The invention relates to a battery disconnect unit for disconnecting a battery system comprising at least one battery cell, from an electrical system.
Furthermore, the invention also relates to a battery system and a vehicle.
Electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in HEVs use one or more drive systems to provide driving force. The drive systems include an electrical system that receives power from power sources, such as a power grid, for charging a battery, drives an engine in order to move the vehicle, and supplies power to accessories in order to perform functions, such as lighting, and a battery pack that stores electrical power in a chemical manner in order to operate the vehicle in the future. In some circumstances, it may be desirable to disconnect the electrical system from the battery pack.
It is known that for switching a battery system on and off, e.g., in electric vehicles, so-called battery disconnect units (BDUs) are installed in the battery systems. Essential components of the BDUs are a switching device for electrically switching battery systems on and/or off. Such switching devices are installed in the positive and/or negative pole path of the battery system.
Document DE 11 2016 006 844 T5 describes a battery disconnect circuit for disconnecting a battery system from an electrical system.
Document DE 10 2016 220 118 B4 relates to a battery disconnect device for switching a battery off and on.
Document DE 10 2021 106 122 A1 relates to an electrical drive system architecture comprising a plurality of battery disconnect units for switching the batteries off or on.
Proposed is a battery disconnect unit for disconnecting a battery system comprising at least one battery cell, from an electrical system. An electrical system is understood to mean a system comprising at least one electrical consumer and/or at least one electrical energy source. An electrical system in the sense of the invention may, for example, be designed as a charger for a battery system or as an on-board power supply of a vehicle.
According to the invention, the battery disconnect unit comprises a first terminal, a second terminal, a first switching element, a second switching element and a current sensing resistor, also referred to as a shunt. The switching elements each comprise three connections, wherein a switching path is formed between a first connection and a second connection and can be actuated by means of a third connection.
A first connection of the first switching element is connected to a first connection of the current sensing resistor. A second connection of the first switching element is connected to the first terminal. A first connection of the second switching element is connected to a second connection of the current sensing resistor, and a second connection of the second switching element is connected to the second terminal. The first and the second switching element are thus connected in anti-series via the current sensing resistor.
The switching elements can be located on a cooling carrier, and the integrated current sensing resistor can thus also be cooled accordingly. Moreover, the current sensing resistor can determine a reference potential for the measurements of high voltages, and an intelligent diagnostic network can thus be implemented.
The battery disconnect unit proposed according to the invention may be used in the positive pole path or negative pole path of the battery system. However, the battery disconnect unit proposed according to the invention may also be used between the battery packs, even if the battery system comprises a plurality of battery packs connected in series, for example. The battery disconnect unit proposed according to the invention may also comprise further sensors, such as temperature sensors and voltage sensors.
Preferably, the battery disconnect unit proposed according to the invention comprises a driver module for actuating the first and second switching elements.
Preferably, the battery disconnect unit proposed according to the invention further comprises a short circuit detection (SCD) circuit which, in the case of an overcurrent, is triggered and accesses the driver module. The short circuit detection circuit is triggered by exceeding an absolute value of a current and accesses a logical input of the driver module in order to deactivate the latter. This achieves automatic triggering. This battery disconnect unit is an autonomous system that can be switched on and off from the outside, but in the event of a short-circuit, switches off independently in the μs range and thus assumes a fuse function.
For example, the short circuit detection circuit comprises a current amplifier along with a comparator that compares the current value to a threshold, such as a voltage divider, and provides the output signal to the driver module.
Preferably, the battery disconnect unit proposed according to the invention further comprises a clamping circuit configured to protect the first and the second switching element from overvoltage. With a fast switch-off, this clamping circuit can reduce overvoltages which are inter alia produced by line inductances. For example, the clamping circuit may be a string of transient voltage suppressor (TVS) diodes. However, the clamping circuit may also comprise elements such as snubbers, varistors, or the like.
Advantageously, the battery disconnect unit proposed according to the invention further comprises an auxiliary current measuring instrument for the plausibility check of the current measured by the current sensing resistor. This auxiliary current measuring instrument may also be a redundancy to the current sensing resistor and may only be used in case of doubt. Preferably, the auxiliary current measuring instrument is designed as a Hall sensor.
According to a preferred embodiment of the invention, the first switching element and the second switching element are designed as semiconductor switches. For example, the first and the second switching element may be designed as field effect transistors and respectively comprise a SOURCE connection, a DRAIN connection, and a GATE connection. The switching elements are connected such that in each case, the first connection is the SOURCE connection, the second connection is the DRAIN connection, and the third connection is the GATE connection. For example, the switching elements are MOSFETs, in particular n-channel enhancement-type MOSFETs. However, the first and the second switching element may also be designed as semiconductor switches of other types, such as IGBT.
Preferably, the battery disconnect unit proposed according to the invention further comprises a monitoring module which comprises outputs for actuating the driver module and is configured to perform current, voltage and/or temperature measurements. Preferably, the monitoring module is a finite state machine (FSM). For example, this monitoring module may be controlled by a battery control unit (BCU) via daisy chain communication. Preferably, the monitoring module is designed as an application-specific integrated circuit (ASIC).
According to a preferred embodiment of the invention, the overkeeping module is configured to perform diagnostics of the first and the second switching element. In comparison to the voltage at the second connections of the respective switching elements, a negative voltage may in this case be generated at the first connection of the first switching element or the first connection of the second switching element during the diagnostics. This can be achieved by providing a positive voltage with the reference potential at the current sensing resistor via a diode structure to the second connections of the respective switching elements. For example, the battery disconnect unit comprises an additional DC voltage source whose positive pole is connected to the anode of a diode and whose negative pole is connected to the first connection of the first switching element or the first connection of the second switching element. In this case, the cathode of the diode can be connected to the second connections of the respective switching elements via a voltage divider in order to check the respective switching elements. The DC voltage source generates a voltage difference between the second connection of the respective switching elements and the first connection of the respective switching elements. The negative voltage may be connected with high impedance to the first connection of the first switching element or to the first connection of the second switching element. The voltages at the second connection of the first switching element, the second connection of the second switching element and at the first connection of the first switching element or the first connection of the second switching element are sensed and then transmitted via the monitoring module by means of a communication interface to, for example, a battery management system and evaluated in order to make a statement about the state of the first and the second switching element.
Preferably, the battery disconnect unit is configured to perform high-voltage measurements. These high-voltage measurements may, for example, be performed by the monitoring module. In this case, the battery disconnect unit can be provided with a plug that comprises a plurality of additional measuring channels. For example, the high voltages are a pack voltage of the battery system and a voltage of an electrical system connected to the battery system, such as an on-board power supply or a charger.
A battery system is also proposed. The proposed battery system comprises at least one battery cell and a battery disconnect unit proposed according to the invention. Preferably, the battery system proposed according to the invention comprises a plurality of battery cells that are connected in series and/or in parallel. Preferably, the at least one battery cell is designed as a lithium ion cell. Preferably, the battery system comprises further components, such as a battery management system, a battery control unit, sensors for sensing current, voltage and temperature of the battery cells, etc.
Also proposed is a vehicle comprising the battery disconnect unit proposed according to the invention and/or the battery system proposed according to the invention.
The invention provides an alternative solution for disconnecting a battery system from an electrical system. With the battery disconnect unit proposed according to the invention, the common disconnecting device in which a contactor, a current sensor, such as a current sensing resistor or Hall sensor, and a fuse, such as a pyrotechnical fuse, are used can be dispensed with. This significantly reduces the costs.
In the battery disconnect unit proposed according to the invention, a significantly smaller installation space is required. The battery disconnect unit proposed according to the invention is a largely independent system and can be offered in a very compact design. The battery disconnect unit proposed according to the invention can thus also be easily integrated into a user's own battery system.
The invention also provides a safe solution. The battery disconnect unit proposed according to the invention can be controlled from the outside via a communication interface or by switching off the supply. With the battery disconnect unit proposed according to the invention, an automatic switch-off in the case of overcurrent can be achieved. Various switch-off criteria, such as threshold value or slew rate of the current, may be considered.
It is also possible to access the internally determined current sensor values and temperatures via the communication interface. Advantageously, no additional sensors are necessary on the part of a user of the battery disconnect unit proposed according to the invention.
It is also possible to realize a fast switch-off under load as in a pyrotechnical fuse. Advantageously, the switch-off is not destructive and thus repeatable without aging.
The battery disconnect unit proposed according to the invention can be designed without a microprocessor and thus does not contain any software. This allows a battery management system of a user of the battery disconnect unit proposed according to the invention to perform diagnostics.
Embodiments of the invention are explained in more detail with reference to the drawings and the following description.
Shown are:
In the following description of the embodiments of the invention, identical or similar elements are denoted by identical reference signs, wherein a repeated description of these elements is dispensed with in individual cases. The figures show the subject matter of the invention only schematically.
The first switching element 51 and the second switching element S2 are in the present case designed as field effect transistors. The switching elements S1, S2 each comprise a SOURCE connection, a DRAIN connection and a GATE connection. The switching elements S1, S2 are connected such that in each case, the first connection is the SOURCE connection, the second connection is the DRAIN connection, and the third connection is the GATE connection.
In the present case, the switching elements S1, S2 are n-channel enhancement-type MOSFETs. The switching elements S1, S2 each comprise a switching path as well as an inverse diode connected in parallel to the switching path. The inverse diode, also referred to as the body diode, is produced in each MOSFET due to the internal structure thereof and is not an explicit component.
A first connection of the first switching element S1 is connected to a first connection of the current sensing resistor 6. A second connection of the first switching element S1 is connected to the first terminal 2. A first connection of the second switching element S2 is connected to a second connection of the current sensing resistor 6, and a second connection of the second switching element S2 is connected to the second terminal 4. The first and the second switching element S1, S2 are thus connected in anti-series via the current sensing resistor 6.
Advantageously, the switching elements S1, S2 can be located on a cooling carrier, and the integrated current sensing resistor 6 can thus also be cooled accordingly. Moreover, the current sensing resistor 6 can determine a reference potential for the measurements of high voltages, and an intelligent diagnostic network can thus be implemented.
The battery disconnect unit 100 can be used in the positive pole path or negative pole path of the battery system 200 (cf.
As shown in
The battery system 200 is connected to an electrical system 300, which can for example be designed as an on-board power supply of a vehicle or as a charger.
The battery disconnect unit 100 serves to disconnect the battery system 200 from the electrical system 300. The battery disconnect unit 100 also serves to connect the battery system 200 to the electrical system 300.
The battery disconnect unit 100 comprises a first terminal 2, a second terminal 4, a first switching element S1, a second switching element S2 and a current sensing resistor 6. The switching elements S1, S2 each have three connections, wherein a switching path is formed between a first connection and a second connection and can be actuated by means of a third connection.
The first switching element Si and the second switching element S2 are in the present case designed as field effect transistors. The switching elements S1, S2 each comprise a SOURCE connection, a DRAIN connection and a GATE connection. The switching elements S1, S2 are connected such that in each case, the first connection is the SOURCE connection, the second connection is the DRAIN connection, and the third connection is the GATE connection.
In the present case, the switching elements S1, S2 are n-channel enhancement-type MOSFETs. The switching elements S1, S2 each comprise a switching path as well as an inverse diode connected in parallel to the switching path. The inverse diode, also referred to as the body diode, is produced in each MOSFET due to the internal structure thereof and is not an explicit component.
A first connection of the first switching element Si is connected to a first connection of the current sensing resistor 6. A second connection of the first switching element S1 is connected to the first terminal 2. A first connection of the second switching element S2 is connected to a second connection of the current sensing resistor 6, and a second connection of the second switching element S2 is connected to the second terminal 4. The first and the second switching element S1, S2 are thus connected in anti-series via the current sensing resistor 6.
The battery disconnect unit 100 further comprises a driver module 20 for actuating the first and the second switching element S1, S2.
The battery disconnect unit 100 further comprises a current measuring module 30 coupled to the current sensing resistor 6. For example, the current measuring module 30 may comprise an analog front end (AFE) and an analog-digital converter (ADC). For example, the AFE is designed as an operational amplifier and is configured to convert the small differential voltage that drops at the current sensing resistor 6 into a voltage usable by the ADC.
Advantageously, the battery disconnect unit 100 further comprises an auxiliary current measuring instrument 40 for the plausibility check of the current measured by the current sensing resistor 6. This auxiliary current measuring instrument 40 may also be a redundancy to the current sensing resistor 6 and may only be used in case of doubt. Preferably, the auxiliary current measuring instrument 40 is designed as a Hall sensor.
The battery disconnect unit 100 further comprises a short circuit detection circuit 50, which is coupled to the current measuring module 30 and, in the case of an overcurrent, is triggered and accesses the driver module 20.
Furthermore, the battery disconnect unit 100 comprises a clamping circuit 60 configured to protect the first and the second switching element S1, S2 from overvoltage. In the present case in
The battery disconnect unit 100 according to
The overkeeping module 80 is configured to perform diagnostics of the first and the second switching element S1, S2. In comparison to the voltage at the second connections of the respective switching elements S1, S2, a negative voltage VCS is in this case generated at the first connection of the second switching element S2 during the diagnostics. Alternatively, the negative voltage VCS may also be generated at the first connection of the first switching element S1. The voltage V1 at the second connection of the first switching element S1, the voltage V2 at the second connection of the second switching element S2, the voltage VCS at the first connection of the second switching element S2, and the voltage Vclamp at the clamping circuit 60 are sensed and then transmitted via the monitoring module 80 by means of a communication interface 16 (cf.
The invention is not limited to the exemplary embodiments described herein and the aspects highlighted therein. Rather, a variety of modifications, which are within the scope of activities of the person skilled in the art, is possible within the range specified by the claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2022 200 873.1 | Jan 2022 | DE | national |