The battery cell pressure fixture relates generally to the field of battery cell manufacturing. More particularly, the battery cell pressure fixture relates to stabilizing battery cells during production.
A critical part of the lithium-ion battery manufacturing process occurs after the battery cells are initially assembled. Battery cells are assembled in an uncharged state and must be given an initial charge. During the initial charge phase, the materials inside the battery cell, namely the electrodes and electrolytes, change their physical size and shape as ions move between the electrode and electrolyte within the cell. In particular, the battery cells, especially pouch cells, swell during initial charge. As a result, there is a need to constrain the battery cells during their initial charge cycle to reduce the possibility of gapping or other issues that could affect the long-term safety and viability of the cells.
Existing solutions for constraining battery cells during initial charging typically include a fixture that can support numerous cells at once. Movable rigid plates are positioned between groups of cells to provide a constricting barrier. The rigid plates are moved using worm gears, springs, or other mechanical means that cause the rigid plates to apply uneven pressure to the cells. More particularly, each rigid plate is moved the same distance, which creates identical battery cavities where each cell is placed. However, each cell is manufactured to tolerance, and although those tolerances may be very small, there is variation in cell size, nonetheless. As such, the mechanically driven plates do not apply uniform pressure to each cell. Rather, larger cells experience higher pressures than cells on the smaller side of the allowable tolerance. As such, there is a need for an improved fixture for applying pressure to individual battery cells during production.
It will be understood by those skilled in the art that one or more aspects of this invention can meet certain objectives, while one or more other aspects can lead to certain other objectives. Other objects, features, benefits and advantages of the battery cell pressure fixture will be apparent in this summary and descriptions of the disclosed embodiment, and will be readily apparent to those skilled in the art. Such objects, features, benefits and advantages will be apparent from the above as taken in conjunction with the accompanying figures and all reasonable inferences to be drawn therefrom.
In at least some embodiments, a battery cell pressure fixture is disclosed that includes a fluid cavity for receiving a fluid pressure, an expandable bladder having a plurality of pillars with pillar inner chambers in communication with the fluid cavity, a plurality of battery cell mounts positioned adjacent the pillars, and a plurality of battery receptacles for receiving battery cells therein, the battery receptacles formed at least in part by the pillars and the battery cell mounts, wherein each battery receptacle provides a compressive force to a received battery cell positioned therein when fluid pressure is supplied to the fluid cavity.
In at least some other embodiments, a battery cell pressure fixture is disclosed that includes a lower tray; an upper tray having an upper tray top surface and a plurality of pillar slots extending therethrough; a plurality of battery cell mounts, each having an elongated cell mount support wall and extending from the upper tray top surface; and a resilient fluid expansive bladder for receiving a supply of pressurized fluid and having a base with a plurality of pillars extending from a base top surface, wherein the base is positioned between the lower tray and the upper tray, and the pillars extend upward through the pillar slots opposite the lower tray.
In at least some other embodiments, a battery cell pressure fixture is disclosed that includes lower tray; an upper tray having an upper tray top surface and a plurality of pillar slots extending therethrough, wherein the upper tray is secured to the lower tray; a plurality of battery cell mounts, each having an elongated cell mount support wall and extending from the upper tray top surface; a first resilient fluid expansive bladder for receiving a supply of pressurized fluid and having a base with a plurality of pillars extending from a base top surface, wherein the base is positioned between the lower tray and the upper tray, and the pillars extend upward through the pillar slots opposite the lower tray; a plurality of fluid apertures that extend from a base of the bladder into pillar inner chambers of the plurality of pillars; and a plurality of battery receptacles for receiving battery cells therein, the battery receptacles formed by the upper tray, the pillars, and the battery cell mounts, and wherein the pillars expand under fluid pressure applied to the pillar inner chambers to provide a uniform compressive force to the battery cells.
Other embodiments, aspects, and features of the invention will be understood and appreciated upon a full reading of the detailed description and the claims that follow.
Embodiments of the invention are disclosed with reference to the accompanying drawings and are for illustrative purposes only. The invention is not limited in application to the details of construction or the arrangement of the components illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in other various ways.
The invention relates to a fixture to constrain battery cells, such as lithium-ion, lithium-polymer, etc., during their initial charge by applying even pressure to the cells. The configuration of the fixture allows for a resilient fluid expansive bladder to be filled with fluid to evenly apply pressure to each battery cell present in the fixture.
Referring to
The pillars 20 include a hollow inflatable pillar inner chamber 24 formed by a pillar rear wall 26 interconnected to a pillar front wall 28 by pillar sidewalls 30, 32. The pillar inner chamber 24 receives fluid through a chamber aperture 34 in the base bottom surface 18. In at least some embodiments, the pillar rear wall 26 and pillar front wall 28 are planar, although in other embodiments, they can vary in shape and size to accommodate various shapes of battery cells. The bladder 12 can be comprised of one or more of various materials that allow for resilient expansion of the pillar inner chamber 24, such as rubber, although any flexible resilient material capable of cyclic pressurization can be used. In at least some embodiments, the bladder material is non-conductive.
The fixture 10 further includes an upper tray 36 having an upper tray bottom surface 38 and an upper tray top surface 40, with a plurality of pillar slots 42 extending therethrough. The pillar slots 42 are generally sized and shaped to receive the pillars 20 therethrough, as such, in some embodiments, they are elongated slots, while in other embodiments the pillar slots 42 can include other shapes to match alternate pillar shapes. Similarly, although the pillar slots 42 can be generally linearly arranged in rows and columns to align with the pillar configuration on the base 14 to allow for fitment of the pillars 20 through the pillar slots 42, in other embodiments, the pillar slots 42 can include other layout configurations to match alternate pillar 20 layout configurations. The upper tray 36 can also include an aperture 44 for the fluid inlet 22 to pass through. A plurality of fastener apertures 45 can be provided for receiving fasteners to secure battery cell mounts (discussed below) to the upper tray top surface 40.
The fixture can further include a lower tray 46 having a lower tray top surface 47 forming a fluid cavity 48, wherein the lower tray 46 is securable to the upper tray 36 via a plurality of fasteners, such as screws.
The fixture 10 further includes a plurality of battery cell mounts 52.
The cell mount 52 includes an elongated cell mount support wall 54 that extends perpendicular or substantially perpendicular to the upper tray top surface 40 (when secured to or formed with the upper tray 36). The cell mount 52 includes a pillar support cavity 56 configured to accommodate and support portions of the pillar 20 during expansion. In at least some embodiments, the pillar support cavity 56 is formed by a cell mount front surface 58 of the cell mount support wall 54 and cell mount side walls 60, 62 and cell mount top wall 64, which extend forwardly from the cell mount support wall 54. In at least some embodiments, the pillar support cavity 56 is sized and shaped to receive the pillar 20 at least partially therein, with the pillar rear wall 26 facing the cell mount front surface 58, and the pillar sidewalls 30, 32 facing the cell mount side walls 60, 62. The cell mount support wall 54 further includes a cell mount rear surface 65 opposite the cell mount front surface 58. The cell mount rear surface 65 is shaped and sized for abutment with a battery cell (discussed below). As such, it can take many forms, although generally it is planar in shape, but in at least some embodiments, it can be modified to accommodate any battery cell shape. The cell mount 52 can further include a plurality of support arms 66 extending therefrom, and a battery cell electrode alignment ridge 67, wherein the alignment ridge 67 extends upwards from a cell mount top surface 69 and perpendicular to the cell mount rear surface 65. The cell mount 52 can further include a fastening aperture 63 for use with a fastener to secure the cell mount 52 to the upper tray top surface 40. In at least some embodiments, the cell mounts 52 are generally linearly arranged in rows and columns to align with the pillars 20, although other configurations can be provided to accommodate alternate pillar 20 configurations.
Referring to
Referring to
Referring again to
Referring to
The fixture 10 receives a supply of fluid to inflate the pillars 20. The fluid can include any of various types of fluid, including gases or liquids, such as air. A regulator 98 coupled to the fluid inlet 22 can regulate the supply and pressure of the fluid into the pillar inner chambers 24 to selectively expand and pressurize the pillars 20 as desired. The regulator 98 can include ON/OFF and adjustable pressure setting functions, or can include a separate valve for the ON/OFF function. In at least some embodiments, the regulator 98 is a stand-alone mechanical valve, while in other embodiments, the regulator 98 can be computer controlled to maintain a set pressure and/or turn on/off the supply of fluid pressure based on a various criteria, such as time and temperature.
In at least some embodiments the fixture 10 can include a pressurized fluid reservoir, and further can include one or more temperature sensors to sense the fluid temperature, wherein fluid can be added via the pressurized fluid reservoir (or a dedicated fluid line) in communication with the fluid cavity 48 to compensate for a drop in temperature, thereby maintaining a set pressure in the fluid cavity 48. In addition, the fixture 10 can further include a heating element and/or a thermo-electric cooling device (e.g., Peltier device) coupled with the lower tray 46 to maintain a set fluid temperature.
In at least some embodiments, to assemble the fixture 10, the cell mounts 52 are fastened to the upper tray top surface 40 and the pillars 20 are inserted through the pillar slots 42 of the upper tray 36. The lower tray 46 is secured to the upper tray 36 to sandwich the base 14 therebetween and provide the fluid gap 50. As best seen in
The plurality of cell mounts 52 and pillars 20 are spaced, such that the pillar front walls 28 face the cell mount rear surfaces 65 to form a plurality of battery receptacles 102 (see
Referring now to
After the battery cells 90 are inserted into the battery receptacles 102, just prior to, or after the charging cycle begins, an operator or an automated system, begins to supply pressurized fluid into the fluid inlet 22. The fluid fills the fluid gap 50 in the fluid cavity 48 and then proceeds to fill the pillar inner chambers 24, causing expansion of the pillars 20. As the pillars 20 expand, the pillar rear walls 26 and pillar sidewalls 30, 32 abut (or caused to abut with) the cell mount support walls 54 and cell mount side walls 60, 62 of the pillar support cavities 56, forcing the pillar front walls 28 forcibly against the rear surfaces 92 of the battery cells 90, thereby pushing the front surfaces 94 of the battery cells 90 forcibly against the cell mount rear surfaces 65 to provide compressive forces on both surfaces 92, 94 of the battery cell 90 to minimize expansion of the battery cell thickness during charging. The compressive force applied to the battery cells 90 is uniform, such that the force on each battery cell 90 is equal or substantially equal, regardless of slight variations in the dimensions of the battery cell, as each pillar 20 will expand until the forces thereon are the same, allowing a pillar 20 in abutment with a thinner battery cell to expand more than a pillar 20 in abutment with a thicker battery cell.
The operator or automated system can inflate the bladders 12 to any desired fluid pressure. Once the desired fluid pressure is achieved to forcibly secure the battery cells 90, charging of the battery cells 90 can begin, if it has not already. Once charging is complete, the fluid pressure is relieved and the battery cells 90 can be removed from the battery receptacles 102. In at least some embodiments, as the expansion of the pillars 20 may in some circumstances cause undesirable movement of the cell mounts 52, prior to inflating the bladders 12, the support bars 68 can be coupled with the support arms 66 along each row of cell mounts 52 to assist with maintaining even spacing between the cell mounts 52. Although fluid pressure supplied to the bladders 12 can vary depending on bladder material, battery cell composition, etc., in at least some embodiments, the fluid pressure supplied to the fixture 10 can range from 3-6psi, while in other embodiments, the fluid pressure can be higher than 6psi or lower than 3psi.
Although the invention has been herein described in what is perceived to be the most practical and preferred embodiments, it is to be understood that the invention is not intended to be limited to the specific embodiments set forth above. Rather, it is recognized that modifications may be made by one of skill in the art of the invention without departing from the spirit or intent of the invention and, therefore, the invention is to be taken as including all reasonable equivalents to the subject matter of the appended claims and the description of the invention herein. The term “plurality” as used herein shall be understood to include one or more.
This application claims priority to U.S. Provisional Patent Appl. No. 62/983,516 filed on Feb. 28, 2020, the disclosure of which is incorporated herein by reference in entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
62983516 | Feb 2020 | US |