1. Field of the Invention
The invention relates to battery cover latch mechanisms used in portable electronic devices.
2. Description of Related Art
Portable electronic devices usually include latch mechanisms used to latch battery covers to housings. The latch mechanisms must tolerate frequent installation and removal of batteries relative to the housings.
A typical battery cover latch mechanism includes at least one spring to facilitate the operation thereof. However, the spring may easily wear out after repeated operation and, thus the battery cover latch mechanism may fail.
Therefore, there is room for improvement within the art.
Many aspects of the exemplary battery cover latch mechanism and a portable electronic device using the battery cover latch mechanism can be better understood with reference to the following drawings. These drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the exemplary battery cover latch mechanism and the portable electronic device. Moreover, in the drawings like reference numerals designate corresponding parts throughout the several views. Wherever possible, the same reference numbers are used throughout the drawings to refer to the same or like elements of an embodiment.
The cover member 113 has a first peripheral wall 1133, a bottom wall 1134, and a battery chamber 1135. The first peripheral wall 1133 surrounds the battery chamber 1135. The battery chamber 115 is defined in the bottom wall 1134 and can accommodate a battery (not shown). One end of first peripheral wall 1133 defines a generally rectangular first notch 1136. The first peripheral wall 1133 also forms the three latch members 1137. The three latch members 1137 are generally L-shaped blocks, each having a wedge-shaped latch portion 1138 at a distal end relative to the first peripheral wall 1133. The bottom wall 1134 has two mounting columns 1139 formed thereon and near the first notch 1136.
Referring to
The upper wall 1114 forms two attaching columns 1120. The two attaching columns 1120 are located near the cavity 1118 and opposite to the second notch 1119. Two opposite ends of the second peripheral wall 1115 define three latch grooves 1122 corresponding to the three latch members 1137. Each latch groove 1122 has a wedge-shaped latch slit 1123 corresponding to a latch portion 1138. Thus, the latch portions 1138 can be latched in the latch slits 1123 and the latch members 1137 can be latched in the latch grooves 1122.
Referring to
The press portion 151 is configured to be received in the first notch 1136 and slide within the first notch 1136. The press portion 151 has two second step parts 1514 to resist against the interior surface of the first peripheral wall 1133, thus preventing the pressing member 15 from falling out of the first notch 1136. The two ring portions 1516 include two securing portions 1516 and two connecting portions 1517. The connecting portions 1517 connect the ring portions 1516 to the press portion 151. The two securing portions 1516 define two first securing holes 1519. The pressing member 15 further can be secured within the first notch 1136 by securing (e.g., hot melting) the mounting columns 1139 within the first securing holes 1519. The engage portion 1520 has an inclined wall 1515 at a distal end to the press portion 151.
The releasing member 17 is a curved sheet including a looped engage section 171, an attaching section 172, and a release section 173. The attaching section 172 defines two attaching holes 174 corresponding to the two attaching columns 1120. The attaching section 172 can be securely attached to the upper wall 1114 by e.g., a hot melting of the attaching columns 1120 within the attaching holes 174. The release section 173 is generally U-shaped and can be elastically deformed.
Referring to
When the cover member 113 needs to be released from the housing member 111, the press portion 151 is pressed further into the first notch 1136. During this stage, the inclined wall 1515 urges the engage section 171 away from the first step parts 1124 and deforms the release section 173. The release section 173 further passes through the cavity 1118 to further bias against the cover member 113, thereby increasing the resisting force between them. There also exists a latching force between the latch portions 1138 and the latch slits 1123. When the resisting force exceeds the latching force, the latching of the latch portions 1138 in the latch slits 1123 is released. At this time, the cover member 113 can be released from the housing member 111.
The latching can be achieved by simply pressing the cover member 113 to the housing member 111. During this stage, the latch portions 1138 engages into the latch slits 1123, thereby latching the latch members 1137 in the latch grooves 1122.
It is to be understood, however, that even through numerous characteristics and advantages of the exemplary invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
2008 1 0301521 | May 2008 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
5607792 | Garcia et al. | Mar 1997 | A |
6136467 | Phelps et al. | Oct 2000 | A |
6623049 | Shreeve et al. | Sep 2003 | B2 |
6625425 | Hughes et al. | Sep 2003 | B1 |
7412268 | Jung | Aug 2008 | B2 |
7842412 | Zhang et al. | Nov 2010 | B2 |
20060109610 | Liu et al. | May 2006 | A1 |
20060281501 | Zuo et al. | Dec 2006 | A1 |
20060292439 | Zuo et al. | Dec 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20090280402 A1 | Nov 2009 | US |