Battery cell assembly and method for manufacturing a cooling fin for the battery cell assembly

Information

  • Patent Grant
  • 8852781
  • Patent Number
    8,852,781
  • Date Filed
    Saturday, May 19, 2012
    12 years ago
  • Date Issued
    Tuesday, October 7, 2014
    10 years ago
Abstract
A battery cell assembly is provided. The battery cell assembly includes a cooling fin having a rectangular-shaped aluminum plate, a tube, and a flexible thermally conductive sheet. The plate has a first side and a second side. The tube is coupled to the first side of the plate and extends on at least first, second, and third peripheral edge portions of the plate. The flexible thermally conductive sheet is disposed on the first side of the plate. The battery cell assembly further includes a battery cell disposed against the flexible thermally conductive sheet of the cooling fin.
Description
BACKGROUND

The inventors have recognized that during a brazing process of a cooling fin utilized in a battery cell assembly, a side of the cooling fin may have an abrasive residue formed thereon which can undesirably rub against an adjacent battery cell.


Accordingly, the inventors herein have recognized a need for an improved battery cell assembly and a method for manufacturing a cooling fin in the battery cell assembly that minimizes and/or eliminates the above-mentioned deficiency.


SUMMARY

A battery cell assembly in accordance with an exemplary embodiment is provided. The battery cell assembly includes a cooling fin having a generally rectangular-shaped aluminum plate, a tube, and a flexible thermally conductive sheet. The generally rectangular-shaped aluminum plate has a first side and a second side. The tube is coupled to the first side of the of the generally rectangular-shaped aluminum plate and extends on at least first, second, and third peripheral edge portions of the generally rectangular-shaped aluminum plate. The flexible thermally conductive sheet is disposed on the first side of the generally rectangular-shaped aluminum plate. The battery cell assembly further includes a battery cell disposed against the flexible thermally conductive sheet of the cooling fin.


A method for manufacturing a cooling fin for a battery cell assembly in accordance with another exemplary embodiment is provided. The method includes providing a generally rectangular-shaped aluminum plate, a tube, and a flexible thermally conductive sheet. The generally rectangular-shaped aluminum plate has a first side and a second side. The method further includes brazing the tube to the first side of the of the generally rectangular-shaped aluminum plate such that the tube extends on at least first, second, and third peripheral edge portions of the generally rectangular-shaped aluminum plate. The method further includes attaching the flexible thermally conductive sheet on the first side of the generally rectangular-shaped aluminum plate.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic of a battery cell assembly in accordance with an exemplary embodiment;



FIG. 2 is an exploded view of the battery cell assembly of FIG. 1;



FIG. 3 is an exploded view of a portion of the battery cell assembly of FIG. 1;



FIG. 4 is a schematic of a cooling fin utilized in the battery cell assembly of FIG. 1;



FIG. 5 is an exploded view of the cooling fin of FIG. 4;



FIG. 6 is a cross-sectional view of a portion of the cooling fin of FIG. 4 taken along line 6-6;



FIG. 7 is a cross-sectional view of a portion of the cooling fin of FIG. 4 taken along line 7-7;



FIG. 8 is a flowchart of a method for manufacturing the cooling fin of FIG. 4 in accordance with another exemplary embodiment;



FIG. 9 is a block diagram of a stamping machine and a brazing machine utilized to manufacture the cooling fin of FIG. 4; and



FIG. 10 is an enlarged cross-sectional view of a portion of the cooling fin of FIG. 4.





DETAILED DESCRIPTION

Referring to FIGS. 1-5, a battery cell assembly 10 in accordance with an exemplary embodiment is provided. The battery cell assembly 10 includes rectangular ring-shaped frame members 20, 22, battery cells 30, 32, and a cooling fin 40. An advantage of the battery cell assembly 10 is that the assembly 10 utilizes a cooling fin 40 having a rectangular-shaped aluminum plate 80 with a flexible thermally conductive sheet 84 disposed thereon. As a result, a relatively rough surface on the aluminum plate due to a brazing process is covered by the flexible thermally conductive sheet 84 having a relatively smooth surface which is disposed against an adjacent battery cell and eliminates abrasive rubbing against the battery cell by the rough surface. Further, the flexible thermally conductive sheet 84 has excellent thermal characteristics for conducting heat energy from the battery cell to the aluminum plate 80.


The rectangular ring-shaped frame members 20, 22 are configured to be coupled together to hold the battery cells 30, 32 and the cooling fin 40 therebetween. In one exemplary embodiment, the rectangular ring-shaped frame members 20, 22 are constructed of plastic. However, in alternative embodiments, the rectangular ring-shaped frame members 20, 22 could be constructed of other materials known to those skilled in the art.


The battery cells 30, 32 are each configured to generate an operational voltage. In one exemplary embodiment, each of the battery cells 30, 32 are pouch-type lithium-ion battery cells. Of course, other types of battery cells known to those skilled in the art could be utilized. Also, in an exemplary embodiment, the battery cells 30, 32 are electrically coupled in series to one another.


The battery cell 30 includes a rectangular-shaped pouch 50 and electrodes 52, 54 extending from the pouch 50. The battery cell 30 is disposed between the rectangular ring-shaped frame member 20 and the cooling fin 40.


The battery cell 32 includes a rectangular-shaped pouch 60, an electrode 62 and another electrode (not shown). The battery cell 32 is disposed between the rectangular ring-shaped frame member 22 and the cooling fin 40.


Referring to FIGS. 2-7, the cooling fin 40 is provided to transfer heat energy from the battery cells 30, 32 to a refrigerant or a liquid flowing through the cooling fin 40 to cool the battery cells 30, 32. The cooling fin 40 includes a generally rectangular-shaped aluminum plate 80, a tube 82, and a flexible thermally conductive sheet 84.


The rectangular-shaped aluminum plate 80 has a first side 90 and a second side 92. The plate 80 further includes first, second, third, and fourth peripheral edge portions 100, 102, 104, 106 (shown in FIG. 5) that are each arcuate-shaped to hold a portion of the tube 82 thereon. In other words, the first, second, third, and fourth peripheral edge portions 100, 102, 104, 106 define an arcuate-shaped groove 109 (shown in FIG. 6) configured to receive the tube 82 thereon.


The tube 82 is coupled to the first side 90 of the generally rectangular-shaped aluminum plate 80, and is coupled to and extends on the first, second, third, and fourth peripheral edge portions 100, 102, 104, 106 of the plate 80. In one exemplary embodiment, the tube 82 is constructed of aluminum. However, the tube 82 could be constructed of other materials known to those skilled in the art. Referring to FIG. 4, the tube 82 includes an inlet port 120, tube portions 122, 124, 126, 128, 130, and an outlet port 132. The inlet port 120 is coupled to the tube portion 122. The tube portion 122 is coupled between the inlet port 120 and the tube portion 124. The tube portion 126 is coupled between the tube portion 124 and the tube portion 128. The tube portion 130 is coupled between the tube portion 128 and the outlet port 132.


Also, referring to FIGS. 4 and 5, the tube portion 122 is coupled to the fourth peripheral edge portion 106, and the tube portion 124 is coupled to the first peripheral edge portion 100, via brazing. The tube portion 126 is coupled to the second peripheral edge portion 102, and the tube portion 128 is coupled to the third peripheral edge portion 104, via brazing. Also, the tube portion 130 is coupled to the fourth peripheral edge portion 106 via brazing.


Referring to FIGS. 6 and 7, the flexible thermally conductive sheet 84 is disposed on the first side 90 of the generally rectangular-shaped aluminum plate 80. In one exemplary embodiment, the flexible thermally conductive sheet 84 comprises a flexible sheet constructed at least in part utilizing graphite having a thickness in a range of 0.25-0.5 millimeters. Further, the sheet 84 has an in-plane (e.g., planar with a surface of the sheet 84 contacting the plate 80) heat conductivity of greater than 200 Watts/meter—Kelvin. Also, in one exemplary embodiment, a side of the sheet 84 contacting the battery cell 30 has a roughness average (RA) in a range of 0.8-4.0 micro inches. Of course, in an alternative embodiment, the sheet 84 could have an RA less than 0.8 or greater than 4.0. Also, in one exemplary embodiment, the sheet 84 further includes a pressure sensitive adhesive 83 (shown in FIG. 10) disposed on one side of the sheet 84 that is used to attach the sheet 84 on the first side 90 of the plate 80 wherein the first side 90 has an abrasive brazing residue disposed thereon. Of course, in alternative embodiments, the sheet 84 could be coupled to the plate 80 utilizing other coupling devices known to those skilled in the art. Further, in one exemplary embodiment, the sheet 84 is generally rectangular-shaped and is sized to cover substantially all of a generally rectangular-shaped side surface of the battery cell 30. Of course, in alternative embodiments, the sheet 84 could have other shapes and sizes known to those skilled in the art. The sheet 84 is configured to transfer heat energy from the battery cell 30 to the generally rectangular-shaped aluminum plate 80. Further, the plate 80 is configured to transfer at least a portion of the heat energy to the tube 82. In particular, for example, the sheet 80 could comprise “Spreadershield SS-400” manufactured by GrafTech International Holdings Inc.


Referring to FIG. 4, during operation, a refrigerant or a liquid enters the inlet port 120 from a source device and flows through the tube portions 122, 124, 126, 128, 130 to the outlet port 132 and exits the outlet port 132 to a receiving device. Heat energy generated by the battery cell 30 is conducted through the flexible thermally conductive sheet 84 and the rectangular-shaped aluminum plate 80 to the tube 82. Further, heat energy generated by the battery cell 32 is conducted through the rectangular-shaped aluminum plate 80 to the tube 82. Further, the heat energy in the tube 82 is conducted into the refrigerant or the liquid flowing through the tube 82. Thus, the refrigerant or the liquid flowing through the tube 82 absorbs the heat energy from the battery cells 30, 32 to reduce a temperature of the battery cell 30, 32.


Referring to FIGS. 1, 5, 6, 8 and 9, a flowchart of a method for manufacturing the cooling fin 40 utilizing a stamping machine 170 and a brazing machine 172, in accordance with another exemplary embodiment will now be explained.


At step 150, an operator provides the generally rectangular-shaped aluminum plate 80, the tube 82, and the flexible thermally conductive sheet 84. The generally rectangular-shaped aluminum plate 80 has the first side 90 and the second side 92.


At step 152, the stamping machine 170 forms an arcuate-shaped groove 109 on the first, second, third, and fourth peripheral edge portions 100, 102, 104, 106 of the generally rectangular-shaped aluminum plate 80.


At step 154, the operator disposes the tube 82 in the arcuate-shaped groove 109 such that the tube 82 is disposed on the first, second, third, and fourth peripheral edge portions 100, 102, 104, 106 of the generally rectangular-shaped aluminum plate 82.


At step 156, the brazing machine 172 brazes the tube 82 to the first side 90 of the generally rectangular-shaped aluminum plate 80 such that the tube 82 is attached to the first, second, third, and fourth peripheral edge portions 100, 102, 104, 106 of the generally rectangular-shaped aluminum plate 82.


At step 158, the operator attaches the flexible thermally conductive sheet 84 on the first side 90 of the generally rectangular-shaped aluminum plate 80.


The battery cell assembly 10 and the method for manufacturing the cooling fin 40 provide a substantial advantage over other battery cell assemblies and methods. In particular, the battery cell assembly 10 and the method provide a technical effect of utilizing a cooling fin 40 with a flexible thermally conductive sheet 84 disposed on a relatively rough surface of the cooling fin 40 such that the flexible thermally conductive sheet 84 is disposed against the adjacent battery cell to prevent abrasive rubbing of the rough surface against the battery cell.


While the claimed invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the claimed invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the claimed invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the claimed invention is not to be seen as limited by the foregoing description.

Claims
  • 1. A battery cell assembly, comprising: a cooling fin having a generally rectangular-shaped aluminum plate, a tube, and a flexible thermally conductive graphite sheet;the generally rectangular-shaped aluminum plate having a first side and a second side; the generally rectangular-shaped aluminum plate defining at least first, second, third, and fourth arcuate-shaped peripheral edge portions;the tube coupled to the first side of the generally rectangular-shaped aluminum plate, the tube being disposed on the first, second, third, and fourth arcuate-shaped peripheral edge portions of the generally rectangular-shaped aluminum plate in an arcuate-shaped groove defined by the first, second, third, and fourth arcuate-shaped peripheral edge portions;the flexible thermally conductive graphite sheet having an adhesive disposed on one side of the flexible thermally conductive graphite sheet, the adhesive being further disposed on the first side of the generally rectangular-shaped aluminum plate to couple the flexible thermally conductive graphite sheet to the first side; anda battery cell disposed against the flexible thermally conductive graphite sheet of the cooling fin.
  • 2. The battery cell assembly of claim 1, wherein the flexible thermally conductive graphite sheet is configured to transfer heat energy from the battery cell to the generally rectangular-shaped aluminum plate, the generally rectangular-shaped aluminum plate is configured to transfer at least a portion of the heat energy to the tube.
  • 3. The battery cell assembly of claim 2, wherein the tube is configured to transfer at least a portion of the heat energy to a liquid or a refrigerant flowing through the tube.
  • 4. The battery cell assembly of claim 1, wherein the tube is an aluminum tube.
  • 5. The battery cell assembly of claim 1, wherein the flexible thermally conductive graphite sheet is generally rectangular-shaped and is sized to cover substantially all of a generally rectangular-shaped side surface of the battery cell.
  • 6. The battery cell assembly of claim 1, wherein the flexible thermally conductive graphite sheet has a roughness average in a range of 0.8-4.0 micro-inches.
  • 7. The battery cell assembly of claim 1, further comprising first and second rectangular-shaped frame members, the cooling fin and the battery cell being disposed between the first and second rectangular-shaped frame members.
  • 8. The battery cell assembly of claim 1, wherein first, second, third, and fourth ends of the flexible thermally conductive sheet are disposed proximate to first, second, third, and fourth tube portions, respectively, of the tube.
  • 9. A battery cell assembly, comprising: a cooling fin having a generally rectangular-shaped aluminum plate, a tube, and a flexible thermally conductive sheet, the flexible thermally conductive sheet including graphite therein;the generally rectangular-shaped aluminum plate having a first side and a second side and having a substantially uniform thickness between the first side and the second side; the generally rectangular-shaped aluminum plate defining at least first, second, and third arcuate-shaped peripheral edge portions;the tube coupled to the first side of the generally rectangular-shaped aluminum plate, the tube being disposed on the first, second, and third arcuate-shaped peripheral edge portions in an arcuate-shaped groove defined by the first, second, and third arcuate-shaped peripheral edge portions;the flexible thermally conductive sheet being directly coupled to the first side of the generally rectangular-shaped aluminum plate such that first, second, and third ends of the flexible thermally conductive sheet are disposed proximate to first, second, and third tube portions, respectively, of the tube; anda battery cell disposed against the flexible thermally conductive sheet of the cooling fin.
  • 10. The battery cell assembly of claim 9, wherein the flexible thermally conductive sheet is disposed on the first side between the first, second, and third arcuate-shaped peripheral edge portions.
  • 11. The battery cell assembly of claim 9, wherein the flexible thermally conductive sheet has an adhesive disposed on one side of the flexible thermally conductive sheet, the adhesive being further disposed on the first side of the generally rectangular-shaped aluminum plate to couple the flexible thermally conductive sheet to the first side.
  • 12. The battery cell assembly of claim 9, wherein an apex of the first arcuate-shaped peripheral edge portion is disposed a predetermined distance away from a remaining portion of the generally rectangular-shaped aluminum plate.
  • 13. The battery cell assembly of claim 9, wherein the flexible thermally conductive sheet has an in-plane heat conductivity greater than 200Watts/meter-Kelvin.
US Referenced Citations (137)
Number Name Date Kind
1587425 Schepp Jun 1926 A
2273244 Ambruster Feb 1942 A
2391859 Babcock Jan 1946 A
3503558 Galiulo et al. Mar 1970 A
3522100 Lindstrom Jul 1970 A
3550681 Stier et al. Dec 1970 A
3964930 Reiser Jun 1976 A
4009752 Wilson Mar 1977 A
4063590 Mcconnell Dec 1977 A
4298904 Koenig Nov 1981 A
4305456 Mueller et al. Dec 1981 A
4322776 Job et al. Mar 1982 A
4444994 Baker et al. Apr 1984 A
4518663 Kodali et al. May 1985 A
4646202 Hook et al. Feb 1987 A
4701829 Bricaud et al. Oct 1987 A
4777561 Murphy et al. Oct 1988 A
4849858 Grapes et al. Jul 1989 A
4982785 Tomlinson Jan 1991 A
4995240 Barthel et al. Feb 1991 A
5057968 Morrison Oct 1991 A
5071652 Jones et al. Dec 1991 A
5186250 Ouchi et al. Feb 1993 A
5214564 Metzler et al. May 1993 A
5270131 Diethelm et al. Dec 1993 A
5322745 Yanagihara et al. Jun 1994 A
5329988 Juger Jul 1994 A
5346786 Hodgetts Sep 1994 A
5356735 Meadows et al. Oct 1994 A
5443926 Holland et al. Aug 1995 A
5510203 Hamada et al. Apr 1996 A
5520976 Giannetti et al. May 1996 A
5663007 Ikoma et al. Sep 1997 A
5731568 Malecek Mar 1998 A
5736836 Hasegawa et al. Apr 1998 A
5756227 Suzuki et al. May 1998 A
5937664 Matsuno et al. Aug 1999 A
5985483 Verhoog et al. Nov 1999 A
6087036 Rouillard et al. Jul 2000 A
6111387 Kouzu et al. Aug 2000 A
6176095 Porter Jan 2001 B1
6289979 Kato Sep 2001 B1
6344728 Kouzu et al. Feb 2002 B1
6362598 Laig-Horstebrock et al. Mar 2002 B2
6399238 Oweis et al. Jun 2002 B1
6422027 Coates, Jr. et al. Jul 2002 B1
6448741 Inui et al. Sep 2002 B1
6462949 Parish, IV et al. Oct 2002 B1
6512347 Hellmann et al. Jan 2003 B1
6569556 Zhou et al. May 2003 B2
6662891 Misu et al. Dec 2003 B2
6689510 Gow et al. Feb 2004 B1
6696197 Inagaki et al. Feb 2004 B2
6703160 Gao Mar 2004 B2
6724172 Koo Apr 2004 B2
6750630 Inoue et al. Jun 2004 B2
6775998 Yuasa et al. Aug 2004 B2
6780538 Hamada et al. Aug 2004 B2
6821671 Hinton et al. Nov 2004 B2
6826948 Bhatti et al. Dec 2004 B1
6878485 Ovshinsky et al. Apr 2005 B2
6982131 Hamada et al. Jan 2006 B1
7070874 Blanchet et al. Jul 2006 B2
7143124 Garthwaite Nov 2006 B2
7150935 Hamada et al. Dec 2006 B2
7250741 Koo et al. Jul 2007 B2
7264902 Horie et al. Sep 2007 B2
7278389 Kirakosyan Oct 2007 B2
7467525 Ohta et al. Dec 2008 B1
7531270 Buck et al. May 2009 B2
7795845 Cho Sep 2010 B2
7797958 Alston et al. Sep 2010 B2
7816029 Takamatsu et al. Oct 2010 B2
7846573 Kelly Dec 2010 B2
7879480 Yoon et al. Feb 2011 B2
7883793 Niedzwiecki et al. Feb 2011 B2
7976978 Shin et al. Jul 2011 B2
7981538 Kim et al. Jul 2011 B2
7997367 Nakamura Aug 2011 B2
8007915 Kurachi Aug 2011 B2
8030886 Mahalingam et al. Oct 2011 B2
8067111 Koetting et al. Nov 2011 B2
8209991 Kondou et al. Jul 2012 B2
8409743 Okada et al. Apr 2013 B2
20020182493 Ovshinsky et al. Dec 2002 A1
20030080714 Inoue et al. May 2003 A1
20030094263 Garcia et al. May 2003 A1
20030211384 Hamada et al. Nov 2003 A1
20040069474 Wu et al. Apr 2004 A1
20050026014 Fogaing et al. Feb 2005 A1
20050089750 Ng et al. Apr 2005 A1
20050103486 Demuth et al. May 2005 A1
20050110460 Arai et al. May 2005 A1
20050134038 Walsh Jun 2005 A1
20060234119 Kruger et al. Oct 2006 A1
20060286450 Yoon et al. Dec 2006 A1
20070062681 Beech Mar 2007 A1
20070087266 Bourke et al. Apr 2007 A1
20070227166 Rafalovich et al. Oct 2007 A1
20080003491 Yahnker et al. Jan 2008 A1
20080041079 Nishijima et al. Feb 2008 A1
20080110189 Alston et al. May 2008 A1
20080182151 Mizusaki et al. Jul 2008 A1
20080248338 Yano et al. Oct 2008 A1
20080299446 Kelly Dec 2008 A1
20080314071 Ohta et al. Dec 2008 A1
20090074478 Kurachi Mar 2009 A1
20090087727 Harada et al. Apr 2009 A1
20090104512 Fassnacht et al. Apr 2009 A1
20090155680 Maguire et al. Jun 2009 A1
20090186265 Koetting et al. Jul 2009 A1
20090258288 Weber et al. Oct 2009 A1
20090258289 Weber et al. Oct 2009 A1
20090280395 Nemesh et al. Nov 2009 A1
20090325051 Niedzwiecki et al. Dec 2009 A1
20090325052 Koetting et al. Dec 2009 A1
20090325054 Payne et al. Dec 2009 A1
20090325055 Koetting et al. Dec 2009 A1
20100112419 Jang et al. May 2010 A1
20100203376 Choi et al. Aug 2010 A1
20100209760 Yoshihara et al. Aug 2010 A1
20100262791 Gilton Oct 2010 A1
20100275619 Koetting et al. Nov 2010 A1
20100276132 Payne Nov 2010 A1
20100279152 Payne Nov 2010 A1
20100279154 Koetting et al. Nov 2010 A1
20110027640 Gadawski et al. Feb 2011 A1
20110041525 Kim et al. Feb 2011 A1
20110045326 Leuthner et al. Feb 2011 A1
20110052959 Koetting et al. Mar 2011 A1
20120082880 Koetting et al. Apr 2012 A1
20130045410 Yang et al. Feb 2013 A1
20130255293 Gadawski et al. Oct 2013 A1
20130309542 Merriman et al. Nov 2013 A1
20140050953 Yoon et al. Feb 2014 A1
20140050966 Merriman et al. Feb 2014 A1
20140147709 Ketkar et al. May 2014 A1
Foreign Referenced Citations (44)
Number Date Country
19639115 Mar 1998 DE
1577966 Sep 2005 EP
1852925 Nov 2007 EP
2262048 Dec 2010 EP
481891 Mar 1938 GB
08111244 Apr 1996 JP
09129213 May 1997 JP
09219213 Aug 1997 JP
2001105843 Apr 2001 JP
2002038033 Feb 2002 JP
2002319383 Oct 2002 JP
2002333255 Nov 2002 JP
2003188323 Jul 2003 JP
2003282112 Oct 2003 JP
2004333115 Nov 2004 JP
2005126315 May 2005 JP
2005147443 Jun 2005 JP
2005349955 Dec 2005 JP
2006139928 Jun 2006 JP
2007305425 Nov 2007 JP
2008054379 Mar 2008 JP
2008062875 Mar 2008 JP
2008080995 Apr 2008 JP
2008159440 Jul 2008 JP
2009009889 Jan 2009 JP
2009054297 Mar 2009 JP
20050092605 Sep 2005 KR
100637472 Oct 2006 KR
100765659 Oct 2007 KR
20080047641 May 2008 KR
20090082212 Jul 2009 KR
100921346 Oct 2009 KR
20090107443 Oct 2009 KR
1020100119497 Nov 2010 KR
1020100119498 Nov 2010 KR
1020110013269 Feb 2011 KR
1020110013270 Feb 2011 KR
20110126764 Nov 2011 KR
2006101343 Sep 2006 WO
2007007503 Jan 2007 WO
2007115743 Oct 2007 WO
2008111162 Sep 2008 WO
2009073225 Jun 2009 WO
WO 2011145830 Nov 2011 WO
Non-Patent Literature Citations (30)
Entry
“Gasket”. Merriam-Webster. Merriam-Webster. Web. May 30, 2012. <http://www.merriam-webster.com/dictionary/gasket>.
International Search Report; International Application No. PCT/KR2009/000258; International Filing Date: Jan. 16, 2009; Date of Mailing: Aug. 28, 2009; 2 pages.
International Search Report; International Application No. PCT/KR2009/003428, International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 22, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2009/003429; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 12, 2010; 3 pages.
International Search Report; International Application No. PCT/KR2009/003430; International Filing Date: Jun. 25, 2009; Date of Mailing: Feb. 3, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2009/003434; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 18, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2009/003436; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 22, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2009/006121; International Filing Date: Oct. 22, 2009; Date of Mailing: May 3, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2010/002334; International Filing Date: Apr. 15, 2010; Date of Mailing: Nov. 29, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2010/002336; International Filing Date: Apr. 15, 2010; Date of Mailing: Jan. 31, 2011; 2 pages.
International Search Report; International Application No. PCT/KR2010/002337; International Filing Date: Apr. 15, 2010; Date of Mailing: May 3, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2010/002340; International Filing Date: Apr. 15, 2010; Date of Mailing: Jan. 31, 2011; 2 pages.
International Search Report; International Application No. PCT/KR2010/004944; International Filing Date: Jul. 28, 2010; Date of Mailing: Apr. 29, 2011; 2 pages.
International Search Report; International Application No. PCT/KR2010/005639; International Filing Date: Aug. 24, 2010; Date of Mailing: Jun. 3, 2011; 2 pages.
Machine translation of Japanese Patent Application No. 2009-009889 A, published Jan. 15, 2009.
Thomas J. Gadawski et al., pending U.S. Appl. No. 13/433,649 entitled “Battery System and Method for Cooling the Battery System,” filed with the U.S. Patent and Trademark Office on Mar. 29, 2012.
International Search Report for International application No. PCT/KR2013/004015 dated Sep. 26, 2013.
U.S. Appl. No. 13/586,960, filed Aug. 16, 2012 entitled Battery Module.
U.S. Appl. No. 13/587,030, filed Aug. 16, 2012 entitled Battery Module and Method for Assembling the Battery Module.
U.S. Appl. No. 13/766,162, filed Feb. 13, 2013 entitled Battery Cell Assembly and Method for Manufacturing the Battery Cell Assembly.
U.S. Appl. No. 13/861,426, filed Apr. 12, 2013 entitled Battery Cell Assembly and Method for Manufacturing a Cooling Fin for the Battery Cell Assembly.
U.S. Appl. No. 13/936,556, filed Jul. 8, 2013 entitled Battery Assembly.
U.S. Appl. No. 14/059,547, filed Oct. 22, 2013 entitled Battery Cell Assembly.
U.S. Appl. No. 14/161,806, filed Jan. 23, 2014 entitled Battery Cell Assembly and Method for Coupling a Cooling Fin to First and Second Cooling Manifolds.
U.S. Appl. No. 14/273,572, filed May 9, 2014 entitled Battery Pack and Method of Assembling the Battery Pack.
U.S. Appl. No. 14/273,586, filed May 9, 2014 entitled Battery Module and Method of Assembling the Battery Module.
U.S. Appl. No. 14/328,000, filed Jul. 10, 2014 entitled Battery System and Method of Cooling the Battery System.
U.S. Appl. No. 14/330,163, filed Jul. 14, 2014 entitled Battery System and Method for Cooling the Battery System.
U.S. Appl. No. 13/686,018, filed Nov. 27, 2012 entitled Battery System and Method for Cooling a Battery Cell Assembly.
Written Opinion for International application No. PCT/KR2014/002090 dated May 26, 2014.
Related Publications (1)
Number Date Country
20130309542 A1 Nov 2013 US