The inventors have recognized that during a brazing process of a cooling fin utilized in a battery cell assembly, a side of the cooling fin may have an abrasive residue formed thereon which can undesirably rub against an adjacent battery cell.
Accordingly, the inventors herein have recognized a need for an improved battery cell assembly and a method for manufacturing a cooling fin in the battery cell assembly that minimizes and/or eliminates the above-mentioned deficiency.
A battery cell assembly in accordance with an exemplary embodiment is provided. The battery cell assembly includes a cooling fin having a generally rectangular-shaped aluminum plate, a tube, and a flexible thermally conductive sheet. The generally rectangular-shaped aluminum plate has a first side and a second side. The tube is coupled to the first side of the of the generally rectangular-shaped aluminum plate and extends on at least first, second, and third peripheral edge portions of the generally rectangular-shaped aluminum plate. The flexible thermally conductive sheet is disposed on the first side of the generally rectangular-shaped aluminum plate. The battery cell assembly further includes a battery cell disposed against the flexible thermally conductive sheet of the cooling fin.
A method for manufacturing a cooling fin for a battery cell assembly in accordance with another exemplary embodiment is provided. The method includes providing a generally rectangular-shaped aluminum plate, a tube, and a flexible thermally conductive sheet. The generally rectangular-shaped aluminum plate has a first side and a second side. The method further includes brazing the tube to the first side of the of the generally rectangular-shaped aluminum plate such that the tube extends on at least first, second, and third peripheral edge portions of the generally rectangular-shaped aluminum plate. The method further includes attaching the flexible thermally conductive sheet on the first side of the generally rectangular-shaped aluminum plate.
Referring to
The rectangular ring-shaped frame members 20, 22 are configured to be coupled together to hold the battery cells 30, 32 and the cooling fin 40 therebetween. In one exemplary embodiment, the rectangular ring-shaped frame members 20, 22 are constructed of plastic. However, in alternative embodiments, the rectangular ring-shaped frame members 20, 22 could be constructed of other materials known to those skilled in the art.
The battery cells 30, 32 are each configured to generate an operational voltage. In one exemplary embodiment, each of the battery cells 30, 32 are pouch-type lithium-ion battery cells. Of course, other types of battery cells known to those skilled in the art could be utilized. Also, in an exemplary embodiment, the battery cells 30, 32 are electrically coupled in series to one another.
The battery cell 30 includes a rectangular-shaped pouch 50 and electrodes 52, 54 extending from the pouch 50. The battery cell 30 is disposed between the rectangular ring-shaped frame member 20 and the cooling fin 40.
The battery cell 32 includes a rectangular-shaped pouch 60, an electrode 62 and another electrode (not shown). The battery cell 32 is disposed between the rectangular ring-shaped frame member 22 and the cooling fin 40.
Referring to
The rectangular-shaped aluminum plate 80 has a first side 90 and a second side 92. The plate 80 further includes first, second, third, and fourth peripheral edge portions 100, 102, 104, 106 (shown in
The tube 82 is coupled to the first side 90 of the generally rectangular-shaped aluminum plate 80, and is coupled to and extends on the first, second, third, and fourth peripheral edge portions 100, 102, 104, 106 of the plate 80. In one exemplary embodiment, the tube 82 is constructed of aluminum. However, the tube 82 could be constructed of other materials known to those skilled in the art. Referring to
Also, referring to
Referring to
Referring to
Referring to
At step 150, an operator provides the generally rectangular-shaped aluminum plate 80, the tube 82, and the flexible thermally conductive sheet 84. The generally rectangular-shaped aluminum plate 80 has the first side 90 and the second side 92.
At step 152, the stamping machine 170 forms an arcuate-shaped groove 109 on the first, second, third, and fourth peripheral edge portions 100, 102, 104, 106 of the generally rectangular-shaped aluminum plate 80.
At step 154, the operator disposes the tube 82 in the arcuate-shaped groove 109 such that the tube 82 is disposed on the first, second, third, and fourth peripheral edge portions 100, 102, 104, 106 of the generally rectangular-shaped aluminum plate 82.
At step 156, the brazing machine 172 brazes the tube 82 to the first side 90 of the generally rectangular-shaped aluminum plate 80 such that the tube 82 is attached to the first, second, third, and fourth peripheral edge portions 100, 102, 104, 106 of the generally rectangular-shaped aluminum plate 82.
At step 158, the operator attaches the flexible thermally conductive sheet 84 on the first side 90 of the generally rectangular-shaped aluminum plate 80.
The battery cell assembly 10 and the method for manufacturing the cooling fin 40 provide a substantial advantage over other battery cell assemblies and methods. In particular, the battery cell assembly 10 and the method provide a technical effect of utilizing a cooling fin 40 with a flexible thermally conductive sheet 84 disposed on a relatively rough surface of the cooling fin 40 such that the flexible thermally conductive sheet 84 is disposed against the adjacent battery cell to prevent abrasive rubbing of the rough surface against the battery cell.
While the claimed invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the claimed invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the claimed invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the claimed invention is not to be seen as limited by the foregoing description.
Number | Name | Date | Kind |
---|---|---|---|
1587425 | Schepp | Jun 1926 | A |
2273244 | Ambruster | Feb 1942 | A |
2391859 | Babcock | Jan 1946 | A |
3503558 | Galiulo et al. | Mar 1970 | A |
3522100 | Lindstrom | Jul 1970 | A |
3550681 | Stier et al. | Dec 1970 | A |
3964930 | Reiser | Jun 1976 | A |
4009752 | Wilson | Mar 1977 | A |
4063590 | Mcconnell | Dec 1977 | A |
4298904 | Koenig | Nov 1981 | A |
4305456 | Mueller et al. | Dec 1981 | A |
4322776 | Job et al. | Mar 1982 | A |
4444994 | Baker et al. | Apr 1984 | A |
4518663 | Kodali et al. | May 1985 | A |
4646202 | Hook et al. | Feb 1987 | A |
4701829 | Bricaud et al. | Oct 1987 | A |
4777561 | Murphy et al. | Oct 1988 | A |
4849858 | Grapes et al. | Jul 1989 | A |
4982785 | Tomlinson | Jan 1991 | A |
4995240 | Barthel et al. | Feb 1991 | A |
5057968 | Morrison | Oct 1991 | A |
5071652 | Jones et al. | Dec 1991 | A |
5186250 | Ouchi et al. | Feb 1993 | A |
5214564 | Metzler et al. | May 1993 | A |
5270131 | Diethelm et al. | Dec 1993 | A |
5322745 | Yanagihara et al. | Jun 1994 | A |
5329988 | Juger | Jul 1994 | A |
5346786 | Hodgetts | Sep 1994 | A |
5356735 | Meadows et al. | Oct 1994 | A |
5443926 | Holland et al. | Aug 1995 | A |
5510203 | Hamada et al. | Apr 1996 | A |
5520976 | Giannetti et al. | May 1996 | A |
5663007 | Ikoma et al. | Sep 1997 | A |
5731568 | Malecek | Mar 1998 | A |
5736836 | Hasegawa et al. | Apr 1998 | A |
5756227 | Suzuki et al. | May 1998 | A |
5937664 | Matsuno et al. | Aug 1999 | A |
5985483 | Verhoog et al. | Nov 1999 | A |
6087036 | Rouillard et al. | Jul 2000 | A |
6111387 | Kouzu et al. | Aug 2000 | A |
6176095 | Porter | Jan 2001 | B1 |
6289979 | Kato | Sep 2001 | B1 |
6344728 | Kouzu et al. | Feb 2002 | B1 |
6362598 | Laig-Horstebrock et al. | Mar 2002 | B2 |
6399238 | Oweis et al. | Jun 2002 | B1 |
6422027 | Coates, Jr. et al. | Jul 2002 | B1 |
6448741 | Inui et al. | Sep 2002 | B1 |
6462949 | Parish, IV et al. | Oct 2002 | B1 |
6512347 | Hellmann et al. | Jan 2003 | B1 |
6569556 | Zhou et al. | May 2003 | B2 |
6662891 | Misu et al. | Dec 2003 | B2 |
6689510 | Gow et al. | Feb 2004 | B1 |
6696197 | Inagaki et al. | Feb 2004 | B2 |
6703160 | Gao | Mar 2004 | B2 |
6724172 | Koo | Apr 2004 | B2 |
6750630 | Inoue et al. | Jun 2004 | B2 |
6775998 | Yuasa et al. | Aug 2004 | B2 |
6780538 | Hamada et al. | Aug 2004 | B2 |
6821671 | Hinton et al. | Nov 2004 | B2 |
6826948 | Bhatti et al. | Dec 2004 | B1 |
6878485 | Ovshinsky et al. | Apr 2005 | B2 |
6982131 | Hamada et al. | Jan 2006 | B1 |
7070874 | Blanchet et al. | Jul 2006 | B2 |
7143124 | Garthwaite | Nov 2006 | B2 |
7150935 | Hamada et al. | Dec 2006 | B2 |
7250741 | Koo et al. | Jul 2007 | B2 |
7264902 | Horie et al. | Sep 2007 | B2 |
7278389 | Kirakosyan | Oct 2007 | B2 |
7467525 | Ohta et al. | Dec 2008 | B1 |
7531270 | Buck et al. | May 2009 | B2 |
7795845 | Cho | Sep 2010 | B2 |
7797958 | Alston et al. | Sep 2010 | B2 |
7816029 | Takamatsu et al. | Oct 2010 | B2 |
7846573 | Kelly | Dec 2010 | B2 |
7879480 | Yoon et al. | Feb 2011 | B2 |
7883793 | Niedzwiecki et al. | Feb 2011 | B2 |
7976978 | Shin et al. | Jul 2011 | B2 |
7981538 | Kim et al. | Jul 2011 | B2 |
7997367 | Nakamura | Aug 2011 | B2 |
8007915 | Kurachi | Aug 2011 | B2 |
8030886 | Mahalingam et al. | Oct 2011 | B2 |
8067111 | Koetting et al. | Nov 2011 | B2 |
8209991 | Kondou et al. | Jul 2012 | B2 |
8409743 | Okada et al. | Apr 2013 | B2 |
20020182493 | Ovshinsky et al. | Dec 2002 | A1 |
20030080714 | Inoue et al. | May 2003 | A1 |
20030094263 | Garcia et al. | May 2003 | A1 |
20030211384 | Hamada et al. | Nov 2003 | A1 |
20040069474 | Wu et al. | Apr 2004 | A1 |
20050026014 | Fogaing et al. | Feb 2005 | A1 |
20050089750 | Ng et al. | Apr 2005 | A1 |
20050103486 | Demuth et al. | May 2005 | A1 |
20050110460 | Arai et al. | May 2005 | A1 |
20050134038 | Walsh | Jun 2005 | A1 |
20060234119 | Kruger et al. | Oct 2006 | A1 |
20060286450 | Yoon et al. | Dec 2006 | A1 |
20070062681 | Beech | Mar 2007 | A1 |
20070087266 | Bourke et al. | Apr 2007 | A1 |
20070227166 | Rafalovich et al. | Oct 2007 | A1 |
20080003491 | Yahnker et al. | Jan 2008 | A1 |
20080041079 | Nishijima et al. | Feb 2008 | A1 |
20080110189 | Alston et al. | May 2008 | A1 |
20080182151 | Mizusaki et al. | Jul 2008 | A1 |
20080248338 | Yano et al. | Oct 2008 | A1 |
20080299446 | Kelly | Dec 2008 | A1 |
20080314071 | Ohta et al. | Dec 2008 | A1 |
20090074478 | Kurachi | Mar 2009 | A1 |
20090087727 | Harada et al. | Apr 2009 | A1 |
20090104512 | Fassnacht et al. | Apr 2009 | A1 |
20090155680 | Maguire et al. | Jun 2009 | A1 |
20090186265 | Koetting et al. | Jul 2009 | A1 |
20090258288 | Weber et al. | Oct 2009 | A1 |
20090258289 | Weber et al. | Oct 2009 | A1 |
20090280395 | Nemesh et al. | Nov 2009 | A1 |
20090325051 | Niedzwiecki et al. | Dec 2009 | A1 |
20090325052 | Koetting et al. | Dec 2009 | A1 |
20090325054 | Payne et al. | Dec 2009 | A1 |
20090325055 | Koetting et al. | Dec 2009 | A1 |
20100112419 | Jang et al. | May 2010 | A1 |
20100203376 | Choi et al. | Aug 2010 | A1 |
20100209760 | Yoshihara et al. | Aug 2010 | A1 |
20100262791 | Gilton | Oct 2010 | A1 |
20100275619 | Koetting et al. | Nov 2010 | A1 |
20100276132 | Payne | Nov 2010 | A1 |
20100279152 | Payne | Nov 2010 | A1 |
20100279154 | Koetting et al. | Nov 2010 | A1 |
20110027640 | Gadawski et al. | Feb 2011 | A1 |
20110041525 | Kim et al. | Feb 2011 | A1 |
20110045326 | Leuthner et al. | Feb 2011 | A1 |
20110052959 | Koetting et al. | Mar 2011 | A1 |
20120082880 | Koetting et al. | Apr 2012 | A1 |
20130045410 | Yang et al. | Feb 2013 | A1 |
20130255293 | Gadawski et al. | Oct 2013 | A1 |
20130309542 | Merriman et al. | Nov 2013 | A1 |
20140050953 | Yoon et al. | Feb 2014 | A1 |
20140050966 | Merriman et al. | Feb 2014 | A1 |
20140147709 | Ketkar et al. | May 2014 | A1 |
Number | Date | Country |
---|---|---|
19639115 | Mar 1998 | DE |
1577966 | Sep 2005 | EP |
1852925 | Nov 2007 | EP |
2262048 | Dec 2010 | EP |
481891 | Mar 1938 | GB |
08111244 | Apr 1996 | JP |
09129213 | May 1997 | JP |
09219213 | Aug 1997 | JP |
2001105843 | Apr 2001 | JP |
2002038033 | Feb 2002 | JP |
2002319383 | Oct 2002 | JP |
2002333255 | Nov 2002 | JP |
2003188323 | Jul 2003 | JP |
2003282112 | Oct 2003 | JP |
2004333115 | Nov 2004 | JP |
2005126315 | May 2005 | JP |
2005147443 | Jun 2005 | JP |
2005349955 | Dec 2005 | JP |
2006139928 | Jun 2006 | JP |
2007305425 | Nov 2007 | JP |
2008054379 | Mar 2008 | JP |
2008062875 | Mar 2008 | JP |
2008080995 | Apr 2008 | JP |
2008159440 | Jul 2008 | JP |
2009009889 | Jan 2009 | JP |
2009054297 | Mar 2009 | JP |
20050092605 | Sep 2005 | KR |
100637472 | Oct 2006 | KR |
100765659 | Oct 2007 | KR |
20080047641 | May 2008 | KR |
20090082212 | Jul 2009 | KR |
100921346 | Oct 2009 | KR |
20090107443 | Oct 2009 | KR |
1020100119497 | Nov 2010 | KR |
1020100119498 | Nov 2010 | KR |
1020110013269 | Feb 2011 | KR |
1020110013270 | Feb 2011 | KR |
20110126764 | Nov 2011 | KR |
2006101343 | Sep 2006 | WO |
2007007503 | Jan 2007 | WO |
2007115743 | Oct 2007 | WO |
2008111162 | Sep 2008 | WO |
2009073225 | Jun 2009 | WO |
WO 2011145830 | Nov 2011 | WO |
Entry |
---|
“Gasket”. Merriam-Webster. Merriam-Webster. Web. May 30, 2012. <http://www.merriam-webster.com/dictionary/gasket>. |
International Search Report; International Application No. PCT/KR2009/000258; International Filing Date: Jan. 16, 2009; Date of Mailing: Aug. 28, 2009; 2 pages. |
International Search Report; International Application No. PCT/KR2009/003428, International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 22, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2009/003429; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 12, 2010; 3 pages. |
International Search Report; International Application No. PCT/KR2009/003430; International Filing Date: Jun. 25, 2009; Date of Mailing: Feb. 3, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2009/003434; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 18, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2009/003436; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 22, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2009/006121; International Filing Date: Oct. 22, 2009; Date of Mailing: May 3, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2010/002334; International Filing Date: Apr. 15, 2010; Date of Mailing: Nov. 29, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2010/002336; International Filing Date: Apr. 15, 2010; Date of Mailing: Jan. 31, 2011; 2 pages. |
International Search Report; International Application No. PCT/KR2010/002337; International Filing Date: Apr. 15, 2010; Date of Mailing: May 3, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2010/002340; International Filing Date: Apr. 15, 2010; Date of Mailing: Jan. 31, 2011; 2 pages. |
International Search Report; International Application No. PCT/KR2010/004944; International Filing Date: Jul. 28, 2010; Date of Mailing: Apr. 29, 2011; 2 pages. |
International Search Report; International Application No. PCT/KR2010/005639; International Filing Date: Aug. 24, 2010; Date of Mailing: Jun. 3, 2011; 2 pages. |
Machine translation of Japanese Patent Application No. 2009-009889 A, published Jan. 15, 2009. |
Thomas J. Gadawski et al., pending U.S. Appl. No. 13/433,649 entitled “Battery System and Method for Cooling the Battery System,” filed with the U.S. Patent and Trademark Office on Mar. 29, 2012. |
International Search Report for International application No. PCT/KR2013/004015 dated Sep. 26, 2013. |
U.S. Appl. No. 13/586,960, filed Aug. 16, 2012 entitled Battery Module. |
U.S. Appl. No. 13/587,030, filed Aug. 16, 2012 entitled Battery Module and Method for Assembling the Battery Module. |
U.S. Appl. No. 13/766,162, filed Feb. 13, 2013 entitled Battery Cell Assembly and Method for Manufacturing the Battery Cell Assembly. |
U.S. Appl. No. 13/861,426, filed Apr. 12, 2013 entitled Battery Cell Assembly and Method for Manufacturing a Cooling Fin for the Battery Cell Assembly. |
U.S. Appl. No. 13/936,556, filed Jul. 8, 2013 entitled Battery Assembly. |
U.S. Appl. No. 14/059,547, filed Oct. 22, 2013 entitled Battery Cell Assembly. |
U.S. Appl. No. 14/161,806, filed Jan. 23, 2014 entitled Battery Cell Assembly and Method for Coupling a Cooling Fin to First and Second Cooling Manifolds. |
U.S. Appl. No. 14/273,572, filed May 9, 2014 entitled Battery Pack and Method of Assembling the Battery Pack. |
U.S. Appl. No. 14/273,586, filed May 9, 2014 entitled Battery Module and Method of Assembling the Battery Module. |
U.S. Appl. No. 14/328,000, filed Jul. 10, 2014 entitled Battery System and Method of Cooling the Battery System. |
U.S. Appl. No. 14/330,163, filed Jul. 14, 2014 entitled Battery System and Method for Cooling the Battery System. |
U.S. Appl. No. 13/686,018, filed Nov. 27, 2012 entitled Battery System and Method for Cooling a Battery Cell Assembly. |
Written Opinion for International application No. PCT/KR2014/002090 dated May 26, 2014. |
Number | Date | Country | |
---|---|---|---|
20130309542 A1 | Nov 2013 | US |