Also, in the drawings, for convenience of explanation, the thickness of some layers and regions is exaggerated.
In addition, throughout the specification, when a part “includes” a certain component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.
In addition, throughout the specification, when referring to “top view”, it means that the target part is viewed from above, and when referring to “cross-sectional view”, it means that a vertically-cut section of the target part is viewed from a side.
Hereinafter, a pouch battery cell 100 according to an embodiment of the present disclosure will be described. However, here, the description will be made based on one side surface of both side surfaces of the pouch battery cell 100, but it is not necessarily limited thereto, and the same or similar contents may be described in the case of the other side surface.
Referring to
The battery case 200 includes an accommodation portion 210 in which an electrode assembly 110 is mounted, and a sealing portion 250 formed by sealing an outer periphery thereof by heat fusion. The battery case 200 may be a laminate sheet including a resin layer and a metal layer. More specifically, the battery case 200 may be made of a laminate sheet, and may include an outer resin layer forming the outermost layer, a barrier metal layer preventing penetration of materials, and an inner resin layer for sealing.
Also, the electrode assembly 110 may have a structure of a jelly-roll type (winding type), a stack type (lamination type), or a composite type (stack/folding type). More specifically, the electrode assembly 110 may include a positive electrode, a negative electrode, and a separator disposed therebetween.
Hereinafter, the electrode lead 300 and the lead film 400 will be mainly described.
Referring to
Referring to
Accordingly, in the lead film 400, the gas generated inside the battery case 200 may be discharged to the dented portion 450 due to the pressure difference between the inside and the outside of the dented portion 450, and the gas introduced into the dented portion 450 may be discharged toward the outside. In addition, since the dented portion 450 of the lead film 400 is opened toward the outside, the dented portion 450 may not be exposed to the electrolytic solution inside the battery case 200, and the airtightness and durability of the pouch may be secured. In addition, the lead film 400 may maximize the area for gas penetration by the dented portion 450 and thus discharge a large amount of gas.
In addition, referring to
For example, referring to
Accordingly, even if the lead film 400 is heat-fused together with the sealing portion 250 in a state of being located in at least one of the upper and lower portions of the electrode lead 300, the dented portion 450 may be preserved in a non-heat-fused state by the inner layer 410.
As another example, referring to
Accordingly, while the lead film 400 minimizes the inner layer 410 formed in the dented portion 450, the dented portion 450 may be preserved in a non-heat-fused state by the inner layer 410. In addition, the manufacturing process may be simplified and the cost may be reduced.
More specifically, the inner layer 410 may be made of a material having a higher melting point compared to the material constituting the lead film 400. In addition, the inner layer 410 may be made of a material that does not react with the electrolytic solution contained in the battery case 200. Accordingly, since the inner layer 410 is made of the above-described material, the inner layer 410 does not separately react with the electrolytic solution and does not cause heat fusion, thermal deformation, or the like in the high-temperature heat fusion process, so that the dented portion 450 may be kept blank. In addition, the gas generated in the battery case 200 may be easily discharged to the outside.
In one embodiment of the present disclosure, the thickness of the inner layer 410 may be 100 μm or less.
In one embodiment of the present disclosure, the gas permeability of the inner layer 410 may be 40 Barrer or more. For example, the carbon dioxide permeability of the inner layer 410 may satisfy the above range.
For example, the lead film 400 may contain a polyolefin-based material, and the inner layer 410 may include at least one of polyolefin-based materials, fluorine-based materials, and porous ceramic-based materials. For example, the inner layer 410 may include at least one of polyolefin-based materials, fluorine-based materials, and porous ceramic-based materials that satisfies the above gas permeability value. The polyolefin-based material may include at least one material selected from the group consisting of polypropylene, polyethylene, and polyvinyl difluoride (PVDF). The fluorine-based material may include at least one material selected from the group consisting of polytetrafluoroethylene and polyvinylidene fluoride. In addition, the inner layer 410 may include a getter material, so that gas permeability may be increased while water permeability may be minimized. As an example, the getter material may be calcium oxide (CaO), barium oxide (BaO), lithium chloride (LiCl), silica (SiO2), or the like, and any material reacting with water (H2O) can be used without being limited thereto.
The inner layer 410 may have an adhesive material between the lead film 400 and the inner layer 410 or may be extruded together with the lead film 400 and adhered to the lead film 400. The adhesive material may include an acryl-based material. In particular, when the inner layer 410 is extruded together with the lead film 400, the gas permeability of the inner layer 410 may be 40 Barrer or more.
Referring to
Accordingly, the lead film 400 may prevent the side surface of the electrode lead 300 from being exposed to the outside, while improving the sealing properties of the sealing portion 250 and the electrode lead 300.
For example, in the lead film 400, the dented portion 450 may be located in at least one of the first lead film and the second lead film. More specifically, in the lead film 400, the dented portion 450 may be formed in the first lead film or the second lead film based on the electrode lead 300, or the dented portion 450 may be formed on both the first lead film and the second lead film based on the electrode lead 300. However, the number of the dented portion 450 is not limited to the above, and the lead film 400 may be formed in an appropriate number.
Accordingly, by adjusting the number of the dented portions 450 formed in the lead film 400, the durability and airtightness of the lead film 400 may be controlled. In addition, by minimizing the number of the dented portion 450 as necessary, it is possible to simplify the manufacturing process and reduce the cost.
Referring to
For example, as shown in
As another example, as shown in
Accordingly, by adjusting the position of the dented portion 450 formed in the lead film 400, the durability and airtightness of the lead film 400 may be controlled. In addition, if necessary, by adjusting the size of the dented portion 450 according to the position of the dented portion 450, it is possible to simplify the manufacturing process and reduce the cost. Referring to
For example, the dented portion 450 may include a first dented portion 451 and a second dented portion 455, where the first dented portion 451 may extend along the protruding direction of the electrode lead 300 and the second dented portion 455 may extend along the longitudinal direction of the sealing portion 250. Here, the longitudinal direction of the sealing portion 250 refers to a direction perpendicular to the protruding direction of the electrode lead 300.
Here, the width of the lead film 400 may be greater than the width of the sealing portion 250 and may be smaller than the length of the electrode lead 300. Here, the width of the lead film 400 means a maximum value of the distance between one end and the other end of the lead film in the protruding direction of the electrode lead 300. The width of the sealing portion 250 means a maximum value of the distance between one end and the other end of the sealing portion 250 in the protruding direction of the electrode lead 300. The length of the electrode lead 300 means a maximum value of the distance between one end and the other end of the electrode lead 300 in the protruding direction of the electrode lead 300. At this time, the second dented portion 455 may be located between the end of the sealing portion 250 and the end of the lead film 400. However, the shape of the dented portion 450 is not limited to the above, and the dented portion 450 may be formed in an appropriate shape within the lead film 400.
Accordingly, by adjusting the shape of the dented portion 450 formed in the lead film 400, the durability and airtightness of the lead film 400 may be controlled. In addition, by changing the shape of the dented portion 450 as necessary, it is possible to simplify the manufacturing process and reduce cost.
Referring to
As an example, comparing
Accordingly, in this embodiment, within the error range according to the positions of the lead film 400 and the sealing portion 250 generated during the heat fusion process, the area in which the end of the dented portion 450 recessed toward the inside is located at an inside with respect to the battery case 200 may be uniformly maintained, and the area in which the gas in the battery case 200 may be introduced into the dented portion 450 and discharged to the outside may also be maintained uniformly. Accordingly, there is an advantage that the gas exhaust effect by the dented portion 450 may also be maintained.
Referring to
Accordingly, the lead film 400 may maximize the area of the dented portion 450 and discharge a large amount of gas.
Referring to
Referring to
Referring to
Accordingly, the gas generated inside the battery cell 100 may be discharged toward the dented portion 450, and the gas introduced into the dented portion 450 may be easily discharged toward the outside. In addition, the amount of gas generated inside the battery cell 100 and discharged to the outside may also be increased.
In one embodiment of the present disclosure, the gas permeability of the lead film 400 may be 20 Barrer to 60 Barrer, or 30 Barrer to 40 Barrer at 60° C. For example, the carbon dioxide permeability of the lead film 400 may satisfy the above range. In addition, the gas permeability may satisfy the above range at 60° C. based on the thickness of the lead film 400 of 200 μm. If the gas permeability of the lead film 400 satisfies the above range, the gas generated inside the secondary battery may be more effectively discharged.
In this specification, the gas permeability may be measured by ASTM F2476-20.
In one embodiment of the present disclosure, the moisture penetration amount of the lead film 400 may be 0.02 g to 0.2 g, or 0.02 g to 0.04 g, or 0.06 g, or 0.15 g for 10 years at 25° C., 50% RH. If the moisture penetration amount of the lead film 400 satisfies the above range, the penetration of moisture from the lead film 400 may be more effectively prevented.
In one embodiment of the present disclosure, the lead film 400 may have a gas permeability of 20 Barrer to 60 Barrer at 60° C. and a moisture penetration amount of 0.02 g to 0.2 g at 25° C., 50% RH for 10 years. If the gas permeability and the moisture penetration amount of the lead film 400 satisfy the above ranges, the penetration of moisture from the outside may be more effectively prevented while discharging the gas generated inside the secondary battery.
The moisture penetration amount of the lead film 400 may be measured by adopting the ASTM F 1249 method. At this time, the moisture penetration amount may be measured using equipment officially certified by MCOON.
In one embodiment of the present disclosure, the lead film 400 may include a polyolefin-based resin. For example, the lead film 400 may include a polyolefin-based resin satisfying the gas permeability and/or moisture penetration amount values described above. The polyolefin-based resin may include at least one material selected from the group consisting of polypropylene, polyethylene, and polyvinyl difluoride (PVDF). While the lead film 400 contains polypropylene, the gas permeability of the lead film 400 may be 20 Barrer to 60 Barrer at 60° C. Also, the moisture penetration amount may be 0.06 g to 0.15 g. In this case, the gas generated inside the secondary battery may be more effectively discharged, and the penetration of moisture from the outside may be easily prevented.
In addition, since the lead film 400 is made of the above-described material, the lead film 400 may maintain the airtightness of the battery cell 100 and prevent leakage of the internal electrolytic solution.
As an example, the dented portion 450 may be partially expanded toward the upper and lower sides as compared with
A battery module according to another embodiment of the present disclosure includes the battery cell described above. Meanwhile, one or more battery modules according to this embodiment may be packaged in a pack case to form a battery pack.
The battery module described above and the battery pack including the same may be applied to various devices. These devices may be transportation means such as electric bicycles, electric vehicles, hybrid electric vehicles, and the like, but the present disclosure is not limited thereto, and the present disclosure may be applied various devices that can use a battery module and a battery pack including the same, which is also within the scope of the right of the present disclosure.
Although the preferred embodiment of the present disclosure has been described in detail above, the scope of the right of the present disclosure is not limited thereto, and various modifications and improvements made by those skilled in the art using the basic concept of the present disclosure defined in the appended claims also fall within the scope of the right of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
10-2021-0003184 | Jan 2021 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2022/000494 | 1/11/2022 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2022/149959 | 7/14/2022 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20060051658 | Otohata et al. | Mar 2006 | A1 |
20060238162 | Cheon et al. | Oct 2006 | A1 |
20090081542 | Yageta et al. | Mar 2009 | A1 |
20110033769 | Huang et al. | Feb 2011 | A1 |
20110104527 | Choi et al. | May 2011 | A1 |
20140120387 | Kinuta et al. | May 2014 | A1 |
20140199581 | Ryu et al. | Jul 2014 | A1 |
20160315301 | Kim et al. | Oct 2016 | A1 |
20170149024 | Park | May 2017 | A1 |
20180114964 | Kim et al. | Apr 2018 | A1 |
20180219247 | Park | Aug 2018 | A1 |
20230084670 | Lim et al. | Mar 2023 | A1 |
20230178830 | Lim et al. | Jun 2023 | A1 |
Number | Date | Country |
---|---|---|
1653629 | Aug 2005 | CN |
1855600 | Nov 2006 | CN |
102280604 | Dec 2011 | CN |
106067525 | Nov 2016 | CN |
107925033 | Apr 2018 | CN |
3660941 | Jun 2020 | EP |
2001273884 | Oct 2001 | JP |
2006-185708 | Jul 2006 | JP |
2006310308 | Nov 2006 | JP |
2007-311163 | Nov 2007 | JP |
2009-146812 | Jul 2009 | JP |
201289532 | May 2012 | JP |
201312468 | Jan 2013 | JP |
2014212034 | Nov 2014 | JP |
2015510240 | Apr 2015 | JP |
2017103164 | Jun 2017 | JP |
2018525804 | Sep 2018 | JP |
100684724 | Feb 2007 | KR |
100944987 | Mar 2010 | KR |
20120059548 | Jun 2012 | KR |
20130014253 | Feb 2013 | KR |
2014-0087773 | Jul 2014 | KR |
101547403 | Aug 2015 | KR |
20160031779 | Mar 2016 | KR |
20160111614 | Sep 2016 | KR |
20160126157 | Nov 2016 | KR |
20170027150 | Mar 2017 | KR |
20180090100 | Aug 2018 | KR |
20180092819 | Aug 2018 | KR |
20190022196 | Mar 2019 | KR |
2013146803 | Oct 2013 | WO |
2018-052042 | Mar 2018 | WO |
2020-184689 | Sep 2020 | WO |
2022-098063 | May 2022 | WO |
2022-149960 | Jul 2022 | WO |
Entry |
---|
Machine translation of Korean Patent Publication No. 2013/0014253, published Feb. 7, 2013. (Year: 2013). |
International Search Report for Application No. PCT/KR2022/000494 mailed Apr. 19, 2022, pp. 1-3. |
Search Report dated Sep. 18, 2023 from the Office Action for Chinese Application No. 202280002618.4 issued Sep. 19, 2023, 3 pages. [See p. 1-2, categorizing the cited references]. |
Number | Date | Country | |
---|---|---|---|
20230327247 A1 | Oct 2023 | US |