Battery cover locking mechanism of a mobile terminal and method of manufacturing the same

Information

  • Patent Grant
  • 9844158
  • Patent Number
    9,844,158
  • Date Filed
    Friday, December 16, 2016
    8 years ago
  • Date Issued
    Tuesday, December 12, 2017
    7 years ago
Abstract
The present invention provides a locking mechanism in a mobile terminal and method of manufacturing the same. The locking mechanism comprises a lock button, a slide latch, and spring member. The slide latch may slide between a first position and a second position and comprises a hole and snaps, the hole is on the top of the slide latch and extends through the slide latch, the snaps are at the front side of the slide latch. The lock button is in the hole and comprises a press part and a support part, the support part being connected to the press part and extending downward from the press part through the hole to be in contact with the contact part on the spring member; the spring member is fixed with the slide latch and comprises an spring reaction part, a contact part and a protrusion part, the contact part being in contact with the support part of the lock button and a force from the support part causing a spring deformation in the spring reaction part.
Description
TECHNICAL FIELD

The present invention relates to a locking mechanism of a back cover of a portable device, and more particularly to a battery cover locking mechanism of a mobile terminal.


BACKGROUND OF THE INVENTION

Mobile terminal devices (e.g., mobile phone, tablet, Personal Digital Assistant (PDA), and remote controller) are more and more into people's work and life to provide much more conveniences for people's work and life. At present, most of the mobile terminals need a battery to power them.


Generally, Industry Mobile Terminal's battery is hard to remove, especially to those need water proof by sealing O-ring, if the battery is too easy to remove, it will easy fail in a drop test.


However, in industrial application, usually the battery may need to be replaced frequently in the field, so we need to design a battery cover locking mechanism which is easy to unlock but could survive the drop test.


SUMMARY OF THE INVENTION

In the embodiments of the present invention, there is provided a locking mechanism in a mobile terminal, comprising a lock button, a slide latch, and an spring member; the slide latch may slide between a first position and a second position, and the slide latch comprises a hole and snaps, the hole is on the top of the slide latch and extends through the slide latch, and the snaps are at the front side of the slide latch; the lock button is in the hole and comprises a press part and a support part, the support part being connected to the press part and extending downward from the press part through the hole to be in contact with the contact part on the spring member; the spring member is fixed with the slide latch and comprises an spring reaction part, a contact part and a protrusion part, the contact part being in contact with the support part of the lock button and a force from the support part causing a spring deformation in the spring reaction part; when an external force is applied to the press part of the lock button to move the lock button downward, the support part transfers the force to the contact part of the spring member so that the contact part applies the force to the spring reaction part to result in a spring deformation, the spring deformation causes the contact part to move, thereby bringing the protrusion part (354) moving to an unblocked position; in a case where the protrusion part is not blocked, the slide latch may slide between the first position and the second position for snapping or unsnapping by the snap.


In a further embodiment of the present invention, there is provided a mobile terminal comprising a back housing, the back housing comprising a back housing body and a battery cover, the locking mechanism according to any one of examples 1-8 is located in one of the back housing body and the battery cover; and a second snap is formed on the other one of the back housing and the battery cover, for snapping with the snap on the slide latch in the locking mechanism to fix the back housing body and the battery cover together.


In still a further embodiment of the present invention, there is provided a method of manufacturing a locking mechanism in a mobile terminal, the locking mechanism comprising a lock button, a slide latch, and spring member, the method comprising: providing the slide latch, the slide latch may slide between a first position and a second position and comprise a hole and snaps, the hole is on the top of the slide latch and extends through the slide latch, and the snaps are at the front side of the slide latch; providing the lock button in the hole, the lock button comprising a press part and a support part, the support part being connected to the press part and extending downward from the press part through the hole to be in contact with the contact part on the spring member; providing the spring member and enabling the spring member to be fixed with the slide latch, the spring member comprising an spring reaction part, a contact part and a protrusion part, the contact part being in contact with the support part of the lock button and a force from the support part causing a spring deformation in the spring reaction part; when an external force is applied to the press part of the lock button to move the lock button downward, the support part transfers the force to the contact part of the spring member so that the contact part applies the force to the spring reaction part to result in a spring deformation, the spring deformation causes the contact part to move, thereby bringing the protrusion part moving to an unblocked position; in a case where the protrusion part is not blocked, the slide latch may slide between the first position and the second position for snapping or unsnapping by the snap.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments in different aspects of the disclosure are illustrated in the drawings for interpreting the principle of the present invention together with the description. It may be appreciated by those skilled in the art that the specific embodiments shown by the drawings are merely illustrative, which are not intended to limit the scope of the present invention. It should be realized that one element in some embodiments may be separated into a plurality of elements, or a plurality of elements may be combined into one element. To describe the illustrative embodiments of the present invention in a greater detail so that those skilled in the art can understand different aspects of the disclosure as well as features and advantageous more thoroughly, now referring to the drawings, wherein



FIG. 1 is a conceptual diagram illustrating the Industry Mobile Terminal's back housing according to the embodiment of the present invention.



FIG. 2 is an unfolded diagram showing the structure of Industry Mobile Terminal's back housing in FIG. 1 according to the embodiment of the present invention;



FIGS. 3A-3D are section views of the locking mechanism according to the embodiment of the present invention;



FIG. 4 is a structural diagram of the spring member according to the embodiment of the present invention;



FIG. 5 is a perspective view of the slide latch according to the embodiment of the present invention;



FIG. 6 is a perspective view of the battery cover according to the embodiment of the present invention;



FIGS. 7A-B are section views illustrating the back housing body of the Industry Mobile Terminal snapping with or unsnapping from the battery cover according to the embodiment of the present invention.





DETAILED DESCRIPTION OF THE EMBODIMENTS

Some terms are used to indicate particular system components throughout the application document. The terms “comprising”, “including” and “having” are used in an open form in the present application document, thus they may be interpreted as “including but not limited to . . . ”. In addition, terms “essentially”, “substantially” or “approximately” that may be used in the document relate to the tolerance of corresponding terms accepted in the industry.


Many specific details are provided in the following descriptions for the purpose of interpretation to provide a thorough understanding of the present invention. However, it may be apparent to those skilled in the art that the apparatus, method and device of the present invention may be implemented without these specific details. Reference to “embodiment”, “example” or similar words in the present description means the specific features, structures or characteristics described in the embodiment or example are included in at least one of the embodiments or examples, but may not be included in other embodiments or examples.



FIG. 1 is a conceptual diagram illustrating the Industry Mobile Terminal's back housing according to the embodiment of the present invention. As shown by FIG. 1, the back housing 100 of the Industry Mobile Terminal comprises a back housing body 130 and a battery cover 110. A battery assembly (not shown) is provided below the battery cover 110, or the battery assembly may also be integral with the battery cover together so that the battery assembly may be taken out by detaching the battery cover 110. The back housing body 130 comprises a locking mechanism 120, certainly the back housing body 130 may also comprise various other components such as a camera, a flash lamp, a fingerprint recognition device and the like. Since these components are not closely related to the invention object, no more unnecessary details will be provided here. The battery cover 110 is bonded to the back housing body 130 via the locking mechanism 120.


As shown by FIG. 1, the locking mechanism 120 is provided in the back housing body 130. Optionally, the locking mechanism 120 may also be provided in the battery cover 110. The locking mechanism 120 comprises a lock button 121, a slide latch 122 and an spring member (not shown), which will be described in detail below. The slide latch 122 comprises a hole 124, and the lock button 121 is inserted into the hole 124.


The slide latch 122 may slide leftward to the first position and slide rightward to the second position. When the slide latch 122 is in the first position, the battery cover 110 is snapped with the back housing body 130, and when the slide latch 122 is in the second position, the battery cover 110 is unsnapped with the back housing body 130, so that the battery cover and the battery assembly may be detached by one hand only, as shown by the indicator 123 in FIG. 1. Of course, the snapping position and the unsnapping position may be interchanged, e.g., the first position is the unsnapping position and the second position is the snapping position. The lock button 121 is provided in the hole 124 of the slide latch 122 for locking or unlocking the slide latch 122. For example, if the slide latch 122 is locked by the lock button 121, the slide latch 122 can not slide to the left or right, thereby avoiding loose of the battery cover 110 and the back housing body 130 due to unsnapping them erroneously or undeliberately. For example, the spring member (not shown) may be triggered by pressing the lock button 121 to unlock the slide latch 122 so that the slide latch 122 may slide to the left and right freely. Once the lock button 121 is released, the slide latch 122 will be relocked, which will be described in detail below.



FIG. 2 is an unfolded diagram showing the structure of Industry Mobile Terminal's back housing in FIG. 1 according to the embodiment of the present invention. The unfolded diagram of FIG. 2 is a schematic diagram illustrating the structure of FIG. 1 after being turned over. As shown by FIG. 2, the back housing body 130 comprises a mounting part 131 for receiving the locking mechanism 120. The mounting part 131 comprises a first mounting base 133 (not shown in FIG. 2) on a first side of the mounting part and a second mounting base 132 on a second side of the mounting part, wherein the first side and the second side are opposite to each other. The first mounting base 133 is separated from the second mounting base 132 by a partition board 134. As shown by FIG. 2, a protruded block 134d, which cooperates with the spring member 125, is formed on the partition board 134 in the second mounting base, the cooperation principle thereof will be discussed below. Three sliding slots, i.e., a first sliding slot 134a, a second sliding slot 134b and a third sliding slot 134c are further formed on the partition board 134. The three sliding slots extend in a lengthwise direction of the partition board 134 and communicate the first mounting base 133 and the second mounting base 132.


The locking mechanism 120 comprises a lock button 121, a slide latch 122, and an spring member 125. The lock button 121 is mounted on the slide latch 122 through the hole 124, and the lock button 121 and the slide latch 122 are both mounted in the first mounting base 133. The spring member 125 is in the second mounting base 132, and screws 126 and a nuts 127 pass through the first sliding slot 134a and the third sliding slot 134c to fix the spring member 125 with the slide latch 122, so that the slide latch 122 and the spring member 125 may slide along the sliding slot together. The spring member 125 may interact with the block 134d during the sliding, as described in detail by FIG. 3 below. Furthermore, a part (i.e., the support part, see FIG. 3) of the lock button 121 extends through the second sliding slot 134b to be in contact with the spring member 125.



FIGS. 3A-3D are section views of the locking mechanism 120 according to the embodiment of the present invention, the section views are obtained by sectioning along the line A-A as shown by FIG. 1. FIGS. 3A-3D show the unlocking process of the locking mechanism 120.


First, referring to FIG. 3A, it depicts the constituting structure of the locking mechanism 120 mounted in the mounting part 131 of the back housing body 130. The locking mechanism 120 comprises a lock button 121, a slide latch 122 and an spring member 125. The lock button 121 is mounted in the hole 124 of the slide latch 122, and both of them are located in the first mounting base 133. The lock button 121 comprises a press part 313, a support part 312 and a fixing part 311. The press part 313 is to be pressed by an operator to perform the action of the lock button. The support part 312 is connected to the press part 313 and extends downward from the press part through the second sliding slot 134b in the partition board 134 (see FIG. 2), the downward extension may be vertical downward, inclined downward or downward in any path (e.g., arc-shape or bending-shape). The support part 312 extends downward to be in contact with the contact part 353 of the spring member 125 located in the second mounting base 132. The fixing part 311 of the lock button is connected to the press part 313 and extends laterally from the bottom of the press part 313, the extending range goes beyond the range of the hole 124 in the slide latch so that the fixing part 311 is blocked by the periphery portion of the hole 124, preventing detachment of the lock button 121 from the hole 124. In another embodiment, the fixing part 311 may also extend laterally from the support part 312, with its extending range going beyond the range of the hole 124 in the slide latch. In still another embodiment, the fixing part 311 may adopt any other suitable structure, so long as it prevents detachment of the lock button 121 from the slide latch 122 and allows up and down movement of the lock button.


The slide latch 122 comprises a hole 124 formed approximately in a middle position thereof for receiving the press part 313 of the latch button 121. The slide latch 122 further comprises a projecting tongue 122a formed at a side in its lengthwise direction, which matches with a lateral slot 133a formed at a side of the first mounting base 133, so that at least a part of said projecting tongue stays in the lateral slot no matter the slide latch 122 slides to the left or to the right.


The spring member 125 comprises a flat part 351, an spring reaction part 352, a contact part 353 and a protrusion part 354. The flat part 351 is located at one end of the spring member 125 and fixed to the bottom of the slide latch 122 by fixing units which pass through the first sliding slot 134a and the third sliding slot 134c (see FIG. 2). The spring reaction part 352 is located between the flat part 351 and the contact part 353. The spring reaction part 352 may include a downward recess part or any other structure that can produce a spring deformation. The contact part 353 contacts the bottom of the support part 312 of the lock button 121 that passes through the second sliding slot 134b (see FIG. 2). In a case where the lock button 121 is not pressed, the contact part provides a certain upward preset spring force to the lock button 121 so that the lock button will not drop down. The protrusion part 354 is formed at one end of the contact part 353, as shown by the FIGURE, the spring reaction part 352 is connected to the other end of the contact part 353. The protrusion part 354 comprises a left side 354a and a right side 354b.


Still referring to FIG. 3A, it shows the situation where the slide latch 122 is locked and can not move to the left or right. As shown in the FIGURE, when the slide latch 122 is locked, the lock button is not pressed down, the spring member 125 receives no force for moving downward from the support part 312, and the protrusion part 354 on the spring member is in its first position. At the first position of the protrusion part 354, the protrusion part 354 is located in the second sliding slot 134b so that right side 354b of the protrusion part is blocked by the right wall of the second sliding slot 134b, resulting in that the slide latch 122 can not move to the right. At this position, the slide latch also can not move to the left since its left side is limited by the left wall of the first mounting base 133.


Furthermore, the block 134d formed on the partition board 134 may also interact with the spring member 125. A gap 353a may be formed in the contact part 353 of the spring member 125. In a case where the lock button 121 is not pressed and no spring deformation of the spring reaction part 352 occurs, the gap is blocked by the block 134d, thereby further preventing the slide latch 122 from moving to the right.


Next, referring to FIG. 3B, an operator presses the press part 313 on the lock button 121 so that the lock button moves downward. The support part 312 of the lock button presses the contact part 353 of the spring member so that the spring reaction part 352 produces a downward spring deformation. The spring deformation brings the contact part 353 and the protrusion part 354 to move downward so that the protrusion part 354 leaves away from the blocking range of the right wall of the second sliding slot 134b, meanwhile the gap 353a of the contact part 353 leaves away from the blocking range of the block 134d. Then, the right wall 354b of the protrusion part is no longer blocked by the block 134d, thus the sliding latch may slide to the right.


Now referring to FIG. 3C, when the lock button 121 is pressed down, the slide latch 122 and the spring member 125 are pushed a distance toward the right which is sufficient to make the protrusion part 354 on the spring member 125 go beyond the distance between the right wall of the second sliding slot 134b and the left wall of the third sliding slot 134c.


Then referring to FIG. 3D, as shown by FIG. 3C, the slide latch 122 moves a distance to the right to make the protrusion part 354 go beyond the distance between the right wall of the second sliding slot 134b and the left wall of the third sliding slot 134c. Then, the lock button 121 is released to make the spring deformation of the spring member 125 recovered, the contact part and the protrusion part 354 moves upward, thus the protrusion part 354 enters the third sliding slot 134C, at this time the left side 354a of the protrusion part 354 is blocked by the left wall of the third sliding slot 134c, resulting in that the spring member 125 and the slide latch 122 can not move to the left, meanwhile, the slide latch 122 also can not move to the right since its right side is limited by the right wall of the first mounting base 133.



FIGS. 3A-3D describe in detail the process of controlling the sliding latch 122 to slide from left to right by the lock button 121. As to the process of the sliding latch 122 sliding from right to left, it may be easily derived by those skilled in the art according to the foregoing descriptions, no more unnecessary details will be provided here.



FIG. 4 is a structural diagram of the spring member 125 according to the embodiment of the present invention. As shown by FIG. 4, the spring member 125 may be made of spring sheets such as metal sheet and may comprise a flat part 351, a spring reaction part 352, a contact part 353 and a protrusion part 354. The spring member may further comprise a mounting base 125a, a through hole is formed on the mounting base 125a, the mounting base 125a is mounted on the slide latch 122 by using a screw (126 in FIG. 2) and a nut (127 in FIG. 2) (see FIGS. 3A-D). As shown by FIG. 4, a gap 353a is formed in the contact part 353 of the spring member, the gap 353a interact with the block 134d (see FIG. 2) formed on the partition board 134. For example, when the slide latch 122 is in the first position as shown by FIG. 3 and the lock button 121 is not pressed down, the block 134d blocks the edge of the gap 353a from crossing over the block 134d. When the lock button 121 is pressed down, the spring member is subject to a spring deformation, bringing the edge of the gap 353a moving out of the blocking area of the block 134d.


The mechanism where the slide latch 122 in the locking mechanism 120 slides to the left and right between the first position and the second position is descried in the foregoing paragraphs. How to enable the back housing body 130 to snap or to unsnap with the battery cover 110 by the moving of slide latch 122 to the left and right will be described in detail below.



FIG. 5 is a perspective view of the slide latch 122 according to the embodiment of the present invention. As shown by FIG. 5, the slide latch 122 comprises: a hole 124 for receiving the lock button 121, an indicator 123 for indicating a sliding direction and a locking state of the slide latch 122, a projecting tongue 122a formed at a side in the lengthwise direction of the slide latch 122, and a snap 122b formed at the front side of the slide latch. As shown by the FIGURE, the snap comprises a lateral extension part and vertical extension part to form a bending structure. The snap 122b slides to the left and right along with the slide latch thereby to be snapped or unsnapped with another snap on the battery cover 110.



FIG. 6 is a perspective view of the battery cover 110 according to the embodiment of the present invention. As shown by FIG. 6, the battery cover 110 comprises a battery cover body 110a, a second snap 110b on the top of the battery cover 110 and positioning components 110c on both sides of the battery cover body 110a. Optionally, the battery cover 110 may further comprise a battery assembly integral with the battery cover body 110a. Positioning components 110c are used to cooperate with the corresponding components in the back housing body 130 to prevent the battery cover 110 from shifting to the left and right during usage. The second snap 110b is also a bending structure that comprises a lateral extension part and a vertical extension part. The second snap 110b is used to snap with the snap 122b on the slide latch 122 so that the back housing body 130 and the battery cover 110 are snapped together.



FIGS. 7A-B are section views illustrating the back housing body of the Industry Mobile Terminal snapping with or unsnapping from the battery cover according to the embodiment of the present invention, wherein the section views are obtained by sectioning along the line B-B as shown by FIG. 1.


Referring to FIG. 7A, wherein the slide latch 122 is located at the left side, first position, the snap 122b on the slide latch 122 is snapped with the second snap 110b on the battery cover 110 so that the back housing body 130 of the Industry Mobile Terminal is snapped with the battery cover 110.


Referring to FIG. 7B, wherein the slide latch 122 is located at the right side, second position, the snap 122b on the slide latch 122 is unsnapped from the second snap 110b on the battery cover 110 so that the battery cover 110 and the corresponding battery assembly may be detached from the mobile terminal by one hand only.


Specific examples of the present invention are provided below:


Example 1

A locking mechanism in a mobile terminal, comprising a lock button, a slide latch, and an spring member,


the slide latch may slide between a first position and a second position, and the slide latch comprises a hole and snaps, the hole is on the top of the slide latch and extends through the slide latch, and the snaps are at the front side of the slide latch;


the lock button is in the hole and comprises a press part and a support part, the support part being connected to the press part and extending downward from the press part through the hole to be in contact with the contact part on the spring member;


the spring member is fixed with the slide latch and comprises an spring reaction part, a contact part and a protrusion part, the contact part being in contact with the support part of the lock button and a force from the support part causing a spring deformation in the spring reaction part;


when an external force is applied to the press part of the lock button to move the lock button downward, the support part transfers the force to the contact part of the spring member so that the contact part applies the force to the spring reaction part to result in a spring deformation, the spring deformation causes the contact part to move, thereby bringing the protrusion part (354) moving to an unblocked position;


in a case where the protrusion part is not blocked, the slide latch may slide between the first position and the second position for snapping or unsnapping by the snap.


Example 2

The locking mechanism according to example 1, wherein the press button further comprises a fixing part for preventing detachment of the lock button from the hole.


Example 3

The locking mechanism according to example 1, wherein the spring member is made of elastic spring sheet, and the spring member further comprises a flat part, and the flat part, the spring reaction part, the contact part and the protrusion part are connected in turn.


Example 4

The locking mechanism according to example 1, wherein a partition board is provided between the spring member and the slide latch, when no external force is applied to the press part of the lock button, the protrusion part is blocked by the first side of the first component on the partition board.


Example 5

The locking mechanism according to example 4, wherein when the external force is applied to the press part of the lock button (121), the spring deformation causes the contact part to move downward, thereby bringing the protrusion part (354) moving downward, so that the first side of the protrusion part (354) leaves away from the blocking range of the first side of the first component.


Example 6

The locking mechanism according to example 4, wherein when the first side of the protrusion part leaves away from the blocking range of the first side of the first component, the slide latch is able to slide a distance, then the external force is removed so that the spring deformation of the spring reaction part is recovered, thus the contact part brings the protrusion part to move upward to another position where the second side of the protrusion part is blocked by the second side of the first component.


Example 7

The locking mechanism according to example 4, wherein the partition board further comprises a second component, a gap is further formed in the contact part of the spring member, when the external force is not applied to the press part of the lock button, the edge of the gap is blocked by the second component.


Example 8

The locking mechanism according to example 4, sliding slots are formed on the partition board, the sliding latch and the spring member are fixed together through the sliding slots, and the sliding latch and the spring member can move relative to the sliding slots, the first component on the partition board is a spacer between the two neighboring sliding slots.


Example 9

A mobile terminal comprising a back housing, wherein the back housing comprising a back housing body and a battery cover,


the locking mechanism according to any one of examples 1-8 is located in one of the back housing body and the battery cover; and


a second snap is formed on the other one of the back housing and the battery cover, for snapping with the snap on the slide latch in the locking mechanism to fix the back housing body and the battery cover together.


Example 10

A method of manufacturing a locking mechanism in a mobile terminal, the locking mechanism comprising a lock button, a slide latch, and spring member, the method comprising:


providing the slide latch, the slide latch may slide between a first position and a second position and comprise a hole and snaps, the hole is on the top of the slide latch and extends through the slide latch, and the snaps are at the front side of the slide latch;


providing the lock button in the hole, the lock button comprising a press part and a support part, the support part being connected to the press part and extending downward from the press part through the hole to be in contact with the contact part on the spring member;


providing the spring member and enabling the spring member to be fixed with the slide latch, the spring member comprising an spring reaction part, a contact part and a protrusion part, the contact part being in contact with the support part of the lock button and a force from the support part causing a spring deformation in the spring reaction part;


when an external force is applied to the press part of the lock button to move the lock button downward, the support part transfers the force to the contact part of the spring member so that the contact part applies the force to the spring reaction part to result in a spring deformation, the spring deformation causes the contact part to move, thereby bringing the protrusion part moving to an unblocked position;


in a case where the protrusion part is not blocked, the slide latch may slide between the first position and the second position for snapping or unsnapping by the snap.


Although present invention is described with limited embodiments, on account of the above descriptions, it may be appreciated by those skilled in the art that other embodiments may be conceived within the scope of the present invention described herein. It may be acknowledged that for sake of clearness some features of the present invention described in the context in a single embodiment may be further provided in a combined manner in a single embodiment. In contrast, for sake of simplicity the features of the present invention described in the context in a single embodiment may be appropriately further provided separately, in any suitable sub-combination, or in any other embodiment of the present invention. No certain features described in the context in the embodiments shall be regarded as the essential features for the embodiments, except that said embodiments are invalid if without those elements.

Claims
  • 1. A locking mechanism in a mobile terminal, comprising a lock button, a slide latch, a spring member, and a portion of a back housing body: the slide latch is configured to be slid between a first position and a second position, and the slide latch comprises a hole and at least one snap, the hole is positioned at a top of the slide latch and extends through the slide latch, the at least one snap is positioned at a front side of the slide latch;the lock button is in the hole and comprises a press part and a support part, the support part being connected to the press part and extending downward from the press part through the hole to be in contact with a contact part of the spring member;the spring member is mounted to the slide latch and comprises a spring reaction part, the contact part and a protrusion part;the protrusion part of the spring is movable between a locked position and an unlocked position, and the protrusion part is biased toward the locked position;the portion of the back housing body is configured to engage the protrusion part of the spring while the protrusion part is in the locked position, so that the portion of the back housing body restricts the slide latch from sliding between the first position and the second position;the contact part of the spring being in contact with the support part of the lock button so that when a force is provided from the support part to the contact part a spring deformation occurs in the spring reaction part;the locking mechanism is configured so that when an external force is applied to the press part of the lock button to move the lock button downward, the support part of the lock button transfers the force to the contact part of the spring member so that the contact part applies the force to the spring reaction part to result in a spring deformation, the spring deformation causes the contact part to move, thereby moving the protrusion part relative to the portion of the back housing body into the unlocked position; andthe locking mechanism is configured so that when the protrusion part is in the unlocked position, the slide latch can be slid between the first position and the second position for engaging or disengaging the at least one snap.
  • 2. The locking mechanism according to claim 1, wherein the press button further comprises a fixing part for preventing detachment of the press button from the hole.
  • 3. The locking mechanism according to claim 1, wherein the spring member is made of a spring sheet, and the spring member further comprises a flat part, and the flat part, the spring reaction part, the contact part and the protrusion part are respectively connected to one another.
  • 4. The locking mechanism according to claim 1, wherein the portion of the back housing body is positioned between the spring member and the slide latch, and the locking mechanism is configured so that when no external force is applied to the press part of the lock button, the protrusion part is blocked by a first side of the the portion of the back housing body.
  • 5. The locking mechanism according to claim 4, wherein the locking mechanism is configured so that when the external force is applied to the press part of the lock button, the spring deformation causes the contact part to move downward, thereby causing the protrusion part to move downward, so that a first side of the protrusion part moves away from blocking range of the first side of the portion of the back housing body.
  • 6. The locking mechanism according to claim 5, wherein the locking mechanism is configured so that when the first side of the protrusion part moves away from the blocking range of the first side of the portion of the back housing body, the slide latch is able to slide a distance, then in response to the external force being removed so that the spring deformation of the spring reaction part is reversed, the contact part causes the protrusion part to move upward to another position where a second side of the protrusion part is blocked by a second side of the portion of the back housing body.
  • 7. The locking mechanism according to claim 4, wherein the portion of the back housing body is a first portion of the back housing body, there is a second portion of the back housing body, a gap is formed in the contact part of the spring member, and the locking mechanism is configured so that when the external force is not applied to the press part of the lock button, an edge of the gap is blocked by the second portion of the back housing body.
  • 8. The locking mechanism according to claim 4, wherein a plurality of sliding slots are defined in the back housing body, the spring member is mounted to the slide latch by fasteners that extend through respective sliding slots of the plurality of sliding slots, and the sliding latch and the spring member can move relative to the plurality of sliding slots, the portion of the back housing body is positioned between two adjacent sliding slots of the plurality of sliding slots.
  • 9. A mobile terminal comprising the back housing body and a battery cover, wherein the locking mechanism according to any one of claims 1-8 is located in the back housing body;the at least one snap comprises at least one first snap; andat least one second snap is formed on the battery cover, for engaging with the at least one first snap on the slide latch of the locking mechanism to fix the back housing body and the battery cover together.
  • 10. A method of manufacturing a locking mechanism in a mobile terminal, the locking mechanism comprising a lock button, a slide latch, a spring member, and a portion of a back housing body, the method comprising: providing the slide latch, the slide latch being configured to be slid between a first position and a second position, and the slide latch comprises a hole and at least one snap, the hole is positioned at a top of the slide latch and extends through the slide latch, and the at least one snap is positioned at a front side of the slide latch;providing the lock button in the hole, the lock button comprising a press part and a support part, the support part being connected to the press part and extending downward from the press part through the hole to be in contact with a contact part of the spring member; andproviding the spring member so that the spring member is mounted to the slide latch,the spring member comprises a spring reaction part, the contact part and a protrusion part,the protrusion part of the spring is movable between a locked position and an unlocked position, the protrusion part is biased toward the locked position, the portion of the back housing body is configured to engage the protrusion part of the spring while the protrusion part is in the locked position to restrict the slide latch from sliding between the first position and the second position,the contact part of the spring is in contact with the support part of the lock button so that when a force is provided from the support part to the contact part a spring deformation occurs in the spring reaction part;wherein the locking mechanism is configured so that when an external force is applied to the press part of the lock button to move the lock button downward, the support part transfers the force to the contact part of the spring member so that the contact part applies the force to the spring reaction part to result in a spring deformation, the spring deformation causes the contact part to move, thereby moving the protrusion part relative to the portion of the back housing body into the unlocked position; andwherein the locking mechanism is configured so that when the protrusion part is in the unlocked position, the slide latch can be slid between the first position and the second position for engaging or disengaging the at least one snap.
Priority Claims (1)
Number Date Country Kind
2015 1 0951828 Dec 2015 CN national
US Referenced Citations (479)
Number Name Date Kind
6832725 Gardiner et al. Dec 2004 B2
7128266 Zhu et al. Oct 2006 B2
7159783 Walczyk et al. Jan 2007 B2
7413127 Ehrhart et al. Aug 2008 B2
7441813 Qin Oct 2008 B2
7630742 Park Dec 2009 B2
7726575 Wang et al. Jun 2010 B2
7751181 Chen Jul 2010 B2
7789439 Zhao Sep 2010 B2
7842412 Zhang Nov 2010 B2
7892668 Choi Feb 2011 B2
7986524 Dong Jul 2011 B2
8085530 Zhang Dec 2011 B2
8094439 Lin Jan 2012 B2
8102645 Zhang Jan 2012 B2
8293401 Li Oct 2012 B2
8294969 Plesko Oct 2012 B2
8317105 Kotlarsky et al. Nov 2012 B2
8322622 Liu Dec 2012 B2
8366005 Kotlarsky et al. Feb 2013 B2
8371507 Haggerty et al. Feb 2013 B2
8376233 Van Horn et al. Feb 2013 B2
8381979 Franz Feb 2013 B2
8390909 Plesko Mar 2013 B2
8408464 Zhu et al. Apr 2013 B2
8408468 Horn et al. Apr 2013 B2
8408469 Good Apr 2013 B2
8409739 Ouyang Apr 2013 B2
8424768 Rueblinger et al. Apr 2013 B2
8448863 Xian et al. May 2013 B2
8450003 Ouyang May 2013 B2
8457013 Essinger et al. Jun 2013 B2
8459557 Havens et al. Jun 2013 B2
8469272 Kearney Jun 2013 B2
8474712 Kearney et al. Jul 2013 B2
8479992 Kotlarsky et al. Jul 2013 B2
8490877 Kearney Jul 2013 B2
8517271 Kotlarsky et al. Aug 2013 B2
8523076 Good Sep 2013 B2
8528818 Ehrhart et al. Sep 2013 B2
8544737 Gomez et al. Oct 2013 B2
8548420 Grunow et al. Oct 2013 B2
8550335 Samek et al. Oct 2013 B2
8550354 Gannon et al. Oct 2013 B2
8550357 Kearney Oct 2013 B2
8556174 Kosecki et al. Oct 2013 B2
8556176 Van Horn et al. Oct 2013 B2
8556177 Hussey et al. Oct 2013 B2
8559767 Barber et al. Oct 2013 B2
8561895 Gomez et al. Oct 2013 B2
8561903 Sauerwein Oct 2013 B2
8561905 Edmonds et al. Oct 2013 B2
8565107 Pease et al. Oct 2013 B2
8571307 Li et al. Oct 2013 B2
8579200 Samek et al. Nov 2013 B2
8583924 Caballero et al. Nov 2013 B2
8584945 Wang et al. Nov 2013 B2
8587595 Wang Nov 2013 B2
8587697 Hussey et al. Nov 2013 B2
8588869 Sauerwein et al. Nov 2013 B2
8590789 Nahill et al. Nov 2013 B2
8596539 Havens et al. Dec 2013 B2
8596542 Havens et al. Dec 2013 B2
8596543 Havens et al. Dec 2013 B2
8599271 Havens et al. Dec 2013 B2
8599957 Peake et al. Dec 2013 B2
8600158 Li et al. Dec 2013 B2
8600167 Showering Dec 2013 B2
8602309 Longacre et al. Dec 2013 B2
8608053 Meier et al. Dec 2013 B2
8608071 Liu et al. Dec 2013 B2
8611309 Wang et al. Dec 2013 B2
8615487 Gomez et al. Dec 2013 B2
8621123 Caballero Dec 2013 B2
8622303 Meier et al. Jan 2014 B2
8628013 Ding Jan 2014 B2
8628015 Wang et al. Jan 2014 B2
8628016 Winegar Jan 2014 B2
8629926 Wang Jan 2014 B2
8630491 Longacre et al. Jan 2014 B2
8635309 Berthiaume et al. Jan 2014 B2
8636200 Kearney Jan 2014 B2
8636212 Nahill et al. Jan 2014 B2
8636215 Ding et al. Jan 2014 B2
8636224 Wang Jan 2014 B2
8638806 Wang et al. Jan 2014 B2
8640958 Lu et al. Feb 2014 B2
8640960 Wang et al. Feb 2014 B2
8643717 Li et al. Feb 2014 B2
8646692 Meier et al. Feb 2014 B2
8646694 Wang et al. Feb 2014 B2
8657200 Ren et al. Feb 2014 B2
8659397 Vargo et al. Feb 2014 B2
8668149 Good Mar 2014 B2
8678285 Kearney Mar 2014 B2
8678286 Smith et al. Mar 2014 B2
8682077 Longacre Mar 2014 B1
D702237 Oberpriller et al. Apr 2014 S
8687282 Feng et al. Apr 2014 B2
8692927 Pease et al. Apr 2014 B2
8695880 Bremer et al. Apr 2014 B2
8698949 Grunow et al. Apr 2014 B2
8702000 Barber et al. Apr 2014 B2
8717494 Gannon May 2014 B2
8720783 Biss et al. May 2014 B2
8723804 Fletcher et al. May 2014 B2
8723904 Marty et al. May 2014 B2
8727223 Wang May 2014 B2
8740082 Wilz Jun 2014 B2
8740085 Furlong et al. Jun 2014 B2
8746563 Hennick et al. Jun 2014 B2
8750445 Peake et al. Jun 2014 B2
8752766 Xian et al. Jun 2014 B2
8756059 Braho et al. Jun 2014 B2
8757495 Qu et al. Jun 2014 B2
8760563 Koziol et al. Jun 2014 B2
8763909 Reed et al. Jul 2014 B2
8777108 Coyle Jul 2014 B2
8777109 Oberpriller et al. Jul 2014 B2
8779898 Havens et al. Jul 2014 B2
8781520 Payne et al. Jul 2014 B2
8783573 Havens et al. Jul 2014 B2
8789757 Barten Jul 2014 B2
8789758 Hawley et al. Jul 2014 B2
8789759 Xian et al. Jul 2014 B2
8794520 Wang et al. Aug 2014 B2
8794522 Ehrhart Aug 2014 B2
8794525 Amundsen et al. Aug 2014 B2
8794526 Wang et al. Aug 2014 B2
8798367 Ellis Aug 2014 B2
8807431 Wang et al. Aug 2014 B2
8807432 Van Horn et al. Aug 2014 B2
8820630 Qu et al. Sep 2014 B2
8822848 Meagher Sep 2014 B2
8824692 Sheerin et al. Sep 2014 B2
8824696 Braho Sep 2014 B2
8842849 Wahl et al. Sep 2014 B2
8844822 Kotlarsky et al. Sep 2014 B2
8844823 Fritz et al. Sep 2014 B2
8849019 Li et al. Sep 2014 B2
D716285 Chaney et al. Oct 2014 S
8851383 Yeakley et al. Oct 2014 B2
8854633 Laffargue Oct 2014 B2
8866963 Grunow et al. Oct 2014 B2
8868421 Braho et al. Oct 2014 B2
8868519 Maloy et al. Oct 2014 B2
8868802 Barten Oct 2014 B2
8868803 Caballero Oct 2014 B2
8870074 Gannon Oct 2014 B1
8879639 Sauerwein Nov 2014 B2
8880426 Smith Nov 2014 B2
8881983 Havens et al. Nov 2014 B2
8881987 Wang Nov 2014 B2
8903172 Smith Dec 2014 B2
8908995 Benos et al. Dec 2014 B2
8910870 Li et al. Dec 2014 B2
8910875 Ren et al. Dec 2014 B2
8914290 Hendrickson et al. Dec 2014 B2
8914788 Pettinelli et al. Dec 2014 B2
8915439 Feng et al. Dec 2014 B2
8915444 Havens et al. Dec 2014 B2
8916280 Lee Dec 2014 B2
8916789 Woodburn Dec 2014 B2
8918250 Hollifield Dec 2014 B2
8918564 Caballero Dec 2014 B2
8925818 Kosecki et al. Jan 2015 B2
8939374 Jovanovski et al. Jan 2015 B2
8942480 Ellis Jan 2015 B2
8944313 Williams et al. Feb 2015 B2
8944327 Meier et al. Feb 2015 B2
8944332 Harding et al. Feb 2015 B2
8950678 Germaine et al. Feb 2015 B2
D723560 Zhou et al. Mar 2015 S
8967468 Gomez et al. Mar 2015 B2
8971346 Sevier Mar 2015 B2
8976030 Cunningham et al. Mar 2015 B2
8976368 Akel et al. Mar 2015 B2
8978981 Guan Mar 2015 B2
8978983 Bremer et al. Mar 2015 B2
8978984 Hennick et al. Mar 2015 B2
8985456 Zhu et al. Mar 2015 B2
8985457 Soule et al. Mar 2015 B2
8985459 Kearney et al. Mar 2015 B2
8985461 Gelay et al. Mar 2015 B2
8988578 Showering Mar 2015 B2
8988590 Gillet et al. Mar 2015 B2
8991704 Hopper et al. Mar 2015 B2
8996194 Davis et al. Mar 2015 B2
8996384 Funyak et al. Mar 2015 B2
8998091 Edmonds et al. Apr 2015 B2
9002641 Showering Apr 2015 B2
9007368 Laffargue et al. Apr 2015 B2
9010641 Qu et al. Apr 2015 B2
9015513 Murawski et al. Apr 2015 B2
9016576 Brady et al. Apr 2015 B2
D730357 Fitch et al. May 2015 S
9022288 Nahill et al. May 2015 B2
9030964 Essinger et al. May 2015 B2
9033240 Smith et al. May 2015 B2
9033242 Gillet et al. May 2015 B2
9036054 Koziol et al. May 2015 B2
9037344 Chamberlin May 2015 B2
9038911 Xian et al. May 2015 B2
9038915 Smith May 2015 B2
D730901 Oberpriller et al. Jun 2015 S
D730902 Fitch et al. Jun 2015 S
D733112 Chaney et al. Jun 2015 S
9047098 Barten Jun 2015 B2
9047359 Caballero et al. Jun 2015 B2
9047420 Caballero Jun 2015 B2
9047525 Barber Jun 2015 B2
9047531 Showering et al. Jun 2015 B2
9049640 Wang et al. Jun 2015 B2
9053055 Caballero Jun 2015 B2
9053378 Hou et al. Jun 2015 B1
9053380 Xian et al. Jun 2015 B2
9057641 Amundsen et al. Jun 2015 B2
9058526 Powilleit Jun 2015 B2
9064165 Havens et al. Jun 2015 B2
9064167 Xian et al. Jun 2015 B2
9064168 Todeschini et al. Jun 2015 B2
9064254 Todeschini et al. Jun 2015 B2
9066032 Wang Jun 2015 B2
9070032 Corcoran Jun 2015 B2
D734339 Zhou et al. Jul 2015 S
D734751 Oberpriller et al. Jul 2015 S
9082023 Feng et al. Jul 2015 B2
9224022 Ackley et al. Dec 2015 B2
9224027 Van Horn et al. Dec 2015 B2
D747321 London et al. Jan 2016 S
9230140 Ackley Jan 2016 B1
9250712 Todeschini Feb 2016 B1
9258033 Showering Feb 2016 B2
9262633 Todeschini et al. Feb 2016 B1
9277035 Sung Mar 2016 B2
9310609 Rueblinger et al. Apr 2016 B2
D757009 Oberpriller et al. May 2016 S
9342724 McCloskey May 2016 B2
9375945 Bowles Jun 2016 B1
D760719 Zhou et al. Jul 2016 S
9390596 Todeschini Jul 2016 B1
D762604 Fitch et al. Aug 2016 S
D762647 Fitch et al. Aug 2016 S
9412242 Van Horn et al. Aug 2016 B2
D766244 Zhou et al. Sep 2016 S
9443123 Hejl Sep 2016 B2
9443222 Singel et al. Sep 2016 B2
9478113 Xie et al. Oct 2016 B2
20030001395 Barthelet Jan 2003 A1
20030022633 Chen Jan 2003 A1
20030085686 Haga May 2003 A1
20040214077 Huang Oct 2004 A1
20070026297 Qin Feb 2007 A1
20070063048 Havens et al. Mar 2007 A1
20070087263 Ge Apr 2007 A1
20080042448 Ge Feb 2008 A1
20090134221 Zhu et al. May 2009 A1
20090303668 Zhao Dec 2009 A1
20100103613 Yang Apr 2010 A1
20100177076 Essinger et al. Jul 2010 A1
20100177080 Essinger et al. Jul 2010 A1
20100177707 Essinger et al. Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20100247995 Chang Sep 2010 A1
20110076536 Dong Mar 2011 A1
20110169999 Grunow et al. Jul 2011 A1
20110202554 Powilleit et al. Aug 2011 A1
20120039025 Chen Feb 2012 A1
20120087071 Yang Apr 2012 A1
20120087722 Lin Apr 2012 A1
20120111946 Golant May 2012 A1
20120168512 Kotlarsky et al. Jul 2012 A1
20120193423 Samek Aug 2012 A1
20120203647 Smith Aug 2012 A1
20120223141 Good et al. Sep 2012 A1
20120268900 Fan Oct 2012 A1
20130043312 Van Horn Feb 2013 A1
20130075168 Amundsen et al. Mar 2013 A1
20130175341 Kearney et al. Jul 2013 A1
20130175343 Good Jul 2013 A1
20130257744 Daghigh et al. Oct 2013 A1
20130257759 Daghigh Oct 2013 A1
20130270346 Xian et al. Oct 2013 A1
20130287258 Kearney Oct 2013 A1
20130292475 Kotlarsky et al. Nov 2013 A1
20130292477 Hennick et al. Nov 2013 A1
20130293539 Hunt et al. Nov 2013 A1
20130293540 Laffargue et al. Nov 2013 A1
20130306728 Thuries et al. Nov 2013 A1
20130306731 Pedraro Nov 2013 A1
20130307964 Bremer et al. Nov 2013 A1
20130308625 Park et al. Nov 2013 A1
20130313324 Koziol et al. Nov 2013 A1
20130313325 Wilz et al. Nov 2013 A1
20130342717 Havens et al. Dec 2013 A1
20140001267 Giordano et al. Jan 2014 A1
20140002828 Laffargue et al. Jan 2014 A1
20140008439 Wang Jan 2014 A1
20140025584 Liu et al. Jan 2014 A1
20140034734 Sauerwein Feb 2014 A1
20140036848 Pease et al. Feb 2014 A1
20140039693 Havens et al. Feb 2014 A1
20140042814 Kather et al. Feb 2014 A1
20140049120 Kohtz et al. Feb 2014 A1
20140049635 Laffargue et al. Feb 2014 A1
20140061306 Wu et al. Mar 2014 A1
20140063289 Hussey et al. Mar 2014 A1
20140066136 Sauerwein et al. Mar 2014 A1
20140067692 Ye et al. Mar 2014 A1
20140070005 Nahill et al. Mar 2014 A1
20140071840 Venancio Mar 2014 A1
20140074746 Wang Mar 2014 A1
20140076974 Havens et al. Mar 2014 A1
20140078341 Havens et al. Mar 2014 A1
20140078342 Li et al. Mar 2014 A1
20140078345 Showering Mar 2014 A1
20140098792 Wang et al. Apr 2014 A1
20140100774 Showering Apr 2014 A1
20140100813 Showering Apr 2014 A1
20140103115 Meier et al. Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140104414 McCloskey et al. Apr 2014 A1
20140104416 Giordano et al. Apr 2014 A1
20140104451 Todeschini et al. Apr 2014 A1
20140106594 Skvoretz Apr 2014 A1
20140106725 Sauerwein Apr 2014 A1
20140108010 Maltseff et al. Apr 2014 A1
20140108402 Gomez et al. Apr 2014 A1
20140108682 Caballero Apr 2014 A1
20140110485 Toa et al. Apr 2014 A1
20140114530 Fitch et al. Apr 2014 A1
20140124577 Wang et al. May 2014 A1
20140124579 Ding May 2014 A1
20140125842 Winegar May 2014 A1
20140125853 Wang May 2014 A1
20140125999 Longacre et al. May 2014 A1
20140129378 Richardson May 2014 A1
20140131438 Kearney May 2014 A1
20140131441 Nahill et al. May 2014 A1
20140131443 Smith May 2014 A1
20140131444 Wang May 2014 A1
20140131445 Ding et al. May 2014 A1
20140131448 Xian et al. May 2014 A1
20140133379 Wang et al. May 2014 A1
20140136208 Maltseff et al. May 2014 A1
20140140585 Wang May 2014 A1
20140151453 Meier et al. Jun 2014 A1
20140152882 Samek et al. Jun 2014 A1
20140158770 Sevier et al. Jun 2014 A1
20140159869 Zumsteg et al. Jun 2014 A1
20140166755 Liu et al. Jun 2014 A1
20140166757 Smith Jun 2014 A1
20140166759 Liu et al. Jun 2014 A1
20140168787 Wang et al. Jun 2014 A1
20140175165 Havens et al. Jun 2014 A1
20140175172 Jovanovski et al. Jun 2014 A1
20140191644 Chaney Jul 2014 A1
20140191913 Ge et al. Jul 2014 A1
20140197238 Lui et al. Jul 2014 A1
20140197239 Havens et al. Jul 2014 A1
20140197304 Feng et al. Jul 2014 A1
20140203087 Smith et al. Jul 2014 A1
20140204268 Grunow et al. Jul 2014 A1
20140214631 Hansen Jul 2014 A1
20140217166 Berthiaume et al. Aug 2014 A1
20140217180 Liu Aug 2014 A1
20140231500 Ehrhart et al. Aug 2014 A1
20140232930 Anderson Aug 2014 A1
20140247315 Marty et al. Sep 2014 A1
20140263493 Amurgis et al. Sep 2014 A1
20140263645 Smith et al. Sep 2014 A1
20140270196 Braho et al. Sep 2014 A1
20140270229 Braho Sep 2014 A1
20140278387 DiGregorio Sep 2014 A1
20140282210 Bianconi Sep 2014 A1
20140284384 Lu et al. Sep 2014 A1
20140288933 Braho et al. Sep 2014 A1
20140297058 Barker et al. Oct 2014 A1
20140299665 Barber et al. Oct 2014 A1
20140312121 Lu et al. Oct 2014 A1
20140319220 Coyle Oct 2014 A1
20140319221 Oberpriller et al. Oct 2014 A1
20140326787 Barten Nov 2014 A1
20140332590 Wang et al. Nov 2014 A1
20140344943 Todeschini et al. Nov 2014 A1
20140346233 Liu et al. Nov 2014 A1
20140351317 Smith et al. Nov 2014 A1
20140353373 Van Horn et al. Dec 2014 A1
20140361073 Qu et al. Dec 2014 A1
20140361082 Xian et al. Dec 2014 A1
20140362184 Jovanovski et al. Dec 2014 A1
20140363015 Braho Dec 2014 A1
20140369511 Sheerin et al. Dec 2014 A1
20140370739 Lee Dec 2014 A1
20140374483 Lu Dec 2014 A1
20140374485 Xian et al. Dec 2014 A1
20150001301 Ouyang Jan 2015 A1
20150001304 Todeschini Jan 2015 A1
20150003673 Fletcher Jan 2015 A1
20150009338 Laffargue et al. Jan 2015 A1
20150009610 London et al. Jan 2015 A1
20150014416 Kotlarsky et al. Jan 2015 A1
20150021397 Rueblinger et al. Jan 2015 A1
20150028102 Ren et al. Jan 2015 A1
20150028103 Jiang Jan 2015 A1
20150028104 Ma et al. Jan 2015 A1
20150029002 Yeakley et al. Jan 2015 A1
20150032709 Maloy et al. Jan 2015 A1
20150039309 Braho et al. Feb 2015 A1
20150040378 Saber et al. Feb 2015 A1
20150048168 Fritz et al. Feb 2015 A1
20150049347 Laffargue et al. Feb 2015 A1
20150051992 Smith Feb 2015 A1
20150053766 Havens et al. Feb 2015 A1
20150053768 Wang et al. Feb 2015 A1
20150053769 Thuries et al. Feb 2015 A1
20150062366 Liu et al. Mar 2015 A1
20150063215 Wang Mar 2015 A1
20150063676 Lloyd et al. Mar 2015 A1
20150069130 Gannon Mar 2015 A1
20150071819 Todeschini Mar 2015 A1
20150083800 Li et al. Mar 2015 A1
20150086114 Todeschini Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150096872 Woodburn Apr 2015 A1
20150099557 Pettinelli et al. Apr 2015 A1
20150100196 Hollifield Apr 2015 A1
20150102109 Huck Apr 2015 A1
20150115035 Meier et al. Apr 2015 A1
20150127791 Kosecki et al. May 2015 A1
20150128116 Chen et al. May 2015 A1
20150129659 Feng et al. May 2015 A1
20150133047 Smith et al. May 2015 A1
20150134470 Hejl et al. May 2015 A1
20150136851 Harding et al. May 2015 A1
20150136854 Lu et al. May 2015 A1
20150142492 Kumar May 2015 A1
20150144692 Hejl May 2015 A1
20150144698 Teng et al. May 2015 A1
20150144701 Xian et al. May 2015 A1
20150149946 Benos et al. May 2015 A1
20150161429 Xian Jun 2015 A1
20150169925 Chen et al. Jun 2015 A1
20150169929 Williams et al. Jun 2015 A1
20150186703 Chen et al. Jul 2015 A1
20150193644 Kearney et al. Jul 2015 A1
20150193645 Colavito et al. Jul 2015 A1
20150199957 Funyak et al. Jul 2015 A1
20150204671 Showering Jul 2015 A1
20150210199 Payne Jul 2015 A1
20150220753 Zhu et al. Aug 2015 A1
20150254485 Feng et al. Sep 2015 A1
20150327012 Bian et al. Nov 2015 A1
20160014251 Hejl Jan 2016 A1
20160040982 Li et al. Feb 2016 A1
20160042241 Todeschini Feb 2016 A1
20160057230 Todeschini et al. Feb 2016 A1
20160109219 Ackley et al. Apr 2016 A1
20160109220 Laffargue Apr 2016 A1
20160109224 Thuries et al. Apr 2016 A1
20160112631 Ackley et al. Apr 2016 A1
20160112643 Laffargue et al. Apr 2016 A1
20160124516 Schoon et al. May 2016 A1
20160125217 Todeschini May 2016 A1
20160125342 Miller et al. May 2016 A1
20160125873 Braho et al. May 2016 A1
20160133253 Braho et al. May 2016 A1
20160171720 Todeschini Jun 2016 A1
20160178479 Goldsmith Jun 2016 A1
20160180678 Ackley et al. Jun 2016 A1
20160189087 Morton et al. Jun 2016 A1
20160227912 Oberpriller et al. Aug 2016 A1
20160232891 Pecorari Aug 2016 A1
20160292477 Bidwell Oct 2016 A1
20160294779 Yeakley et al. Oct 2016 A1
20160306769 Kohtz et al. Oct 2016 A1
20160314276 Wilz, Sr. et al. Oct 2016 A1
20160314294 Kubler et al. Oct 2016 A1
20170179448 Hsu Jun 2017 A1
Foreign Referenced Citations (4)
Number Date Country
2013163789 Nov 2013 WO
2013173985 Nov 2013 WO
2014019130 Feb 2014 WO
2014110495 Jul 2014 WO
Non-Patent Literature Citations (26)
Entry
Combined Search and Examination Report in related UK Application No. GB1621478.5 dated May 4, 2017, pp. 1-5.
U.S. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned.
U.S. Appl. No. 14/277,337 for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages; now abandoned.
U.S. Appl. No. 14/446,391 for Multifunction Point of Sale Apparatus With Optical Signature Capture filed Jul. 30, 2014 (Good et al.); 37 pages; now abandoned.
U.S. Appl. No. 29/516,892 for Table Computer filed Feb. 6, 2015 (Bidwell et al.); 13 pages.
U.S. Appl. No. 29/523,098 for Handle for a Tablet Computer filed Apr. 7, 2015 (Bidwell et al.); 17 pages.
U.S. Appl. No. 29/528,890 for Mobile Computer Housing filed Jun. 2, 2015 (Fitch et al.); 61 pages.
U.S. Appl. No. 29/526,918 for Charging Base filed May 14, 2015 (Fitch et al.); 10 pages.
U.S. Appl. No. 14/715,916 for Evaluating Image Values filed May 19, 2015 (Ackley); 60 pages.
U.S. Appl. No. 29/525,068 for Tablet Computer With Removable Scanning Device filed Apr. 27, 2015 (Schulte et al.); 19 pages.
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages.
U.S. Appl. No. 29/530,600 for Cyclone filed Jun. 18, 2015 (Vargo et al); 16 pages.
U.S. Appl. No. 14/707,123 for Application Independent DEX/UCS Interface filed May 8, 2015 (Pape); 47 pages.
U.S. Appl. No. 14/283,282 for Terminal Having Illumination and Focus Control filed May 21, 2014 (Liu et al.); 31 pages; now abandoned.
U.S. Appl. No. 14/705,407 for Method and System to Protect Software-Based Network-Connected Devices From Advanced Persistent Threat filed May 6, 2015 (Hussey et al.); 42 pages.
U.S. Appl. No. 14/704,050 for Intermediate Linear Positioning filed May 5, 2015 (Charpentier et al.); 60 pages.
U.S. Appl. No. 14/705,012 for Hands-Free Human Machine Interface Responsive to a Driver of a Vehicle filed May 6, 2015 (Fitch et al.); 44 pages.
U.S. Appl. No. 14/715,672 for Augumented Reality Enabled Hazard Display filed May 19, 2015 (Venkatesha et al.); 35 pages.
U.S. Appl. No. 14/735,717 for Indicia-Reading Systems Having an Interface With a User's Nervous System filed Jun. 10, 2015 (Todeschini); 39 pages.
U.S. Appl. No. 14/702,110 for System and Method for Regulating Barcode Data Injection Into a Running Application on a Smart Device filed May 1, 2015 (Todeschini et al.); 38 pages.
U.S. Appl. No. 14/747,197 for Optical Pattern Projector filed Jun. 23, 2015 (Thuries et al.); 33 pages.
U.S. Appl. No. 14/702,979 for Tracking Battery Conditions filed May 4, 2015 (Young et al.); 70 pages.
U.S. Appl. No. 29/529,441 for Indicia Reading Device filed Jun. 8, 2015 (Zhou et al.); 14 pages.
U.S. Appl. No. 14/747,490 for Dual-Projector Three-Dimensional Scanner filed Jun. 23, 2015 (Jovanovski et al.); 40 pages.
U.S. Appl. No. 14/740,320 for Tactile Switch for a Mobile Electronic Device filed Jun. 16, 2015 (Bamdringa); 38 pages.
U.S. Appl. No. 14/740,373 for Calibrating a volume Dimensioner filed Jun. 16, 2015 (Ackley et al.); 63 pages.
Related Publications (1)
Number Date Country
20170181299 A1 Jun 2017 US